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Abstract

Background: Affymetrix microarrays are used by many laboratories to generate gene expression
profiles. Generally, only large differences (> |.7-fold) between conditions have been reported.
Computational methods to reduce inter-array variability might be of value when attempting to
detect smaller differences. We examined whether inter-array variability could be reduced by using
data based on the Affymetrix algorithm for pairwise comparisons between arrays (ratio method)
rather than data based on the algorithm for analysis of individual arrays (signal method). Six HG-
U95A arrays that probed mRNA from young (21-31 yr old) human muscle were compared with
six arrays that probed mRNA from older (62—77 yr old) muscle.

Results: Differences in mean expression levels of young and old subjects were small, rarely > 1.5-
fold. The mean within-group coefficient of variation for 4629 mRNAs expressed in muscle was 20%
according to the ratio method and 25% according to the signal method. The ratio method yielded
more differences according to t-tests (124 vs. 98 differences at P < 0.01), rank sum tests (107 vs.
85 differences at P < 0.01), and the Significance Analysis of Microarrays method (124 vs. 56
differences with false detection rate < 20%; 20 vs. 0 differences with false detection rate < 5%). The
ratio method also improved consistency between results of the initial scan and results of the
antibody-enhanced scan.

Conclusion: The ratio method reduces inter-array variance and thereby enhances statistical
power.

Background

Affymetrix microarrays are used by many laboratories to
study differences in gene expression associated with exper-
imental treatments, diseases, development, aging, and
other conditions. Typically, an arbitrary value for expres-
sion ratios (or fold-change values) is chosen to define sig-
nificant differences in gene expression between

conditions. For example, in several studies of aging [1-6],
only differences > 1.7-fold in magnitude were considered
to be significant. None of the reports indicated whether
there were smaller effects that were statistically significant.
It has been pointed out that statistically significant differ-
ences in gene expression often are of small magnitude
(sometimes as low as 1.2-fold), and that larger effects of-

Page 1 of 10

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/3/23
http://www.biomedcentral.com/

BMC Bioinformatics 2002, 3

ten are artefacts of high variance [ 7,8]. For those interested
in detecting these smaller effects, it is important to mini-
mize nonspecific sources of inter-array variance.

To understand the approach described in this report, it is
necessary to understand the design of Affymetrix microar-
rays and analysis software (Microarray Suite). There are
multiple probe pairs for each mRNA (8-20 for the arrays
used in the present study). A probe pair consists of a 25
base oligonucleotide that matches an mRNA sequence
(perfect match, or PM probe) and an oligonucleotide with
a mismatched base in the center (MM probe). The specific
hybridization signal for each probe pair is the difference
between the PM intensity and the MM intensity (although
the latest version of Affymetrix Microarray Suite, 5.0, has
special rules for handling MM probes that have higher sig-
nals than their PM partner). No single hybridization con-
dition is optimal for all oligonucleotide probes, so it is
inevitable that there is variability among the signals with-
in a probe set. The expression level reported for each
probe set (by the Affymetrix "absolute analysis" algo-
rithm) is based on a weighted average of the signals from
the individual probe pairs, with signals near the median
given more weight than those far from the median. We re-
fer to this as the signal method in this report. The weights
assigned to each probe pair can vary from one array to an-
other, but it is unclear whether variable weighting adds
significantly to inter-array variance. Microarray Suite also
has a procedure ("comparative analysis" algorithm) for
comparing two arrays at the level of individual probe
pairs. With this algorithm, ratios of signals (PM-MM for
each probe pair) from one array to those of the other array
are computed first. Weighted averages of these ratios are
then computed. We refer to this as the ratio method. This
method is supposed to be more precise than the signal
method for inter-array comparisons. Thus, many investi-
gators use this algorithm for all possible one-to-one com-
parisons across groups (e.g., 9 comparisons for 3 arrays
per group) and report the average of the ratios as the
change in gene expression [1-5,9]. A problem with this
approach is that there is no absolute or relative expression
level assigned to each mRNA on individual arrays, so that
formal statistical approaches (e.g., t-tests) cannot be used
to rate the statistical significance of differences. In this re-
port, we describe how we circumvented this problem by
using the ratio method to generate a composite gene ex-
pression score for each mRNA on each array.

The procedure used to estimate the statistical significance
of differences determines which genes, and how many
genes, are defined as being differentially expressed. For a
comparison between two groups, the t-test is the most
commonly used procedure in biological research. Howev-
er, with 6 arrays per group, even a single outlier can mark-
edly reduce the value of t even when there is no overlap
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between groups. Therefore, we also used the nonparamet-
ric rank sum test, which is insensitive to a skewed distribu-
tion. False detection rates were estimated with the
Significance Analysis of Microarrays (SAM) program [8].

Results

Normalization method

Comparisons among arrays are meaningful only after ac-
counting for variability in overall target concentration
("target" is the Affymetrix nomenclature for a labeled
cRNA that hybridizes with a probe), hybridization effi-
ciency, staining, etc. The normalization procedure recom-
mended by Affymetrix is to multiply raw signals by a
scaling factor such that the trimmed mean (excluding 2%
highest and 2% lowest) of signals is always the same (500
in this study). This procedure could be problematic if a
variable proportion (>2%) of the signals are beyond the
linear range of the system. Another concern about the nor-
malization procedure was that the majority of the targets
did not produce signals that were significantly greater
than those caused by nonspecific hybridization. After the
recommended normalization procedure was applied, we
confirmed that there was negligible inter-array variability
of the mean signal (with 5% of signals trimmed from both
the high and low ends) across the 4629 targets that passed
the presence / absence filter (described in the next sec-
tion). The trimmed mean was 649 £ 14 (standard devia-
tion) arbitrary units for the 6 arrays probing RNA from
young muscle, and 643 £ 18 for the 6 arrays probing RNA
from older muscle. These data were not used to re-scale
the arrays because the variance would have been reduced
by less than 2%. Plots of signals from individual arrays
versus the average of all 12 arrays generally showed the ex-
pected scatter around the line of identity (Figure 1A), but
a few showed systematic deviations either above or below
the line of identity for signals > ~10% arbitrary units
(worst-case array shown in Figure 1B). While this problem
might be addressed by using a different scaling factor for
high-intensity signals [10], few targets produced such high
signals, and the magnitude of the effect was small. Thus,
the Affymetrix normalization method was employed
without modification.

Exclusion of targets based on the absolute detection algo-
rithm

Microarray Suite estimates probabilities that targets are
absent (Pgegection) Pased on ratios of signals from PM
probes to those of MM probes, together with the degree of
consistency across the multiple probe pairs for each target.
As illustrated in Figure 2, the average signal from the mul-
tiple probe pairs cannot be used to decide whether a target
should be considered present or absent. We restricted the
data analyses to targets for which Pyetection Was less than
0.1 for at least 3 of the 6 samples from either the younger
or older group. This filter reduced the number of targets

Page 2 of 10

(page number not for citation purposes)



BMC Bioinformatics 2002, 3

105 -

10% 4

10° -

Array OP1 Signal

102 -

10°

10° 4

10%

10° 4

Array B2 Signal

102 1

10"

T T T
102 108 104 108

Average Signal

Figure |

Individual arrays vs. mean of all arrays A. Scatter plot
of signals from 4629 probe sets on a typical array vs. mean
signals from all 12 arrays. Line of identity is shown. B. Worst-
case scatter plot. Same as plot A, except vertical axis repre-
sents a different array, the one with the most consistent
deviation from the mean of all 12 arrays at high expression
levels. Note that almost all signals > 104 arbitrary units are
below the line of identity.

included in the statistical analyses to 4629. While exclud-
ing data does not affect the nominal value of P for each
comparison made with a t-test or rank sum test, it signifi-
cantly reduces the estimated false detection rate (see t-
Tests and SAM below).

Signal method vs. ratio method

When two arrays are compared, the gene expression ratios
obtained by the signal method and those obtained by the
ratio method (see Background for explanation of terms)
are highly correlated. However, the results often differ by
more than 1.5-fold (Figure 3). The advantage of the signal
method is that Microarray Suite provides, for each target,
a number describing the level of gene expression (in arbi-
trary units) that can be used for t-tests or other statistical
procedures. However, according to Affymetrix (Microar-
ray Suite 5.0 User's Guide), comparisons between arrays
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Figure 2

Pyetection VS- signal Signal, in arbitrary units, is the average
PM-MM intensity difference across all 8-20 probe pairs
within a set. Pyeection 1S the probability that a target is
absent, based on the consistency of PM/MM ratios within a
probe set. Values are based on a single array.

are more precise when the ratio method is used, so the val-
ues on the horizontal axis of Figure 3 should be more ac-
curate. The Affymetrix ratio method only provides ratios
between two arrays, and does not provide gene expression
values for the individual arrays that can be used with
standard tests of statistical significance. We therefore ex-
tended the ratio method to generate a relative expression
score for each target on each array, as follows:

The first step was to name one of the arrays as the baseline
in the comparative analysis program (Microarray Suite
5.0). Every other array included in the study was then
compared with that baseline array. This procedure yield-
ed, for each target, a set of 11 expression ratios (r) repre-
senting the relative expression level on each array
compared with the baseline array.

The next step was to compute, for each target, the expres-
sion level (R) of the baseline array relative to all 12 arrays
included in the study. For array #1, R was computed with
the formula:

Ry =12/(1+7yys 1 +T3ys 1+ +T12vs. 1)

The value of 1 in the denominator of this formula repre-
sents the comparison of array #1 with itself. The number
of arrays is the numerator rather than the denominator in
this formula because the Affymetrix comparative analysis
program sets the baseline array as the denominator, so
that values of r are the inverse of the relevant ratios.
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Comparison of two arrays by different methods Horizontal axis shows the ratios between two arrays, for 4629 targets,
according to the comparative analysis algorithm, which is the basis of the ratio method. Vertical axis shows ratios between the
same arrays according to the absolute analysis algorithm, which is the basis of the signal method. Points outside the red lines

have more than |.5-fold divergence between methods.

Table I: Number of differences detected: comparison of signal
and ratio methods

Criterion for difference Signal Method Ratio
Method
t-test, P < 0.0l 98 124
rank sum test, P < 0.01 85 107
SAM, false detection < 20% 56 124
SAM, false detection < 5% 0 20

A different array was then named as the baseline. E.g., for
array #2 as the baseline:

Ry=12/(ry ys. 0+ 1 + T3y 2+ o + T12y5.2)

These steps were repeated until all 12 arrays had been
named as the baseline. The values R; through R;, were
then used for comparisons between age groups with t-
tests, rank sum tests, and SAM as described below.

For the 4629 probe sets that passed the presence / absence
filter, the expression ratios (mean value in old group /
mean value in young group) generated by the signal meth-
od and those generated by the ratio method were highly
correlated (r = 0.89). There also was a fairly good correla-
tion between the signal and ratio methods with respect to
the level of statistical significance (log P) of the age-related
differences (r = 0.74). The advantage of the ratio method
was that it usually reduced the within-group variance so
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Frequency distribution of coefficients of variation (CVs) Distribution of 4629 CVs obtained by the ratio method (solid
bars) and the signal method (open bars). CVs are average of within-group CVs in young and old groups.

Table 2: Correlation coefficients of results of initial scan and anti-
body-enhanced scan for 4629 probe sets with respect to expres-
sion ratios (mean old / mean young) and statistical significance
(from t-tests) of the differences between young and old

Variable Signal Method Ratio
Method
expression ratio 0.57 0.75
P, from t-test 0.39 0.56
log P, from t-test 0.55 0.68

that the same mean difference between young and old was
associated with a higher level of statistical significance.
The average within-group coefficient of variation (CV,
standard deviation / mean) was 20% with the ratio meth-

od and 25% with the signal method (average CVs were the
same for young and old groups). The distribution of CVs
improved significantly with the ratio method (Figure 4).
Table 1 shows that more differences were detected by the
ratio method whether we used t-tests, rank sum tests, or
SAM to define significant differences. Moreover, consist-
ency between the initial scan and the antibody-enhanced
scan was significantly improved by the ratio method, for
both expression ratios and for the statistical significance
of differences between young and old (Table 2). With the
signal method, 38% of the differences significant at P <
0.01 (by t-test) on the initial scan were also significant at
P < 0.01 on the antibody-enhanced scan, and 65% were
significant at P < 0.05 on the antibody enhanced scan.
With the ratio method, 51% of the differences significant
at P < 0.01 on the initial scan were also significant at P <
0.01 on the antibody-enhanced scan, and 77% were sig-
nificant at P < 0.05 on the antibody enhanced scan.
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Volcano plot Statistical significance by t-tests [-log(P)] vs. expression ratio (mean old / mean young) for 4629 targets that
passed the presence / absence filter. Note log, scale on horizontal axis. Vertical lines represent 2-fold difference between
young and old. Upper horizontal line represents P = 0.001. Lower horizontal line represents P = 0.01.

t-Tests

A plot of expression ratio vs. statistical significance (Figure
5) shows that differences with high statistical significance
(by t-test) usually were less than 1.7-fold in magnitude.
The validity of at least some of the small differences is
demonstrated by the fact that ~1.3-fold differences were
detected (P < 0.01) for 17 genes encoding proteins in-
volved in mitochondrial electron transport or ATP synthe-
sis (Table 3). This finding replicates our previous research,
in which SAGE and quantitative RT-PCR assays demon-
strated ~1.3-fold declines in older muscle of several mR-
NAs encoding components of NADH dehydrogenase,
cytochrome c oxidase, and ATP synthase complexes [11].
For all of these mRNAs, both the signal and ratio methods
detected the differences at P < 0.03, whereas the ratio
method was a bit more likely to detect them at P < 0.01

(14/17 genes) than was the signal method (12/17 genes,
Table 3).

The P values generated by the t-tests were not adjusted for
multiple comparisons. However, a Bonferroni correction
would be too stringent for exploratory research [12]. A
useful alternative to P in studies involving thousands of
comparisons is the estimated false detection rate, which is
the ratio of the expected number of chance differences (P
x number of comparisons) to the number of differences
observed. If we use P < 0.01 to define a significant differ-
ence, we should expect ~46 chance differences (0.01 x
4629 comparisons) if there is no effect of aging on gene
expression. Because 124 differences were significant at P <
0.01 (by the ratio method), the estimated false detection
rate was 46/124, or 37%. When no presence / absence fil-
ter was applied (12533 probe sets included in the analy-
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Table 3: Reduced expression in older muscle of genes involved in energy metabolism (ER = expression ratio = mean value in old / mean

value in young)

Gene ER signal method ER ratio method P signal method P ratio method
ubiquinol cytochrome c reductase bind- 72 73 .0009 .0015
ing protein

cytochrome c oxidase Vb .65 76 .0214 .0021
cytochrome bc-1 complex core protein .82 77 .0137 .0022
Il

mitochondrial ADP/ATP translocator 74 74 .0036 .0016
cytochrome c oxidase Vllc .61 75 .0026 .0032
ATP synthase subunit Fé 74 72 .0078 .0006
cytochrome c oxidase Vlc .78 79 .0252 .0016
cytochrome c oxidase Vllb .69 73 .0021 .0019
adenylate kinase | 76 76 .0155 .0003
ubiquinol cytochrome c reductase hinge 71 72 .0082 .0041
protein

holocytochrome c-type synthase 77 8l .0016 .0046
cytochrome c oxidase Vlla2 73 73 .0099 .0062
NADH dehydrogenase KFYI .83 .87 .0199 .0098
mitochondrial aspartate aminotrans- 72 76 .0079 .0100
ferase

cytochrome c oxidase 4 .81 82 .0057 .0104
cytochrome ¢ .69 .70 .0016 .0108
ATP synthase c (P gene) 75 77 .0052 0112

sis), the estimated false detection rate (ratio method)
increased from 37% to 73% because there were fewer dif-
ferences (at P < 0.01) among the "absent" mRNAs than ex-
pected by chance (48 observed vs. 79 expected by chance).

Mann-Whitney rank sum tests

The Mann-Whitney rank sum test was used to detect tran-
scripts for which there was little or no overlap of values
between groups. This test revealed 107 differences at P <
0.01 (exact P = 0.00866 at rank sum cutoff values) when
the ratio method was used. We would expect to find 40
differences by chance alone (0.00866 x 4629 genes), so
the false detection rate (40/107 = 37%) is the same as that
estimated from t-tests. There were 21 differences signifi-
cant at P < 0.01 by rank sum tests but not by t-tests accord-
ing to the ratio method. Thus, for exploratory research
being done to generate lists of mRNAs that warrant further
study, use of both parametric and nonparametric tests is
one way to significantly expand the list.

SAM

SAM computes a value, termed d [d = (mean; - mean,)/
(sq +sp)], thatis similar to t [t = (mean; - mean,)/sq|. The
"exchangeability factor", s;, minimizes the number of ex-
treme d values among targets with small variances in sig-
nal intensity. When absolute signals are analyzed, these
small variances are associated with targets that are more
difficult to quantify accurately because of low concentra-

tions. We already have filtered most of these targets from
the analysis. When data based on the signal method were
analyzed, sy was very small (lowest percentile of the s val-
ues). When relative expression levels were computed by
the ratio method, all means were close to 1 regardless of
the absolute signal intensity. In this case, s, was large
(53rd percentile of the sy values), and lower sy values were
associated with stronger rather than weaker signals. This
problem precluded the use of SAM for data normalized in
this fashion. However, by multiplying each value of R by
the gene-specific mean signal (mean of all 12 arrays), we
generated a data set compatible with SAM.

SAM lists genes for which d exceeds (by an adjustable
threshold termed A) the value that would be expected by
chance (d,). Values of d, are generated by computing the
d distribution numerous times with random permuta-
tions of the group assignments (we instructed SAM to per-
form 100 permutations). The average distribution from
these permutations defines the values of d,. Reducing A
expands the list of "significant” genes, but also increases
the false detection rate. When we chose a value of A corre-
sponding to a false detection rate < 20%, there were 124
differences according to the ratio method but only 56 dif-
ferences according to the signal method. There were 20
differences for which the false detection rate was < 5%
when the ratio method was used (including 9 for genes in-
volved in energy metabolism that are listed in Table 3),
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but none when the signal method was used. When no
presence / absence filter was applied, the highest-ranked
differences had false detection rates of 30% even with the
ratio method, and only 34 genes achieved this level. Thus,
it is very important to remove noisy data before using
SAM.

Discussion

Careful subject selection and consistency in experimental
conditions, sample collection procedures, and sample
processing obviously are needed if small differences in
gene expression are to be detected. A further reduction in
total within-group variance can be achieved by using the
ratio method described in this report. This method is
based on the Affymetrix comparative analysis algorithm,
which was designed for comparisons between two arrays.
To use the procedure for groups rather than individual ar-
rays, we assigned each target on each array a score that was
the average ratio from all one-to-one comparisons of that
array with every array included in the study. The best illus-
tration of the increase in power gained by the ratio meth-
od was the fact that that 20 differences were below the 5%
false detection rate (by SAM) when this method was used,
whereas no differences below the 5% false detection rate
were found when the signal method was used. The major
drawback of the ratio method is increased computational
time.

It has been suggested that inter-array variance can be re-
duced by ignoring data from MM probes, or by using an
alternative computation to take advantage of the MM data
[13-16]. In previous versions of Microarray Suite, MM sig-
nals were always subtracted from PM signals, which often
led to negative expression levels. The newer version (5.0),
used in this study, has a different procedure for dealing
with high signals from MM probes. It is not clear whether
alternative algorithms for using the MM signals, or ignor-
ing MM signals, would improve the accuracy of the data.
We therefore used the Affymetrix algorithm, which is like-
ly to be used by most investigators until there is definitive
evidence that alternative methods are superior.

There is no consensus about the optimal statistical ap-
proach for finding differences in expression among thou-
sands of genes. When a specific hypothesis is being tested,
"shopping" for the best statistical test to support the hy-
pothesis should be avoided. In contrast, when the goal is
to generate descriptive information to guide decisions
about future research directions, there is no reason not to
use multiple approaches to obtain as much information
as possible. For a comparison of two groups, the t-test is
simple and robust, and does not require special software.
Some investigators may be wary about using t-tests rather
than mean differences to rank genes because one or two
extreme values can reduce t even when there is no overlap

http://www.biomedcentral.com/1471-2105/3/23

between groups. The rank sum test can be used to detect
such effects. Log transformation of the data also can min-
imize the impact of outliers with high signals. However,
log transformation reduces t when the outliers are close to
zero. It has been suggested that this feature of the log
transformation is advantageous because it can exclude ef-
fects that are artefacts of noisy data at low expression lev-
els [17]. We prefer to filter noisy data by using the
Petection algorithm.

SAM [8] is an alternative to t-tests or rank sum tests. The
false detection rates computed by SAM were markedly in-
creased when we did not apply our presence / absence fil-
ter. When the filter was used, SAM generated a lower
estimate of the number of false differences than estimates
based on multiplying P(t) or P(rank sum) by the number
of comparisons. Perhaps this observation can be ex-
plained by the fact that expression levels of many genes
are correlated with expression levels of many others. The
number of random differences to be expected among
thousands of comparisons with t-tests or rank sum tests is
based on the assumption that comparisons are independ-
ent of one another. SAM computes the false detection rate
with a method that does not rely on this assumption.

Some of the arrays included in this study (n = 4) probed
RNA pooled from multiple subjects, whereas others (n =
8) probed RNA from individual subjects. The heterogene-
ous nature of the samples conceivably could influence the
statistical properties of this data set. However, there was
good uniformity among arrays in terms of scaling factors
and percentages of probe sets with Py, eqion < 0.1, and
both age groups were comprised of 2 pools and 4 individ-
ual samples, which should minimize the influence of us-
ing both pooled and individual samples (see Additional
file 1). After the data analyses described in this report were
completed, we reanalyzed the individual samples along
with 8 new individual samples (total of 8 individual sam-
ples per age group) using U133A and U133B arrays, which
have ~44000 probe sets with 11 probe pairs per set. The
reduction of within-group variance by the ratio method
was replicated (Table 4), demonstrating that it is not
unique to U95A arrays, and is not an artefact of including
both pooled and individual samples. We cannot guaran-
tee that the same reduction in variance will occur in all
cases. If variance caused by biological heterogeneity or by
inconsistent laboratory procedures is very high, then the
difference between the signal and ratio methods might be
trivial in relation to overall variance. The proposed com-
putational method appears to reduce the inflation of var-
iance caused by variable weighting of individual probes
within a set, but cannot compensate for variance from
other sources.
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Table 4: Mean CVs for all targets passing presence / absence filter in analysis of UI33A and U133B arrays

Mean CV with signal method (%)

Reduction in mean
CV with ratio method

Mean CV with ratio
method (%)

(%)
UI33A, initial scan, 9276 targets
8 samples from young men 26.5 21.2 20
8 samples from old men 26.5 19.2 28
UI33A, antibody-enhanced scan, 10665
targets
8 samples from young men 258 20.2 22
8 samples from old men 235 18.4 22
U133B, initial scan, 5766 targets
8 samples from young men 298 239 20
8 samples from old men 275 22.1 20
U133B, antibody-enhanced scan, 7571
targets
8 samples from young men 28.1 222 21
8 samples from old men 26.1 20.4 22

The data generated in this study have been deposited in
the NCBI Gene Expression Omnibus (GEO, accession
numbers GSM2390 through GSM2401, Series accession
number GSE80)  [http://www.ncbi.nlm.nih.gov/geo/]|
and the AMDeC Microarray Resource Center Gene Expres-
sion Database [www.amdec.org]. Both the signal data
and the ratio data have been deposited. The Affymetrix
files (*.exp, *.dat, *.cel, *.chp) can be obtained from the
corresponding author.

Conclusions

The ratio method reduces inter-array variance and thereby
enhances statistical power. SAM is very sensitive to noisy
data, which should be removed a priori.

Methods

Subjects

The subjects were 16 young (21-31 yr) and 19 older men
(62-77 yr). All had normal neuromuscular function and
were healthy according to history, physical examination,
and laboratory tests. None of them was involved in any
type of regular exercise program involving strenuous activ-
ity. All subjects gave written consent after the procedures
and risks were explained. The research was approved by
the University of Rochester Research Subjects Review
Board.

Procedures

Subjects were asked to refrain from any activity more
strenuous than walking for 3 days before the muscle biop-
sy. Each subject stayed at the University of Rochester Gen-
eral Clinical Research Center the night before the biopsy

to minimize variability between subjects in the amount of
activity performed on the day of the biopsy. The needle bi-
opsy was obtained from the vastus lateralis. The skin and
muscle were anesthetized with lidocaine a few minutes
before tissue removal. The muscle sample was frozen in
liquid nitrogen within 30 seconds of removal, then stored
at -70°C until analysis.

Analysis of gene expression by high density oligonucleotide
arrays

RNA was extracted from the muscle samples as described
previously [11]. All RNA samples were of high quality as
indicated by the pattern of staining with ethidium bro-
mide in an agarose gel after electrophoretic separation.
RNA was probed with Affymetrix HG-U95A high density
oligonucleotide arrays, which have ~12500 probe sets.
Twelve arrays were examined: four (two for each age
group) that probed RNA pooled from 4-8 subjects and
eight (four for each age group) that probed RNA from a
single subject. Pooling of RNA was necessary in some cas-
es because most of the RNA from some samples had been
used for other purposes. Additional file 1 shows the
source of RNA, scaling factors, and percentage of tran-
scripts present (Pyetection < 0-1) for each array.

Analytical procedures were carried out using standard op-
erating procedures developed and validated by the Uni-
versity of Rochester Microarray Core Facility. After
hybridization and washing, arrays were stained with phy-
coerythrin-streptavidin, which binds to the biotinylated
cRNAs hybridized with the probes. The initial scan detect-
ed the fluorescence of the phycoerythrin-streptavidin. The
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analyses described in this report are based on data from
this initial scan. After the initial scan, signals were ampli-
fied by staining the array with biotin-labeled anti-strepta-
vidin antibody followed by phycoerythrin-streptavidin.
Analyses of the antibody-enhanced scans are not present-
ed, except for correlations with the initial scans, since the
same statistical issues are relevant to both scans. These
scans supported the results discussed above. Data from
both scans were deposited in the GEO and AMDeC data-
bases.

Software

The statistical algorithms of Microarray Suite 5.0 were
used with the default parameters to generate signals, ratios
of signals between two arrays, and Pyetection Values. Data
generated by Microarray Suite were exported to Microsoft
Excel for further analysis. SAM runs within Excel.
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