
BioMed CentralBMC Bioinformatics
BMC Bioinformatics 2002, 3Methodology article
tacg – a grep for DNA
Harry J Mangalam

Address: tacg Informatics, 1 Whistler Ct, Irvine, CA, 92612, USA

E-mail: hjm@tacgi.com

Abstract
Background: Pattern matching is the core of bioinformatics; it is used in database searching,
restriction enzyme mapping, and finding open reading frames. It is done repeatedly over increasingly
long sequences, thus codes must be efficient and insensitive to sequence length. Such patterns of
interest include simple motifs with IUPAC degeneracies, regular expressions, patterns allowing
mismatches, and probability matrices.

Results: I describe a small application which allows searching for all the above pattern types
individually, which further allows these atomic motifs to be assembled into logical rules for more
sophisticated analysis.

Conclusion: tacg is small, portable, faster and more capable than most alternatives, relatively easy
to modify, and freely available in source code.

Background
String searching is a well-developed field of computer sci-
ence, with highly optimized algorithms implemented in a
variety of applications to efficiently search large collec-
tions of text [12,15]. Many of these algorithms are intui-
tive; some of them are beautiful, the best of them are quite
extraordinarily efficient [1,3,6]. Many of these algorithms
have been applied to the field of searching genomic se-
quences and associated databases, either for exact
[2,17,18] or probablistic [11,4] matches, but it is striking
that many useful algorithms in combinatorial pattern
matching have not made their way into tools designed ex-
plicitly for bioinformaticists.

Most of the tools that have been developed for pattern
matching in molecular biology have been prototyped on
Unix systems but there has been a perplexing deficit of
free bioinformatics tools (comparable to the GNU text
utilities [9]) for this platform. Recently, however, the EM-
BOSS suite of about 100 tools [20] has approached the

commercial GCG application suite for breadth of utility.
There are other good tools (ie. SEALS [24]) that can be co-
erced into providing searching capability although often
at the cost of non-standard interfaces, large installation or
maintenance overhead, or that provide considerable util-
ity but at the cost of building the application yourself,
such as the Bio* toolkits [5].

A useful utility would be a grep[13] for DNA, a command
line program requiring a short learning curve and few re-
sources, but providing sophisticated search abilities as
well as being easily extensible. tacg was developed to pro-
vide this functionality. For example, tacg -pName, pattern,
err# < input_file provides a table of all the sites in the se-
quence(s) contained in input_file where the pattern
named Name matched with err# mismatches. It is relative-
ly compact; ~10,000 lines of ANSI C code with another
20,000 lines of included library code, mostly from James
Knight's Seqio package [16].

Published: 6 March 2002

BMC Bioinformatics 2002, 3:8

Received: 14 November 2001
Accepted: 6 March 2002

This article is available from: http://www.biomedcentral.com/1471-2105/3/8

© 2002 Mangalam; licensee BioMed Central Ltd. Verbatim copying and redistribution of this article are permitted in any medium for any purpose,
provided this notice is preserved along with the article's original URL.
Page 1 of 4
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/3/8
http://www.biomedcentral.com/

BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/8
While tacg provides a number of capabilities, it is particu-
larly good at searching for multiple matches in DNA. It
was originally designed for restriction enzyme mapping
and can search for short degenerate patterns in degenerate
DNA as well as searching with errors (fuzzy searching). It
can generate lists of fragments (if the patterns are assumed
to cleave the DNA) and produce character-based outputs,
such as GCG-like ladder maps, gel simulations, full linear
maps with optional co-translation in 1, 3, or 6 frames. It
has support for some Amplified Fragment Length Poly-
morphism (AFLP [23]) analysis, and much of its internal
data can be exported in tabular format (including GNU-
PLOT[25]) for external plotting or analysis. It can also
produce circular summary maps (in Adobe Postscript or
Portable Document Format) decorated with ORFs from
any frame. Most standard sequence formats are supported
transparently via Seqio so reformatting sequence files be-
fore use is not required; it can also process multi-sequence
files and databases. Much of this functionality is available
via the Web form and matching CGI program which ac-
company the application (a list of such public sites, along
with the source code and other information, is main-
tained at the project website tacg central [http://
tacg.sourceforge.net]).

Implementation
Most of the fast searching algorithms (BLAST [2], FAS-
TA[17], DNA Strider [18]) use variants of a discrete finite-
state automaton (DFA) which use a shift-add algorithm
(well described in [12]) to incrementally calculate an in-
dex of the next N-tuple characters in the input string. This
index is used to point into to a large array of identically
precalculated subpattern values that if non-null, indicate
that this tuple is a complete or partial hit worth examining
in more detail. The core algorithm is very efficient and the
precalculation allows null indices to be discarded rapidly.

tacg uses this approach, with a DFA based on a tuple of 6,
indexing into a lookup table of size 4096 (64). Populating
this table with the results of a recent REBASE [21] file of
225 patterns yields 1523 non-null elements meaning that
only 37% of the indices need to to be evaluated further.
Of those, 802 elements indicate that the hexamer includes
the entire hit, a special case for restriction enzymes, which
have small recognition sites. Especially for searching for
short sites, the search can proceed very rapidly. There are
complications to be considered – the REBASE file men-
tioned has only 225 patterns to match, but populates
1523 elements; the difference in number is that many of
the patterns include degeneracies which must be expand-
ed to all possible characters.

Longer sites are pre-scanned for the most informative hex-
amer which is used as the target, and the extension is eval-
uated base-by-base, as tacg matches degeneracies

appropriately in the input sequence. While it sounds egre-
giously slow, it works reasonably well in practice.

In terms of speed, tacg processes sequence at about 1 MB/
s when searching for single patterns and about 1/4 that
speed when searching for the 225 patterns in the REBASE
file (all tests were done on a 200 MHz Intel Pentium Pro
(256 K cache) PC running Linux). As a comparison, in
processing the E. coli genome (4.6 MB) with 6-cutters, the
EMBOSS RESTRICT program used more than 100 MB of
memory and ran more than 3 minutes before I terminated
it. tacg used 13 MB of RAM and finished in 6 s. On smaller
sequences that RESTRICT could process, tacg was ~50
times faster than RESTRICT, and about 20–35 times faster
than similar routines in the commercial GCG package
(Map, MapPlot, MapSort, PlasmidMap, FindPatterns for
example).

Even tacg's speed is slow relative to BLAST or FASTA, or in-
deed when compared to general purpose routines like the
grep/egrep/agrep family [27,13], but tacg examines both
strands, is case-insensitive, considers more parameters,
and reallocates memory to retain internal data until the
end of the run, rather than treating the input line by line
and printing the results immediately to STDOUT as the
grep family does. Since tacg was initially coded to support
multiple pattern matching, optimizations such as the Boy-
er-Moore 'skip-to-end' [6] approach have been ignored,
resulting in tacg's relatively sluggish performance on sin-
gle patterns, but good performance on large numbers of
patterns.

Most data structure sizes are dynamically allocated in tacg,
which allow it to process patterns and sequence limited
only by system memory or Operating System quirks. It is
regularly tested with the E. coli genome as input and has
been used to process several chromosome assemblies.

Other seach modes
tacg also provides regular expression (regex) searching for
nucleic acids, using a POSIX 1003.2-compatible regex li-
brary [10] for searching. These regex functions are usually
included with the Operating System libraries, but does al-
low you to replace those regex functions with those from
a higher performance regex library if desired. It also pro-
vide nucleic acid-specific translations for regex's and takes
care of escaping the required characters for the user (ie.
gy(tt|gc)nc{2,3}m is translated to
g[ct]\(tt\gc\).c\{2,3\}[ca] before it is passed to the regex
function. This may encourage regex infantilism, but I
found it useful.

Profiles or matrices are probabilistic summaries of align-
ments of sequences that have been very useful in search-
ing for other related sequences, tacg also allows searching
Page 2 of 4
(page number not for citation purposes)

http://tacg.sourceforge.net
http://tacg.sourceforge.net

BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/8
using TRANSFAC matrices [26], a simple matrix format
that is appropriate for DNA binding motifs but which
does not allow insertions or deletions to be considered.
Because of the format's inherent simplicity, tacg can proc-
ess the multiple matrices quite rapidly and simultaneous-
ly. For example, it can scan for 23 of the yeast entries from
TRANSFAC over 140 KB in less than 20 seconds and can
simultaneously search for all entries in the 1998 TRANS-
FAC (269 entries) over the same sequence in about 3 min-
utes. In all the searching that tacg performs, both strands
are evaluated; in some output formats, non-palindromic
matches are indicated as to strand matched.

tacg has a variety of other mundane but useful functions,
including subsequence extraction, cloning functions, se-
quence renumbering, finding silent sites, and others.

Proximity and Rules-based searching
A particularly compelling utility of tacg is demonstrated
when the short patterns it finds can be evaluated with for-
mal logic in a sliding window of sequence to find higher
level structures. An example of this that EMBOSS also sup-
ports is the marscan program, which searches for 2 short
patterns (one 8 bp with no errors, the other 16 bp with 1
error) within 200 bases of each other, typically flanking
one or more genes). This constitutes a Matrix Attachment
Region, an area that is implicated in conferring a higher
order regulation of transcription onto a region of DNA
[14]. marscan is specifically dedicated to finding this com-
bination of sites, but tacg provides a general framework
for searching for combinations of multiple sites (not just
two); tacg is also much faster. In fact, tacg provides 2 sets
of proximity analyses; one which allows extremely precise
specification for 2 motifs at a time (proximity option) and
one which is more general and allows you to specify arbi-
trarily complex association rules (rules option). These op-
tions work on all types of patterns that tacg supports,
although you cannot currently mix types of patterns – you
cannot set up a rule that references both a regex and a ma-
trix for example.

The proximity analysis allows you to specify the exact rela-
tionship between 2 motifs – whether one must be 5' of the
other, whether they must be separated by greater than or
less than a distance, or within a range of sequence. The
rules-based analysis allows the use of logical AND (&), OR
(|), XOR(^), and negation in a sliding window of se-
quence to specify a rule for evaluating whether that win-
dow meets the rule criteria. You can specify the rule from
a file or on the command line (in the latter case, the pat-
tern is written to a log for later incorporation into a rules
file). These rules can be arbitrarily complex and can be
broken over multiple lines for ease of composition or
comprehension. Unlike the proximity analysis, the rules
analysis does not allow specification of how the sub-mo-

tifs are oriented or their exact spacing. An example of such
a rule is:

RuleName,((LabA:m:M&LabB:m:M)I(La-
bC:m:M&LabD:m:M))^(LabE:m:M), window

where RuleName is the label for the whole rule, and win-
dow is the sliding window over which the rule is evaluat-
ed. The logic is enforced by parentheses; otherwise it is
evaluated left to right. The core symbol is LabX:m:M,
where the LabX is the name of the individual sub-motif,
obtained from a file of such motifs, m is the minimum
times the sub-motif must be present, and M is the Maxi-
mum times it can be present. Such rules can provide quite
sophisticated searching with very simple primitives.

Discussion
tacg has been under punctuated evolution for several
years, with the result that the oldest features have been
been fairly well-debugged and it has benefitted greatly
from user feedback. It has been installed in numerous in-
stitutions around the world (typically as Web interfaces)
and even incorporated into commercial software suites.

However, tacg is weak in searching for patterns with de-
generacies. Embarrassingly, it generates all degenerate pat-
terns corresponding to the core sequence then churns
through all the combinations to eliminate the duplicates.
The agrep algorithm [27], provides a very efficient algo-
rithm for searching for degenerate matches (including de-
letions and insertions) and can be extended for searching
for multiple patterns [19]. This approach is about 10
times faster than the EMBOSS fuzznuc program, more
memory efficient, and is currently being coded into tacg.
Additionally, while tacg includes a simple Open Reading
Frame-finder and produces statistics on the ORFs it finds
(molecular weight, amino acid frequency, pI), it does not
support the same range of searching ability for protein se-
quences, an oversight that is also being corrected. There
are a variety of other standard analyses that it does not
support, but which it generates the internal data for (or
easily could) – dinucleotide frequencies, hexamer fre-
quency analyses of the type described by Van Helden [22],
and especially more graphical output to synthesize and
present the data it generates.

tacg is a directed pattern matching tool; it can only find ex-
plicit patterns that the user defines. However, it cannot
find easily find patterns based on general matching rules,
such as 'find a possible stem-loop structure with a stem of
>8 bp and a loop of <20 bases' or 'find any direct repeats
of >17 bases separated by 6–13 bases'. While it is possible
to define arbitrarily complex strings with regular expres-
sions (which tacg supports), it may be easier for a naive
user to use another application that explicitly supports ge-
Page 3 of 4
(page number not for citation purposes)

BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/8
neric, rules-based matching. An example of such a pro-
gram is Overbeek's scan_for_matches[7], a fast (compiled
C), compact application that supports such rules for sin-
gle (albeit complex) patterns in both DNA and protein, al-
though the specification of the rules and decoding the
output requires some dedication.

Availability
Since the source code is made available with the package,
obvious errors in coding may be caught and corrected; it
is obvious to anyone perusing the code that the author
trained as a biologist, not as a programmer. Perhaps most
importantly, tacg provides a good scaffold for others to
add their own analyses and an example function is includ-
ed to show how to do this. It uses the Seqio routines to
parse most sequence formats and provide malloc'ed se-
quence in a simple char * array on which you can imme-
diately start your own manipulations and calculations.
tacg is available via dual licensing, either under the Free
Software Foundation's General Public License [8] or a pro-
prietary license, if desired.

References
1. Aho AV, Corasick MJ: Fast pattern matching: an aid to biblio-

graphic search. Communications of ACM 1975, 18(6):333-334
2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local

alignment search tool. J Mol Biol 1990, 215(3):403-10
3. Baeza-Yates R, Gonnet GH: A new approach to text searching.

Communications of the ACM. 1992, 35(10):75-82
4. Baldi P, Chauvin Y: Hidden Markov Models of the G-protein-

coupled receptor family. J Comput Biol 1994, 1(4):311-36
5. Birney E, Brenner SE, Dagdigian C, Daike A, Lapp H: The Open Bioin-

formatics Foundation. 2001 [http://bioperl.org, http://biojava.org, http:/
/biopython.org, http://biocorba.org, http://bioxml.org, http://bio-
das.org]

6. Boyer RS, Moore JS: A fast string searching algorithm. Communi-
cations of the ACM., 1977, 20:762-772

7. Dsouza M, Larsen M, Overbeek R: Searching for patterns in ge-
nomic data. Trends Genet 1997, 13(12):497-498 [http://www-un-
ix.mcs.anl.gov/compbio/PatScan/HTML/patscan.html]

8. Free Software Foundation: The GNU general public license. 1989 [http:/
/www.gnu.org/copyleft/gpl.html]

9. Free Software Foundation: GNU textutils – a set of text utilities. 2000
[http://www.fsf.org/manual/textutils-2.0/textutils.html]

10. Jeffrey Friedl EF: Mastering regular expressions : powerful techniques for
Perl and other tools. A Nutshell handbook. 1997

11. M Gribskov: Profile analysis. Methods Mol Biol 1994, 25:247-66
12. Gusfield Dan: Algorithms on strings, trees, and sequences : computer sci-

ence and computational biology. 1997505-523
13. Haertel M: GNU grep-2.0. Internet Archive: Usenet archive comp. sourc-

es.reviewed 1993, 3:
14. Hall G Jr, Allen GC, Loer DS, Thompson WF, Spiker S: Nuclear

scaffolds and scaffold-attachment regions in higher plants.
Proc Natl Acad Sci USA 1991, 88(20):9320-4

15. Hirschberg Dan, Myers Gene: Combinatorial pattern matching : 7th An-
nual Symposium, CPM 96, Laguna Beach, California: proceedings. Lecture
notes in computer science ; 1075. Springer-Verlag, Berlin ; New York, 1996.
Symposium on Combinatorial Pattern Matching (7th : 1996 : Laguna
Beach, Calif.) Dan Hirschberg, Gene Myers (eds.). Includes bibliographical
references and index. 1996

16. Knight J: SEQIO – a package for sequence file i/o. 1996 [http://
www.cs.ucdavis.edu/gusfield/seqio.html]

17. Lipman DJ, Pearson WR: Rapid and sensitive protein similarity
searches. Science 1985, 227(4693):1435-41

18. Marck C, Strider DNA: a C program for the fast analysis of
DNA and protein sequences on the Apple Macintosh family
of computers. Nucleic Acids Res 1988, 16(5):1829-36

19. Muth R, Manber U: Approximate multiple string search. In Com-
binatorial Pattern Matching '96 199675-86

20. Rice P, Bleasby A, Williams G, Carver T, Ison J, Mullan L, Morgan H,
Awan W, Ranasinghe R, Beazley C, Martin D: EMBOSS – The European
Molecular Biology Open Software Suite. 2002 [http://
www.hgmp.mrc.ac.uk/Software/EMBOSS/]

21. Roberts RJ, Macelis D: REBASE – restriction enzymes and
methylases. Nucleic Acids 2001, 29(1):268-269 [http://re-
base.neb.com/rebase/rebase.html]

22. van Helden J, Andre B, Collado-Vides J: Extracting regulatory
sites from the upstream region of yeast genes by computa-
tional analysis of oligonucleotide frequencies. J Mol Biol 1998,
281(5):827-42

23. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Fri-
jters A, Pot J, Peleman J, Kuiper M, et al: AFLP: a new technique
for DNA fingerprinting. Nucleic Acids Res 1995, 23(21):4407-14

24. Walker DR, Koonin EV: SEALS: a system for easy analysis of
lots of sequences. Proc Int Conf Intell Syst Mol Biol 1997, 5:333-9
[Using Smart Source Parsing]

25. Williams T, Kelley C, Lang R, Kotz D, Campbell J, Elber G, Woo A:
gnuplot – a command-driven interactive function plotting
program. 2002 [http://www.gnuplot.info/]

26. Wingender E, Chen X, Fricke E, Geffers R, Hehl R, Liebich I, Krull M,
Matys V, Michael H, Ohnhauser R, Pruss M, Schacherer F, Thiele S,
Urbach S: The TRANSFAC system on gene expression regu-
lation. Nucleic Acids Res 2001, 29(1):281-3

27. Wu S, Manber U: agrep – a fast approximate pattern-matching
tool. In Usenix Winter 1992 Technical Conference, San Francisco, CA,
1992153-162

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMedcentral will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Paul Nurse, Director-General, Imperial Cancer Research Fund

Publish with BMC and your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours - you keep the copyright

editorial@biomedcentral.com
Submit your manuscript here:
http://www.biomedcentral.com/manuscript/

BioMedcentral.com
Page 4 of 4
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8790474
http://bioperl.org, http://biojava.org, http://biopython.org, http://biocorba.org, http://bioxml.org, http://biodas.org
http://bioperl.org, http://biojava.org, http://biopython.org, http://biocorba.org, http://bioxml.org, http://biodas.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9433140
http://www-unix.mcs.anl.gov/compbio/PatScan/HTML/patscan.html
http://www-unix.mcs.anl.gov/compbio/PatScan/HTML/patscan.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.fsf.org/manual/textutils-2.0/textutils.html
http://www.fsf.org/manual/textutils-2.0/textutils.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8004170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11607225
http://www.cs.ucdavis.edu/gusfield/seqio.html
http://www.cs.ucdavis.edu/gusfield/seqio.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2983426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2832831
http://www.hgmp.mrc.ac.uk/Software/EMBOSS/
http://www.hgmp.mrc.ac.uk/Software/EMBOSS/
http://rebase.neb.com/rebase/rebase.html
http://rebase.neb.com/rebase/rebase.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9719638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7501463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7501463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9322058
Using Smart Source Parsing
Using Smart Source Parsing
http://www.gnuplot.info/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125113
http://www.biomedcentral.com/
http://www.biomedcentral.com/manuscript/
http://www.biomedcentral.com/manuscript/
http://www.ncbi.nlm.nih.gov/PubMed/
http://www.pubmedcentral.nih.gov/

	tacg – a
	Abstract
	Background
	Implementation
	Discussion
	References

