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Abstract
Background: Robustness of mathematical models of biochemical networks is important for
validation purposes and can be used as a means of selecting between different competing models.
Tools for quantifying parametric robustness are needed.

Results: Two techniques for describing quantitatively the robustness of an oscillatory model were
presented and contrasted. Single-parameter bifurcation analysis was used to evaluate the stability
robustness of the limit cycle oscillation as well as the frequency and amplitude of oscillations. A tool
from control engineering – the structural singular value (SSV) – was used to quantify robust stability
of the limit cycle. Using SSV analysis, we find very poor robustness when the model's parameters
are allowed to vary.

Conclusion: The results show the usefulness of incorporating SSV analysis to single parameter
sensitivity analysis to quantify robustness.

Background
Complex molecular networks mediate intracellular sig-
nalling events. These systems must operate reliably under
vastly different environmental conditions that can cause
large changes in the internal "parameters" of the system.
The notion of robustness in biological systems has re-
ceived considerable interest in the literature recently. By
saying that a system is robust we imply that a particular
function or characteristic of the system is preserved de-
spite changes in the operating environment of the system.
For example, by means of a computer model, Barkai and
Leibler demonstrated that the adaptation mechanism
found in the chemotactic signalling pathway in Escherichia
coli is robust [1]. This was later confirmed experimentally
[2]. A model of segment polarity network in Drosophila
embryos was also found to be insensitive to variations in
kinetic constants that govern its behaviour [3]. A similar
approach was later used to show that a core neurogenic
network in Drosophila successfully formed three test pat-

terns across a wide range of parameter values [4] leading
Meir et al. to propose that the ability to resist parameter
fluctuations may be essential for gene network evolution-
ary flexibility.

Since the signalling pathways are robust, we should expect
that mathematical models that attempt to explain these
networks also be robust to parameter variations. This has
long been appreciated. For example, Savageau, in [5], ar-
gues for parameter sensitivities as a means of evaluating
the performance of biochemical systems. More recently,
Morohashi et al. propose that robustness of a model to pa-
rameter variations be used as a criterion for determining
plausibility between different models [6].

If we are to use robustness as a means of evaluating the
quality of a model, we need objective measures of this ro-
bustness. One common technique is through parameter
sensitivities. For simple systems, the sensitivity of a model
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of a network to individual parameters can be evaluated
analytically [5,7]. For more complex networks, it can be
determined computationally by repeated simulation var-
ying one parameter while holding all others fixed; [3,8].
This single parameter sensitivity is also useful for testing
robustness of a biochemical network in the laboratory.
For example, it is by systematically varying the concentra-
tion of the chemotaxis-network proteins in E. coli and de-
termining their effect – or lack thereof – on the precision
of adaptation that Alon et al. determined the robustness of
this system [2].

Single parameter insensitivity is necessary for a robust net-
work, but may not be sufficient owing to interactions be-
tween several parameters. This is particularly true in vivo
where many different system parameters will differ from
their "nominal" values simultaneously. The tools availa-
ble for quantifying this multiparametric uncertainty are
more limited. Systematic changes of many parameters at a
time suffer from an exponential increase in the number of
parameters that need to be changed. This "curse of dimen-
sionality" makes varying more than a handful of parame-
ters simultaneously to assess parameter sensitivity
impractical. For this reason, sensitivities for several pa-
rameters have been traditionally addressed through com-
puter simulations based on Monte Carlo methods [9] –
randomly varying all parameter in the model [1,4]. How-
ever, because of their reliance on random methods, Monte
Carlo methods cannot guarantee robustness. In this paper
we suggest an alternative method, originally developed
for use in analysing robust stability in man-made auto-
matic control systems.

The need for robust systems has been one of the primary
concerns of control engineering. In fact, one of the earliest
motivations for the study of feedback control systems was
the need to create robust telephone networks out of the
highly variable vacuum tubes of the day. More recently,
powerful tools for analysing the robustness of networks
have emerged. In this paper we propose that one of these
computational tools, known in control theory as the struc-
tural singular value (SSV) is of particular interest for biolog-
ical networks [10]. We do this by contrasting single and
multi-parameter sensitivities of a model of an oscillating
biochemical network. We describe this model next.

Model of an oscillating biochemical network
In [8], Laub and Loomis propose a model of the molecu-
lar network underlying adenosine 3',5'-cyclic monophos-
phate (cAMP) oscillations observed in fields of
chemotactic Dictyostelium discoideum cells. The model,
based on the network depicted in Fig. 1, induces the spon-
taneous oscillations in cAMP observed during the early
development of D. discoideum.

In this model, changes in the enzymatic activities of these
proteins are described by a system of seven non-linear dif-
ferential equations:

where the state variable x = [x1,...,x7] represents the con-
centrations of the seven proteins: x1 = [ACA], x2 = [PKA],
x3 = [ERK2], x4 = [REG A], x5 = [Internal cAMP], x6 = [Ex-
ternal cAMP] and x7 = [CAR1] and the fourteen different
ki represent system parameter values. It was shown nu-
merically in [8] that spontaneous oscillations appear at

Figure 1
Laub and Loomis model. In their model of the aggrega-
tion network, pulses of cAMP are produced when adenlylate 
cyclase (ACA) is activated after the binding of extracellular 
cAMP to the surface receptor CAR1. When cAMP accumu-
lates internally, it activates the protein kinase PKA. Ligand-
bound CAR1 also activates the MAP kinase ERK2. ERK2 is 
then inactivated by PKA and no longer inhibits the cAMP 
phosphodiesterase REG A. A protein phosphatase activates 
REG A such that REG A can hydrolyse internal cAMP. When 
REG A hydrolyses the internal cAMP, PKA activity is inhib-
ited by its regulatory subunit, and the activities of both ACA 
and ERK2 go up. Secreted cAMP diffuses between cells 
before being degraded by the secreted phosphodiesterase 
PDE.
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the nominal parameter values found in Table 1. Note that
because there are typographical errors in the original pa-
per, the values being used here for the nominal parame-
ters were obtained directly from the authors of [8].

This particular model is primarily concerned with describ-
ing self-sustaining oscillations in the biochemical system.
From Fig. 2, it is clear that at the nominal parameter val-
ues of the model, this is achieved. We seek to determine
whether the system is robust – that is, if we change these
kinetic parameters, will the systems oscillatory behaviour
persist? We next present two possible means, based on
whether parameters are changed one at a time or in
groups.

Methods
Single parameter robustness: Bifurcation analysis
Self-sustained oscillations such as those being modelled
here appear as stable limit cycles in trajectory of the un-
derlying dynamical system [11]. The existence and stabil-
ity of these limit cycles may change under parametric
perturbations. Whenever a stable periodic solution loses
stability as we vary the underlying parameters of the sys-
tem and this solution transitions to another qualitative

solution – for example, a steady-state equilibrium – we
say that the system undergoes a Hopf bifurcation. It is there-
fore possible to use bifurcation theory as a means of quan-
tifying the robustness of this oscillatory network model
[12,13].

Using the bifurcation analysis package AUTO [14], it is
possible to produce one-parameter bifurcation diagrams
for each of the model parameters ki. These diagrams illus-
trate the steady-state behaviour of the systems as the pa-
rameter values are changed. Suppose that Hopf

bifurcations occur at ki and i so that (stable) limit cycles

occur for the range (ki, i). Both the size of this interval as
well as the proximity of the nominal parameter value to
either boundary are measures of the robustness of the sys-
tem. To compare the robustness of the system to the dif-
ferent parameters, we can define a series of parametric
robustness measures. We define the degree of robustness
(DOR) for each parameter ki as:

Table 1: Parameter values For each parameter, ki denotes the nominal value and the units involved.

Parameter Units Nominal Value ki i DOR

k1 min-1 2.0 0.77 55.74 0.615

k2 Mol-1min-1 0.9 0.70 3.59 0.222

k3 min-1 2.5 0.75 16.91 0.700

k4 min-1 1.5 0 1.82 0.176

k5 min-1 0.6 0.28 5.15 0.533

k6 Mol-1min-1 0.8 0.24 2.06 0.612

k7 Mol-1min-1 1.0 0 3.10 0.677

k8 Mol-1min-1 1.3 0.19 4.34 0.700

k9 min-1 0.3 0.09 2.03 0.700

k10 Mol-1min-1 0.8 0 1.24 0.350

k11 min-1 0.7 0.33 6.01 0.529

k12 min-1 4.9 2.80 14.13 0.429

k13 min-1 23.0 9.36 171.57 0.593

k14 min-1 4.5 0.79 5.80 0.224

The values of ki and i are the lower and upper limits in the interval in which stable limit cycles occur while that parameter is varied. The corre-
sponding degree-of-robustness measure (DOR) is also given.
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It is straightforward to see that this value is always be-
tween zero and one. The former indicates extreme param-
eter sensitivity whereas the latter implies large
insensitivity.

Bifurcation diagrams provide an excellent means of deter-
mining the robustness of systems to single parameter per-
turbations. We next describe a method for analysing and
quantifying robustness to simultaneous changes in several
parameters.

Multiparametric robustness: Structural singular values
As in biological networks, engineering systems must also
be robust to variations in the parametric values of its com-
ponents. Developing tools for the analysis and design of
robust automatic control systems has been an area of ac-
tive research during the last two decades in control theory.
One of the most powerful frameworks for measuring ro-
bustness known is the structural singular value (SSV) which
is due to Doyle and co-workers [15].

We first define and illustrate the use of the SSV to quantify
robustness by means of a simple example. Suppose that a
system is described by the first-order differential equation

 = ax

where the constant parameter a is uncertain, but is as-
sumed to lie in the region a ∈ (a, ).

We would like to know when this system is robustly stable;
that is, it is stable for all possible parameters. The differen-
tial equation can be rewritten as

 = a0x + b0v  (1)

where a0 = (  + a)/2, b0 = (  - a)/2, v = δx and δ ∈ (-1,1).
In Eqn. (1), the term a0 represents the nominal system de-
scription. Clearly, for the system to be stable we need a0 <
0. The variable δ represents all possible uncertainty in the
parameter of the system, whereas b0 dictates the uncer-
tainty's effect on the nominal model. We would like to
maintain system stability no matter what the value of δ
happens to be. Note that the system can be redrawn in the
form of a feedback loop as in Fig. 3A. From the small gain
theorem [16], it is known that if the nominal system is sta-
ble (a0 < 0), the uncertain system will remain so whenever
the gain around the loop is less than one. That is, if we de-
note the system transfer function – the ratio of Fourier
transforms of output over input – as

(here i refers to the complex number  and ω is the
angular frequency) then the system is stable provided that
1 - G(ω)δ ≠ 0, for all frequencies ω. Equivalently, the
amount of uncertainty that the system can tolerate is given
by

Figure 2
Oscillations at nominal parameter values. Plot of the concentration of each of the seven variables as a function of time. 
This figure shows the oscillatory behaviour seen in all the variables.
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Thus, the function µ = |G(ω)| serves as a (frequency-de-
pendent) measure of the amount of parameter uncertain-
ty that the system can tolerate. In particular, if the size of
the uncertainty δ is always less than 1/µ, then the system
is robustly stable. In this example, since |δ| < 1, robust sta-
bility is guaranteed whenever b0 < |a0|.

It is clear that this simple model does not require exten-
sive analytic tools to determine robust stability. Neverthe-
less, the procedure above can be generalized to systems of
the form

where A0, is a matrix describing the nominal model, B0,
C0, and D0 are matrices of appropriate dimensions de-
scribing the way that the uncertain parameters affect the
nominal model. This uncertainty is modelled by the ma-
trix ∆ which is unknown, but is assumed to belong to the

set [10]. The signal u = ∆y completes the feedback loop
as shown in Fig. 3B. For these systems, the appropriate
measure of robustness is now given by the structural sin-
gular value (SSV)

µ∆ (G) = (min{||∆||:∆ ∈ , det(I - G∆) ≠ 0})-1  (3)

Here, G(ω) = C0 (iωI - A0)-1 B0 + D0 and I is the identity
matrix of appropriate dimensions.

Since we are interested in the robustness of the oscillatory
property of this system, it is natural to use the SSV to
quantify the robust stability of the limit cycle. However, in
order to use the SSV tool, the original perturbed system
must be transformed into a framework consisting of a
nominal linear time invariant (LTI) system interconnect-
ed with a perturbation matrix. For the case of an oscillato-
ry non-linear model, this involves several steps, which we
outline next.

Determining the limit cycle: Harmonic balance method
The first step is to obtain a mathematical expression for
the limit cycle oscillation. The harmonic balance method
can be used [17]. The basic idea is to represent the limit cy-
cle by a Fourier series with unknown coefficients (an,i,
φn,i) and period T:

The non-linear differential equation can be used to set up
a series of algebraic equations that the coefficients must
satisfy. These equations can be solved using numerical
packages such as Mathematica or Maple. Depending on
the particular form of the limit cycle, a small finite
number of coefficients can be used. We can denote this
periodic solution as x*(t).

Figure 3
Structured singular value analysis framework. In (A) we show how the uncertain system from Eqn. (1) can be repre-
sented in a feedback interconnection involving a nominal system and the uncertainty δ. The signal v = δx provides the feedback. 
(B) For general systems, uncertainty can also be expressed as a feedback connection of a nominal model and an uncertainty 
matrix ∆. In this case, the signals u and y provide the interconnections. The transfer function G(ω) = C0 (iωI - A0)-1 B0 + D0.
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Linearization
The non-linear differential equation must now be linear-
ized about this periodic orbit [17]. Writing the state vector
x(t) as

x(t) = x*(t) + xδ (t)

then the local behaviour of the non-linear system is gov-
erned by that of the linearized system:

δ (t) ≅ J (x*(t))x≈ (t)

where J is the Jacobian matrix of the vector field f. Note
that since the linearization is performed about a periodic
orbit, the linear system is periodic.

Restructuring into nominal/uncertainty systems
The Jacobian matrix includes all uncertain parameters. At
this point we need to separate the system into a nominal
model and a feedback interconnection that involves all
parametric uncertainty. We first write each parameter as

where ki is the nominal value and δi is the relative amount
of perturbation in the ith parameter. We now separate the
Jacobian matrix as

J (x*(t)) = A0 (t) + B0 (t) ∆ C0 (t)  (4)

where A0(t) is the Jacobian matrix with all parameters at
their nominal value, and ∆ is a diagonal matrix containing
all the uncertainties δi. Let y(t) = C0(t) xδ(t) and u(t) =
∆y(t), the system is now of the form of Eqn. (2) (with x(t)
replaced by xδ(t)).

Discretization
The system can be discretized by sampling the state and
output with sampling period h = T/n, where n is a positive
integer and assuming that the inputs are piecewise con-
stant; this is also a standard technique in control engineer-
ing [18]. In particular, a linear continuous-time system
governed by Eqn. (2) gives rise to the discrete-time, linear
system

ξ (k + 1) = Ad (k) ξ(k) + Bd (k) v(k)

η (k) = Cd (k) ξ(k)

where Ad (k) = Φ (kh + h,kh), Bd (k) =  Φ (kh + h,

s) B0 (s)ds, Cd (k) = C0 (kh), and Φ (t, τ) is the transition
matrix of A0 (t) [19]. The discretized signals are v(k) =

u(kh), η(k) = y(kh), and ξ(k) = x(kh). Periodicity of Ad and
Bd is preserved due to the periodicity of the transition ma-
trix. Moreover, it is not difficult to confirm that Ad, Bd and
Cd are periodic with period n. The uncertainty matrix after
discretization is now ∆d. The discretization step is illus-
trated in Fig. 4A.

Lifting
The final step in preparing the system for SSV analysis is
to transform the periodic, linearized system into an equiv-
alent time-invariant one. The technique for this is known
as lifting [18]. Rather than giving the general formulae, it
is easier to illustrate the general principle with an exam-
ple.

Suppose that a discrete-time system with state variable ξ,
input v, and output η obeys the difference equation

ξ (k + 1) = a(k)ξ(k) + b(k)v(k)

η (k) = c(k)ξ(k)

where the time varying coefficients a(k), b(k) and c(k) are
all periodic with period two. Calculating the state variable
and output step-by-step leads to:

for any integer p. By defining "lifted" inputs and outputs

and considering the system state only at the even time

points ( (p) = ξ(2p)) we arrive at an equivalent time-in-

variant system.

The lifting technique has been illustrated above for a dis-
crete-time system with period two; however, it can be ap-
plied to systems with arbitrary period – though the
corresponding formulae are considerably more compli-
cated; see [18].

Computation of SSV
There is considerable literature in control theory on the
computation of the SSV; see for example [20–22]. For gen-
eral classes of uncertainty, computing µ∆ is known to be
NP-hard [21]. Typically, given the feedback loop consist-
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ing of G and ∆ we compute upper and lower bounds for
the SSV [15]. The lower bound is exactly equal to µ∆ [15];
unfortunately computing this lower bound involves a
search over a non-convex set and therefore may converge
to local optimums that are not global. In contrast, the up-
per bound can be rewritten in terms of a convex optimisa-
tion problem, so that a global minimum can be obtained.
However, this upper bound is, in general not tight. A soft-
ware package is commercially available that can compute
µupper and uses a power algorithm to attempt to compute
µlower [22].

Results
Single parameter robustness
The robustness of Laub and Loomis's oscillatory model
was first analysed by means of single-parameter bifurca-
tion diagrams. Four typical diagrams are shown in Fig. 5.
The activity of internal cAMP (x5) is plotted as a function

of the variation of each parameter. We use internal cAMP
in the diagram as it is the element that is usually observed
experimentally [23]. In each of the diagrams, there are
three types of solutions: stable steady state, unstable
steady state and limit cycle oscillations.

These diagrams illustrate that Hopf bifurcations occur for
each parameter; that is, the oscillatory behaviour exists
only in a limited range of parameters around the nominal
value. For each of these parameters, the respective inter-
vals and values for degree-of-robustness are found in Ta-
ble 1.

Structural singular value
From the numerical simulation (Fig. 2) of the non-linear
model, we observed that the oscillatory curves did not de-
viate greatly from a simple harmonic oscillator plus a con-
stant offset. Thus, to obtain an analytic expression for the

Figure 4
Discretization using sampling. (A) This diagram illustrates the use of sampling (S) and first-order-hold (H) to discretize a 
continuous-time system. The sampling circuit's output is equal to the inputs at the sampling times. The first-order-hold circuits 
generate a piecewise-constant signal equal to the inputs. If we introduce two copies of these circuits into the loop of Fig. 3B, 
and group the subsystems as shown here, the effect is to generate a discrete-time nominal model Gd as well as a discrete-time 
uncertainty structure ∆d. (B) The validity of this approximation will depend on the value of the sampling period, h = T/n, cho-
sen. For the Laub & Loomis model, the error for values of n greater than 8 is negligible. A comparison of the responses of the 
non-linear (solid blue), linearized continuous-time (dashed green) and discrete-time (dotted red) systems when n = 16 is 
shown, where we have plotted x1 as a function of time for all responses. The latter two have been superimposed onto the 
nominal limit cycle (x*(t)) computed using the harmonic balance method.
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Figure 5
Single parameter bifurcation diagrams. In these diagrams, obtained using AUTO [14], we plot the steady state activity of 
internal cAMP (x5) as a function of four individual parameters (k1, k2, k8 and k10). In the diagrams, a stable steady state is rep-
resented by solid line; an unstable steady state is represented by dashed line; and a stable limit cycle is represented by a pair of 
solid circles with the upper indicating the maximum value of amplitude and the lower indicating the minimum value of ampli-
tude. The transition from stable steady state to stable limit cycle or vice versa is called a Hopf bifurcation, which is indicated by 
a solid square in the plot. This type of bifurcation is caused by the appearance of a pair of pure imaginary eigenvalues of the 
Jacobian matrix of non-linear system. A star on the axis indicates the nominal value of each parameter.

Table 2: Fourier coefficients of the nominal periodic solution Values obtained for our Fourier series opproximation of the oscillatory 
behaviour.

i A0,i A1,i θI (degrees)

1 2.431 0.759 0
2 1.631 0.475 -96.1
3 0.818 0.248 -3.1
4 0.967 0.228 138.0
5 0.978 0.328 -66.3
6 0.347 0.107 -10.0
7 1.775 0.536 -20.8
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periodic orbits we assume that the state variables are ex-
panded into Fourier series containing only the fundamen-
tal and constant terms:

for each of the seven states. Since it is the relative phase
shift between each state variable that is relevant, we as-
sume that θ1 = 0. The substitution of the Fourier series
into the original equations leads to a series of real algebra-
ic equations for the coefficients (not shown) whose solu-
tion was obtained using Mathematica. This leads us to
obtain the corresponding periodic solutions where the
values of A0,i, A1,i and θi are found in Table 2. The period
T is approximately 7.31 minutes. This analytic solution
matches well with the numerical simulation except for an
arbitrary phase shift, which does not affect the shape and
location of the limit cycle in the phase space and can
thereby be ignored (not shown).

Following our prescribed methods, we next linearized the
system. The Jacobian matrix is obtained and was decom-
posed as in Eqn. (4) to obtain:

The matrix B0 (t) = {Bi,j} where

Similarly, the matrix C0 (t) = {Ci,j} where all coefficients
are zero except for the following:

Finally, D0 = 0 and the perturbation structure is given by

∆ = diag {δ1,δ2,δ2,δ3,δ4,δ5,δ6,δ6,δ8,δ8,δ9,δ10,δ10,δ11,
δ12,δ13,δ14}

Note that since the nominal trajectory is periodic, the ma-
trix functions in the nominal description are also periodic.
Note also that in the uncertainty matrix, ∆, some uncer-
tainties are repeated (δ2,δ6,δ8 and δ10) while δ7 is miss-
ing.

The system was then discretized and lifted following the
procedure outlined above. A comparison of the system re-
sponse for each of the approximations at the nominal pa-
rameter values is given in Fig. 4B.

For the sampling time we tried various values of n but
found negligible differences for values above eight. Final-
ly, we computed the bounds on the SSV. Once again, we
found that the values of these two bounds were not affect-
ed much by the sampling frequency provided that n is
greater than eight. The upper bound was successfully com-
puted using [22]. The maximum over all frequencies is ap-
proximately 12.06. However, the high dimension of
system causes convergence problem during the computa-
tion of µlower using this package. To obtain an acceptable
lower bound, we calculate the spectral radius at each fre-
quency. This gives us a lower bound for µlower. The plot of
the bounds for the SSV when n = 16 is shown in Fig. 6. We
can use µlower to obtain a conservative region for robust
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stability. The highest value over all frequencies for µlower is
approximately 2.636.

Discussion
Recent years has seen an appreciation that key cellular
properties are robust to variations in individual parameter
values. Based on the topology of many of these networks,
this should not be surprising. Feedback – both negative
and positive – control systems are ubiquitous in most bi-
ological networks [24] and one of the reasons for using
feedback is that it reduces sensitivity of a system's behav-
iour to its parameter values.

In modelling biological networks, it is important that this
robustness also be in evidence. The particular behaviour
being characterized by the model should not rely on pre-
cise values of the model's parameters – for example, reac-
tion rate constants or protein concentrations. In
particular, a precise measurement of these constants is dif-
ficult whereas protein concentrations will vary from one
cell to another or throughout the lifetime of any individ-
ual. Deviations from the nominal model parameter values
should not result in a loss of the network's performance;
thus, parameter sensitivity can be used to validate mathe-
matical models of biochemical system. That is, the more
insensitive the system response is to the accuracy of the
parameter, the more faith we should have in the model
[25].

In looking at certain classes of behaviour, where qualita-
tive changes in the stability of the system are possible, bi-
furcation diagrams provide an elegant means of
evaluating robustness. For example, in evaluating the ro-
bustness of the model of Laub and Loomis, of primary im-
portance is determining whether the oscillatory behaviour
will persist if the parameter values are altered. This quali-
tative difference in performance – from limit cycle oscilla-
tions to constant steady states – can be quantified and
compared across parameters or from one model to anoth-
er. Once the robustness of the oscillatory behaviour is es-
tablished, further investigations of the robustness of some
of the oscillatory features, for example frequency and am-
plitude can further be evaluated.

From the bifurcation diagrams obtained for each of the
fourteen parameters, we know that oscillations exist only
in a limited range around the nominal value. We find the
system to be quite sensitive to variations in k2, k4, k10 and
k14 and mostly insensitive to the others. Single-parameter
bifurcation analysis also shows that the amplitude of the
oscillation is greatly affected by the variation of 9 param-
eters (k1, k2, k4, k6, k7, k10, k11, k12, and k14).

Based on the SSV stability to interpret multiple parameter
sensitivity, we can conclude that robust stability of the pe-
riodic orbits will be maintained, provided that

Since the uncertainty matrix consists only of diagonal en-
tries, this bound applies to each of the individual param-
eters. Thus, we can guarantee that the system will be
robustly stable provided that no single parameter differs
more than 8.3% from its nominal value.

In our analysis we found a large gap between µupper and
our lower bound for µ. As we later show, for this system
the upper bound is fairly tight, as we are able to obtain a
destabilizing perturbation of size 9%. For general biolog-
ical models, a robustness measure based on the upper
bound µupper may also be more appropriate. Robustness
bounds for systems in which arbitrarily slowly-time-vary-
ing parameter values are allowed are known [26]. For
these systems it has been shown that the bounds converge
as the time-variations approach zero to the upper bound
µupper [26]. Since many of the parameters in models of bi-
ochemical networks represent features that will vary over
time, such as enzyme concentrations, this number may
therefore be more indicative of the model's true robust-
ness.

The ability to consider the effect of time-variations on the
robustness of the system is one great advantage of the SSV
over other methodologies. One drawback of the SSV ap-
proach compared to the bifurcation theory is that it does
not provide the precise combination of parameters that
destabilizes the system – only its size. Also, since the up-
per bound is only sufficient to guarantee robustness, this
number may, in general, give an overly conservative no-
tion of robustness.

It must be emphasized that the SSV approach denoted
here is based on the linearized model of the system. For
some classes of systems this linearization may not be pos-
sible – in this case, the linear SSV approach documented
here will not be applicable. However, for most models
used to describe biochemical reactions, this should not be
a problem.

Because we are concentrating exclusively on the local sta-
bility of the linearized model, important parameters of
the oscillatory behaviour such as robustness of the fre-
quency and amplitudes of oscillation are not evaluated.
Also, the effect of parameter variations on the equilibrium
orbit are omitted. In particular, varying the kinetic param-
eters will change the behaviour of the system in two dif-
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ferent ways: the equilibrium periodic orbit will change
and the stability of deviations about this orbit will also
change. The SSV allows one to quantify the robustness of
the second of these two effects. It does not say anything di-
rectly regarding the effect of parameter variations on the
equilibrium periodic orbit. One way of bounding the ef-
fect of these parameter changes is to write the original dif-
ferential equation as

(t) = f(x,k)

where k = k0 + δ is the set of kinetic parameters with nom-
inal values k0. If the nominal periodic orbit (when δ = 0)
is given by

x*(t) = x(t) - xδ (t)

then, linearizing about this orbit yields

δ(t) = A(t)xδ (t) + v

where  δ is a constant vector that includes

the effect of this parametric uncertainty. Thus, the system
can be considered as being perturbed by a constant input
signal v. Provided that the homogeneous system is expo-
nentially stable (and this is guaranteed by the existence of
a stable limit cycle) and that v is not "too large", the per-
turbed system's state will remain in a neighbourhood of
the origin if the f(x,p) in the original equation is reasona-
bly well behaved in k. Detailed bounds and conditions on
f are given in Theorem 5.1 of [17], though it should be
emphasized that these bounds tend to be overly conserv-
ative in practice.

To illustrate the local nature of the SSV analysis for this
system, we perturbed the system parameters by varying
amounts. The particular parameters were either increased
or decreased so as to bring them closer to the Hopf bifur-
cation. For example, the nominal value of k1 is closer to

k1 than to 1 so that we reduced k1 whereas k4 is closer to

4 than to k4 so we increased k4. In Fig. 7 we show the re-
sponse of these systems to changes of 7% and 9% both for
the linearized system – where the linearized response has
been superimposed on the nominal limit cycle (Fig. 7A)
and the original non-linear system (Fig. 7B). For the
smaller value, the linearized response is stable and we see
that, after a transient, the response settles to the nominal
limit cycle. We also see this same behaviour in the re-
sponse of the non-linear system with this level of param-
eter perturbation. For a 9% change in the parameters,
however, the linearized system is unstable. We see this as
a deviation from the nominal limit cycle. In the non-line-

ar system's response, this translates into an end to the sta-
ble limit cycle. The response does not "blow up" but
instead settles into a fixed point.

This example illustrates how a robustness analysis of the
linearized system can be used to deduce the robustness of
the original non-linear system, as it shows that when the
linearized system is unstable, the desired behaviour of the
non-linear system will no longer be present. This example
also points out the fact that the upper bound µupper ≅ 8.3%
is not overly conservative for this system as we were able
to produce a destabilizing perturbation of size 9%.

Finally, we note that multiparametric robustness analysis
considered here is based on local properties of the dynam-
ical system, since we are evaluating the robustness of the
linearized model. Extensions to the non-linear model are
the subject of active investigation [27].

However, it is by combining the robustness analysis of
both single and multiple parameters, we can obtain a
more thorough understanding of the region of stability of
the periodic solution in the high dimensional parameter
space and use this to improve upon the model. In this par-
ticular example, we find that the system's robustness is
governed by several "robustness limiting" parameters, k2,
k4, k10 and k14.

Conclusions
Determining the robustness of mathematical models of
biological systems is important for several reasons. First,
there is growing evidence that many aspects of the net-
works being modelled have evolved in such a way so that
they are robust as this allows them to tolerate natural var-
iations in the environment. Thus, faithful models should
replicate this robustness. Second, robustness of the mod-
els provide a means of validating model quality since the
performance of the models should not rely on precisely
tuned parameter values that are impossible – or at best –
difficult to measure exactly.

In this paper, we illustrated the use of two tools developed
in dynamical systems theory and control engineering to
assess robustness quantitatively. For an example, we con-
sidered an oscillatory molecular network model due to
Laub and Loomis that aims at describing oscillatory be-
haviour in cAMP signalling observed in the social amoeba
D. discoideum. This behaviour appears as a stable limit cy-
cle of the equations describing the model. We have evalu-
ated the degree to which this limit cycle is robust to
variations in all the system parameters.

The robustness of the oscillatory behaviour to single pa-
rameter variations was quantified using bifurcation anal-
ysis. Using the bifurcation analysis software tool AUTO
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we determined that single parameter changes as small as
20% from the nominal value can cause the limit cycle to
disappear and a stable equilibrium to appear. In addition
to the stability robustness, AUTO is also able to evaluate
the sensitivity of the amplitude of the oscillation to these
parameter changes.

To investigate the robustness of the model to simultane-
ous changes in parameter values, the structured singular
value (SSV) analysis tool was used. Once the system was
in the correct framework for SSV analysis, we were able to
determine that the system can only tolerate very small
changes in the parameter values – in the order of 8% – if
we allow these parameters to vary with time arbitrarily
slowly.

Finally, it is important to note that to understand com-
pletely the robustness properties of a model, it is appro-

priate to combine single and multiple parameter
sensitivity analyses.
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