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Abstract
Background: Gene regulation in eukaryotes is mainly effected through transcription factors
binding to rather short recognition motifs generally located upstream of the coding region. We
present a novel computational method to identify regulatory elements in the upstream region of
eukaryotic genes. The genes are grouped in sets sharing an overrepresented short motif in their
upstream sequence. For each set, the average expression level from a microarray experiment is
determined: If this level is significantly higher or lower than the average taken over the whole
genome, then the overerpresented motif shared by the genes in the set is likely to play a role in
their regulation.

Results: The method was tested by applying it to the genome of Saccharomyces cerevisiae, using the
publicly available results of a DNA microarray experiment, in which expression levels for virtually
all the genes were measured during the diauxic shift from fermentation to respiration. Several
known motifs were correctly identified, and a new candidate regulatory sequence was determined.

Conclusions: We have described and successfully tested a simple computational method to
identify upstream motifs relevant to gene regulation in eukaryotes by studying the statistical
correlation between overepresented upstream motifs and gene expression levels.

Introduction
One of the biggest challenges of modern genetics is to ex-
tract biologically meaningful information from the huge
mass of raw data that is becoming available. In particular,
the availability of complete genome sequences on one
hand, and of genome-wide microarray data on the other,
provide invaluable tools to elucidate the mechanisms un-
derlying transcriptional regulation. The sheer amount of
available data and the complexity of the mechanisms at

work require the development of specific data analysis
techniques to identify statistical patterns and regularities,
that can then be the subject of experimental investigation.

The regulation of gene expression in eukaryotes is known
to be mainly effected through transcription factors bind-
ing to rather short recognition motifs generally located
upstream of the coding region. One of the main problems
in studying regulation of gene expression is to identify the
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motifs that have transcriptional meaning, and the genes
each motif regulates.

The usual approach to this kind of analysis begins by
identifying groups of co-regulated genes, for example by
applying clustering techniques to the expression profiles
obtained from microarray experiments. One then studies
the upstream sequences of a set of coregulated genes look-
ing for shared motifs. Examples of this approach as ap-
plied to S. cerevisiae are Refs. [1,2,4].

In this paper we suggest an alternative method which
somehow follows the inverse route: genes are grouped
into (non-disjoint) sets, each set being characterized by a
short motif which is overrepresented in the upstream se-
quence. For each set, the average expression is computed
for a certain microarray experiment, and compared to the
genome-wide average expression from the same experi-
ment. If a statistically significant diffrence is found, then
the motif that defines the set of genes is a candidate regu-
latory sequence. The rationale for looking for overrepre-
sented motifs is that, in many instances, regulatory motifs
are known to appear repeated many times within a rela-
tively short upstream sequence [2,3], so that the number
of repetitions turns out to be much bigger than what
would be expected from chance alone.

A somehow related approach, which does not require any
previous grouping of genes based on their expression pro-
files, was presented in Ref. [5], where the effect of up-
stream motifs on gene expression levels is modeled by a
sum of activating and inhibitory terms. Experimental ex-
pression levels are then fitted to the model, and statistical-
ly significant motifs are identified. Our approach differs in
the importance given to overrepresented motifs, thus con-
sidering activation and inhibition as an effect that de-
pends on a threshold number of repetitions of a motif
rather than on additive contributions from all motifs.
Clearly the two mechanisms are far from being mutually
exclusive, therefore we expect the candidate regulatory
sites found with the two methods to significantly overlap.

However it is important to notice that the kind of statisti-
cal correlation between upstream motifs and expression
that our algorithm identifies does not depend on any spe-
cial assumption on the functional dependence of expres-
sion levels on the number of motif repetitions, as long as
this dependence is strong enough to provide a significant
deviation from the average expression when enough cop-
ies of the motif are present. A comparison of our results
with those obtained in Ref. [5] is provided in the "Results
and discussion" section.

The method
In general the motifs with known regulatory function are
not identified with a fixed nucleotide sequence, but rather
with sequences where substitutions are allowed, or spaced
dyads of fixed sequences, etc. However in this study, in or-
der to test the method while keeping the technical compli-
cations to a minimum, we will limit ourselves to fixed
short nucleotide sequences, that we call words. While pre-
vious studies (see e.g [2]) show that even this simple anal-
ysis can give interesting results, the method we present can
easily be generalized to include variable sequences and
other more complicated patterns.

The computational method we propose has two main
steps: first the open reading frames (ORFs) of an eukaryo-
te genome are grouped in (overlapping) sets based on
words that are overrepresented in their upstream region,
compared to their frequencies in the reference sample
made of all the upstream regions of the whole genome.
Each set is labelled by a word. Then for each of these sets
the average expression in one or more microarray experi-
ments are compared to the genome-wide average: if a sta-
tistically significant difference is found, the word that
labels the set is a candidate regulatory site for the genes in
the set, either enhancing or inhibiting their expression.

It is worth stressing that the grouping of the genes into sets
depends only on the upstream sequences and not on the
microarray experiment considered: It needs to be done
only once for each organism, and can then be used to an-
alyse an arbitrary number of microarray experiments. It is
precisely this fact that should allow the extension of the
method to patterns more complex than fixed sequences,
while keeping the required computational resources with-
in reasonable limits.

Constructing the sets
We consider the upstream region of each open reading
frame (ORF), and we fix the maximum length K of the up-
stream sequence to be considered. The choice of K de-
pends on the typical location of most regulatory sites: in
general K is a number between several hundred and a few
thousand. For each ORF g, the actual length of the se-
quence we consider is Kg defined as the minimum be-
tween K and the available upstream sequence before the
coding region of the previous gene.

For each word w of length l (6 ≤ l ≤ 8 in this study), and
for each ORF g we compute the number mg(w) of occur-
rences of w in the upstream region of g. Non palindromic
words are counted on both strands: therefore we define
the effective number of occurrences ng(w) as
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where  is the reverse complement of w.

We define the global frequency p(w) of each word w as

where, in order to count correctly the available space for
palindromic and non palindromic words,

p(w) is therefore the frequency with which the word w ap-
pears in the upstream regions of the whole genome: it is
the "background frequency" against which occurrences in
the upstream regions of the individual genes are com-
pared to determine which words are overrepresented.

For each ORF g and each word w we compute the proba-
bility bg(w) of finding ng(w) or more occurrences of w
based on the global frequency p(w):

We define a maximum probability P, depending in gener-
al on the length l of the words under consideration, and
consider, for each w, the set

of the ORFs in which the word w is overepresented com-
pared to the frequency of w in the upstream regions of the
whole genome. That is, w is considered overrepresented in
the upstream region of g if the probability of finding ng(w)
or more instances of w based on the global frequency is
less than P.

This completes the construction of the sets S(w). Two free
parameters have to be fixed: the length K of the upstream
region to be considered and the probability cutoff P for
each length l of words considered. A result in Ref. [2] sug-
gests suitable choices of these two numbers: the authors
list the 34 ORFs of S. cerevisiae that have 3 or more occur-
rences of the word GATAAG in their 500 bp upstream re-
gion. 23 out of these 34 ORFs correspond to a gene with
known function, and 20 out of these 23 are regulated by
nitrogen. This result suggests to choose K = 500 for the up-
stream length, and a value of the probability cutoff such
that three or more instances of GATAAG in the 500 bp up-
stream region of an ORF are considered significant. Any
choice of P between 0.018 and 0.1 would satisfy this crite-
rion, and we chose P = 0:02. Tentatively, we kept the same
value of P for all values of l. With this choice, the number
of instances of a word that are necessary to be considered
overrepresented in a 500 bp upstream sequence can be as
high as six for common 6-letter words and as low as one
for rare 8-letter words. In particular, our set S(GATAAG)
almost1 coincides with the one discussed in [2]. However
the word GATAAG will not turn out to be significant in
our study.

As noted above, it would be natural to make the probabil-
ity cutoff P depend on the word length, simply because
the number of possible words increases with their length:
For example one could take the cutoff for each word
length to be inversely proportional to the number of inde-
pendent words of such length. However it turns out that
this procedure tends to construct sets that are less signifi-
cant when tested for correlation with expression. There-
fore we chose to fix the cutoff at 0.02 for all word lengths.
It is important to keep in mind that no statistical signifi-
cance whatsoever is attributed to the sets per se: The only
sets that are retained at the end of the analysis are the ones
that show significant correlation with expression. There-
fore the choice of the cutoff in the construction of the sets
can be based on such a pragmatic approach without jeop-
ardizing the statistical relevance of the final result.

Table 1: Number of data, average and standard deviation for the 
7 time-points.

i N(i) R(i) σ (i)

1 6082 -0.0888 0.2509
2 6054 -0.0378 0.2801
3 6020 0.1132 0.3152
4 6071 -0.1957 0.3433
5 6058 -0.2423 0.3890
6 6084 0.09244 0.8226
7 6021 -0.2028 0.8886
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Studying the average expression level in each set
The second step of our procedure consists in studying, for
each set S(w) defined as above, the expression profiles of
the ORFs belonging to S(w) in DNA microarray experi-
ments. The idea is that if the average expression profile in
the set S(w) for a certain experiment is significantly differ-
ent from the average expression for the same experiment
computed on the whole genome, then it is likely that
some of the ORFs in S(w) are coregulated and that the
word w is a binding site for the common regulating factor.

To look for such instances we consider the gene expres-
sion profiles during the diauxic shift, i.e. the metabolic
shift from fermentation to respiration, as measured with
DNA microarrays techniques in Ref. [1]. In the experiment
gene expression levels were measured for virtually all the
genes of S. Cerevisiae at seven time-points while such met-
abolic shift took place. The experimental results are pub-
licly available from the web supplement to Ref. [1].

We considered each time-point as a single experiment,
and for each gene g we defined the quantity rg(i) (1 = 1,...,
7) as the log2 of the ratio between the mRNA levels for the
gene g at time-point i and the initial mRNA level. There-
fore e.g. rg(i) = 1 means a two-fold increase in expression
at timepoint i compared to initial expression.

For each time-point i we computed the genome-wide av-
erage expression R(i) and its standard deviation σ (i).
These are reported in Tab. 1, where N(i) is the number of
genes with available expression value for each timepoint.
Then for each word w we compute the average expression
in the subset of Sw given by the genes for which an exper-
imental result is available at timepoint i (in most cases
this coincides with Sw):

where N(i, w) is the number of ORFs in Sw for which an
experimental result at timepoint i is available, and the dif-
ference

∆Rw(i) is the discrepancy between the genome-wide aver-
age expression at time-point i and the average expression
at the same time-point of the ORFs that share an abun-
dance of the word w in their upstream region. A signifi-
cance index sig(i, w) is defined as

and the word w is considered significantly correlated with
expression at time point i if

In this work we chose Λ = 6: this means that we consider
meaningful a deviation of Rw(i) by six s.d.'s from its ex-
pected value. The sign of sig(i, w) indicates whether w acts
as an enhancer or an inhibitor of gene expression.
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Table 2: Significant words related to the PAC motif.

word genes timepoints score
1 2 3 4 5 6 7

GATGAG 24 - - - -6.70 - - - 1.00
GATGAGAT 35 - - - -8.20 -6.26 -6.18 -7.86 0.94
GATGAGA 26 - - - -7.06 - - -6.64 0.93

GAGATGAG 36 - - - -6.96 - - -6.50 0.92
AGATGAG 33 - - - -6.17 - - -6.44 0.91
GAGATGA 42 - - - -6.20 - - - 0.83

ATGAGATG 32 - - - -6.96 - - -6.33 0.80
GAGATG 31 - - - -6.42 - - - 0.75

TGAGATG 47 - - - -6.26 - - -6.10 0.70
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Results and discussion
We found a total of 29 words of length between 6 and 8
above our significance threshold |sig| > 6. Most of them
are related to known regulatory motifs; two words turned
out to be false positives due to the presence, in their sets,
of families of identical ORF's. Finally, one word does not
match any known motif and is a candidate new binding
site.

The comparison between our significant words and
known motifs was performed using the database of regu-
latory motifs made publicly available by the authors of
Ref. [6], and the CompareACE software [7] available from
the same web source. This package allowed us to compute
the Pearson correlation coeffcient of the best alignment
between each of our significant words and each known
regulatory motif (expressed as a set of nucleotide frequen-
cies).

We used the following criterion to associate our signifi-
cant words to known motifs: a motif is considered as iden-
tified if at least one significant word scores better than 0.8
when compared to it. A probability value for this choice of
the cutoff can be estimated to be a few percent: out of all
the 2080 independent 6-letter words, 66 (that is 3.17%)
score better than 0.8 with at least one motif. For 7- and 8-
letter words we have respectively 2.21% and 1.51%. Once
a motif has been identified, all words which score best
with the motif are attributed to it, independently of the
score, provided their expression pattern is consistent with
the word(s) scoring better than 0.8.

PAC and RRPE motifs
Nine significant words can be associated to the PAC motif
[8,4,7], all of them with rather high scores. They are
shown in Tab. 2, where, as in all the following tables, sig-
nificativity indices are shown only for those timepoints
where they exceed our threshold jsigj > 6. Given the per-
fect alignment of these words, it is not surprising that
these sets largely overlap each other: The union af all the
nine sets contains a total of 96 genes. As an example, in
Fig. 1 we show the average expression for the genes asso-
ciated with the word GATGAG as a function of the time,
compared to the average expression computed over the
whole genome. Fig. 2 shows the significance index for the
same set. The genes in this set are shown in Tab. 3 togather
with their expression profiles. 

Two words can be associated with confidence to the motif
RRPE [4,7], and are shown in Tab. 4. The union of the two
sets contains 76 genes. We see that genes containing the
motifs PAC and RRPE are repressed at the late stage of the
diauxic shift compared to the early stages. This result is in
agreement with the expression coherence score data avail-
able from the web supplement to Ref. [6]: There one can
see that (1) of all known regulatory motifs, PAC and RRPE
show the highest expression coherence for the diauxic
shift and (2) viceversa, of the eight experimental condi-
tions considered in Ref. [6], the diauxic shift is the one in
which both the PAC and RRPE motif show the highest ex-
pression coherence score.

STRE and MIG1 motifs
A total of ten significant words can be associated to the
motifs STRE [9,10] and MIG1 [11,12]. It is well known

Figure 1
expression of the genes in the set S(GATGAG)The
average expression of the genes in the set S(GATGAG)
(solid red line) compared to the genome-wide average
expression (dashed green line) at the seven time points of
the diauxic shift experiment. The expression data are the
log2 of the ratio between mRNA levels at each timepoint and
the initial mRNA level.
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Figure 2
statistical significance of the set S(GATGAG) The sta-
tistical significance sig(i, w) as defined in Eq. (10) for the word
w = GATGAG and timepoints i = 1,..., 7 in the diauxic shift
experiment. The dashed line is the significance threshold |sig|
= 6.
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that these play an important role in glucose repression
(see e.g.[1,13] and references therein). Most of these
words show comparable scores for the two motifs (due to
their similarity) so we decided to show them together in
Tab. 5 which shows the two scores for each word. A total
of 212 genes belong to the union of all these sets.

The UME6 motif
Two words are associated to the known UME6 motif,
a.k.a. URS1 [14,15], known to be a pleiotropic regulator
implicated in glucose repression [16]. They are shown in
Tab. 6. The two sets do not overlap, so that a total of 56
genes are associated to this motif.

Table 3: The ORFs in the set S(GATGAG) with their expression profiles.

ORF gene timepoints
1 2 3 4 5 6 7

YBL054W 0.21 -0.01 -0.18 -1.56 -1.25 -0.79 -1.47
YCL059C KRR1 0.36 0.06 0.45 -0.69 -0.71 -0.34 -1.69
YDL063C -0.03 -0.03 -0.27 -0.92 -1.06 -1.51 -2.06
YDL153C SAS10 0.41 0.19 0.36 -0.76 -0.97 -1.43 -1.79
YDR365C 0.03 0.06 0.21 -0.38 -0.62 -1.64 -1.94
YGR022C -0.17 -0.06 0.14 0.04 -0.15 0.54 0.86
YGR102C -0.23 -0.23 -0.07 -0.32 0.03 1.43 0.84
YGR103W NOP7 0.15 -0.06 0.32 -0.92 -1.09 -1.64 -2.56
YGR128C 0.30 0.26 0.38 -0.81 -0.76 -0.89 -1.47
YGR129W SYF2 -0.18 -0.54 0.11 -0.12 -0.23 0.74 0.14
YGR145W 0.00 -0.23 0.25 -0.92 -1.09 -1.69 -2.18
YJL033W HCA4 -0.06 0.01 0.21 -0.94 -0.36 -0.67 -0.62
YKL078W -0.04 -0.01 0.04 -1.12 -0.97 -0.71 -1.89
YKL172W EBP2 0.12 0.21 0.30 -0.74 -0.56 -0.42 -1.40
YLR276C DBP9 0.03 0.14 0.32 -0.62 -0.86 -0.67 -1.64
YLR401C -0.06 -0.07 0.07 -0.71 -0.71 -0.84 -1.03
YLR402W -0.18 -0.23 -0.30 -0.47 -0.51 -0.20 -0.27
YML123C PHO84 0.50 0.50 0.54 -0.56 -0.67 -2.32 -1.69
YNL061W NOP2 -0.03 -0.51 -0.42 -1.29 -1.36 -2.25 0.01
YNL062C GCD10 -0.10 0.00 0.01 -0.47 -0.64 -1.12 -1.06
YOL141W PPM2 -0.10 0.01 0.24 -0.84 -0.54 0.04 -0.20
YPL068C -0.60 -0.10 -0.18 -0.84 -1.09 0.08 -0.89
YPR112C MRD1 -0.17 -0.23 -0.17 -0.54 -0.62 -1.12 -1.51
YPR113W PIS1 -0.04 0.00 0.62 0.52 0.56 1.12 -1.03

set average 0.005 -0.036 0.124 -0.666 -0.676 -0.679 -1.106
genome average -0.089 -0.038 0.113 -0.196 -0.242 0.092 -0.203

significance 1.83 0.03 0.17 -6.71 -5.47 -4.60 -4.98

Table 4: Significant words related to the RRPE motif.

word genes timepoints score
1 2 3 4 5 6 7

AAAATTT 50 - - - - - -7.90 -8.58 0.91
AAAATTTT 62 - - - -6.59 - -8.73 -10.26 0.89
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Other significant words
Three words, shown in Tab. 7, are of uncertain status: for
the first one, the set S(ACTTTC) contains only 2 genes,
making the statistical significance of the result questiona-
ble. The word CCCCTGAA scores best with the PDR motif
(0.58): given the low significance of this score, and the
fact that PDR does not seem to be relevant for any other
word, this is most likely accidental. The word should
probably be considered as belonging to the STRE/MIG1
motif (the scores are STRE: 0.46, MIG1: 0.49). Finally the

word GCCCCTGA scores best with UME6 (0.55), but its
expression pattern is more similar to the STRE/MIG1 mo-
tifs (scores: STRE:0.44, MIG1: 0.46).

False positives due to families of identical or nearly identi-
cal ORF's
The genome of S. cerevisiae contains a few families of
genes whose coding and upstream regions are identical or
nearly identical. Consider for example the COS1 gene
(YNL336W): the seven genes COS2-COS8 have both cod-

Table 5: Significant words related to the STRE and MIG1 motifs. The words marked * actually score better with the variant STRE' motif 
(0.60 and 0.55 respectively).

word genes timepoints score
1 2 3 4 5 6 7 STRE MIG1

CCACCCCC 35 - - - - - 6.39 - 0.82 0.53
CCCCCCCT 28 - - - - - 6.01 - 0.79 0.71

CCCCTG 28 - - - 7.06 6.09 7.00 - 0.59 0.54
CAGCCCCT 23 - - - - - 6.42 - 0.59 0.42
GCCCCT* 40 - - - - - 7.05 - 0.59 0.56

GCCCCCTG* 17 - - - - 6.07 - - 0.47 0.46

TACCCC 25 - - - - - 6.09 - 0.55 0.85
CCCCCC 56 - - - - 6.48 6.55 6.10 0.72 0.80
ACCCCT 29 - - - - - 7.42 - 0.63 0.65
GGCCCC 16 - - - - 6.71 - - 0.52 0.56

Table 6: Significant words related to the UME6 motif.

word genes timepoints score
1 2 3 4 5 6 7

GCCGCC 27 - - - - - - 6.03 0.82
AGCCGCGC 29 - - - - - - 6.63 0.60

Table 7: Significant words of uncertain attribution.

word genes timepoints
1 2 3 4 5 6 7

ACTTTC 2 - - - 6.20 - - -
CCCCTGAA 42 - - - 6.50 - - -
GCCCCTGA 22 - - - 6.90 - - -
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ing sequence and 500 kb upstream sequence coinciding
better than 80% with the COS1 sequence. Therefore if the
upstream sequence of COS1 contains over-erpresented
words, they will likely appear in all of the upstream re-
gions. On the other hand, the expression profiles of all the
genes in the family will be the same when measured by a
microarray experiment, simply because the experimental
apparatus cannot distinguish between the mRNA pro-
duced by the various members of the family, due to cross-
hybridization between their mRNA. Therefore all of the
genes of the family are likely to occur in the sets of the
words that are overrepresented in their upstream region,
and even a small deviation from the genome-averaged ex-
pression acquires a statistical significance.

We found two instances of this in our analysis: the words
GACGTAGC and GGTCGCAC appear to be associated to
significant enhancement of the corresponding sets of
genes at late timepoints in the diauxic shift: however the
two sets contain respectively seven out of eight and all of
the COS1-COS8 genes. Since the COS genes are mildly
overexpressed, this creates a false statistical significance.
When one corrects for this, by keeping only one represent-
ative of the family, the statistical significance of the two
sets disappears.

A candidate new motif
Finally, the word ATAAGGG/CCCTTAT is a candidate new
binding site, since it does not have good comparison
scores with any of the known motifs. It scores best with
the AFT1 motif, with a 0.52 score which is practically
meaningless since 84.9% of all independent 7-letter
words score the same or better with at least one motif. It
is associated with 13 genes, as shown in Tab. 8, which are
overexpressed at late timepoints. The average expression

levels for the set and the significance index are shown as a
function of time in Figs. 3 and 4.

Comparison with the results of Ref. [5]
As stated in the introduction, the method proposed in
Ref.[5] also allows one to identify regulatory motifs with-
out any previous clustering of gene expression data: a lin-
ear dependence of the logarithm of the expression levels
on the number of repetitions of each regulatory motifs is
postulated, and motifs are ranked according to the reduc-
tion in χ2 obtained when such dependence is subtracted
from the experimental expression levels. Iteration of the
procedure produces a model, that is a set of relevant regu-
latory motifs, for each expression data set.

We can conclude that the two methods tend to find motifs
with a different effect on gene expression: probably the
best results can be obtained by using them both on the
same data set.

In Ref. [5] such a model is presented for the 14 min. time
point in the α-synchronized cell-cycle experiment of
Spellmann et al., Ref. [17]. We used our algorithm on the
same data set to compare the findings. Let us concentrate
on the 7-letter words (the longest considered in [5]). We
found 9 significant words, reported in Tab. 9. Of these,
five coincide with or are very similar to words found by
the authors of Ref.[5] (see their Tab. 2). The remaining
four (AGGCTAA, GGCTAAG, GCTAAGC and CTAAGCG,
whose similarity clearly suggests the existence of a longer
motif) are of particular interest for the purpose of compar-
ing the two methods: If one looks at the dependence of
the expression levels on the number of occurrences of
these words in the 500 bp upstream region, one clearly
sees the existence of an activation threshold (see Fig. 5,
where such dependence is shown for GGC-TAAG). On the

Figure 3
expression of the genes in the set S(ATAAGGG)
Same as Fig. 1 for the genes in the set S(ATAAGGG), our
new candidate regulatory motif.
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statistical significance of the set S(ATAAGGG) Same
as Fig. 2 for the genes in the set S(ATAAGGG).
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other hand, by looking at these data one hardly expects a
significant reduction in χ2 when trying to describe this de-
pendence with a straight line. This should be compared to
the same dependence for the word AAAATTT, shown in
Fig. 6, which is found by both algorithms. On the other
hand, there are two 7-word motifs found in [5] that do
not pass our significativity threshold, that is CCTCGAC
and TAAACAA.

Conclusions
We have presented a new computational method to iden-
tify regulatory motifs in eukaryotes, suitable to identify
those motifs that are effective when repeated many times
in the upstream sequence of a gene. The main feature that
differentiates our method from existing algorithms for

Table 8: The ORFs in the set S(ATAAGGG) with their expression profiles.

ORF gene timepoints
1 2 3 4 5 6 7

YBR072W HSP26 -0.01 0.40 0.36 1.00 1.43 3.47 2.84
YDL133W -0.04 0.32 -0.34 -0.25 -0.56 -0.22 -0.32
YDL204W -0.36 0.92 -0.51 0.26 0.08 4.05 3.06
YIL136W OM45 -0.97 -0.27 0.21 -0.25 1.32 3.47 1.79
YLR163C MAS1 0.04 -0.01 0.11 -0.01 0.08 0.30 -0.03
YLR164W -0.30 N/A -0.27 0.06 -0.18 2.19 1.69
YLR453C RIF2 -0.07 -0.27 0.32 -0.01 -0.71 0.69 0.08
YML127W RSC9 0.01 0.14 0.08 -0.18 -0.27 -0.30 -1.06
YML128C MSC1 -0.12 0.20 0.97 1.56 1.36 4.32 3.47
YNL117W MLS1 -0.30 -0.04 0.71 -0.30 -0.27 0.76 3.18
YPR025C CCL1 -0.18 -0.36 -0.30 -0.25 -0.42 0.36 0.20
YPR026W ATH1 -0.06 -0.04 0.11 0.20 0.20 0.60 1.56
YPR172W 0.29 0.03 -0.07 -0.27 -0.20 1.43 0.92

set average -0.159 0.085 0.106 0.120 0.143 1.625 1.337
genome average -0.089 -0.038 0.113 -0.196 -0.242 0.092 -0.203

significance -1.01 1.52 -0.08 3.32 3.57 6.72 6.25

Table 9: Significant 7-letter words for the 14-minute timepoint in 
the α-synchronized cell-cycle experiment

word genes sig

AAAATTT 50 -7.63
ACGCGTC 28 6.46
AGATGAG 33 -6.96
GATGAGA 25 -6.47
GAGATGA 41 -6.60

GGCTAAG 17 7.30
AGGCTAA 22 6.65
CTAAGCG 16 6.89
GCTAAGC 17 6.77 Figure 5

expression as a function of occurrences of the word
GGCTAAG The average expression of genes presenting n
occurrences of the word GGC-TAAG as a function of n in
the 14 min. time point of the α-synchronized cell-cycle
experiment of Spellmann et al., Ref. [17]. In parentheses is
the number of genes with n occurrences of GGCTAAG in
the upstream region. The horizontal line represents the aver-
age expression for the whole genome.
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motif discovery is the fact that genes are grouped a priori
based on similarities in their upstream sequences.

Most of the significant words the algorithm finds can be
associated to five known regulatory motifs: This fact con-
situtes a strong validation of the method. Three of them
(STRE, MIG1 and UME6) were previously known to be
implicated in glucose suppression, while the fact that PAC
and RRPE sites are relevant to regulation during the diaux-
ic shift is in agreement with expression coherence data as
reported in the web supplement to Ref. [6]. One of the sig-
nificant words we find (ATAAGGG) cannot be identified
with any known motif, and is a candidate new binding
site.

It is easy, at least in principle, to extend the method to a
larger class of regulatory sites. According to our knowl-
edge of gene regulation, this should be done at least in
two directions: (1) the analysis should not be restricted to
fixed sequences, but extended to motifs with controlled
variability; in particular the extension to spaced dyads
[18] should be straightforward; (2) the combinatorial anal-
ysis of binding sites [6] could also be performed along the
same lines, that is first grouping genes according to which
combinations of motifs appear in their upstream region,
and then analysing expression profiles within each group.

1Our set is smaller that the one reported in Ref. [2] be-
cause we do not allow the upstream sequence to overlap
with the previous gene: this eliminates 7 genes form the
set.
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