BIVIC Bioinformatics

Software

A knowledge discovery object model API for Java
Scott D Zuyderduyn and Steven JM Jones*

Address: Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 600 West 10th Ave., Vancouver, Canada

Email: Scott D Zuyderduyn - scottz@bcgsc.ca; Steven JM Jones* - sjones@bcgsc.ca
* Corresponding author

Published: 28 October 2003
BMC Bioinformatics 2003, 4:51

Received: |1 July 2003
Accepted: 28 October 2003

This article is available from: http://www.biomedcentral.com/1471-2105/4/51

@,

BiolVled Central

© 2003 Zuyderduyn and Jones; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permit-

ted in all media for any purpose, provided this notice is preserved along with the article's original URL.

Abstract

Background: Biological data resources have become heterogeneous and derive from multiple
sources. This introduces challenges in the management and utilization of this data in software
development. Although efforts are underway to create a standard format for the transmission and
storage of biological data, this objective has yet to be fully realized.

Results: This work describes an application programming interface (APIl) that provides a
framework for developing an effective biological knowledge ontology for Java-based software
projects. The API provides a robust framework for the data acquisition and management needs of
an ontology implementation. In addition, the APl contains classes to assist in creating GUIs to
represent this data visually.

Conclusions: The Knowledge Discovery Object Model (KDOM) API is particularly useful for
medium to large applications, or for a number of smaller software projects with common
characteristics or objectives. KDOM can be coupled effectively with other biologically relevant
APIs and classes. Source code, libraries, documentation and examples are available at http:/

www.bcgsc.ca/bioinfo/software.

Background

The development of bioinformatics software for effective
analysis and interrogation of biological data, and indeed
software in general, must include the creation of a data
handling framework. Ideally, this framework must be
accurate, robust, extensible, and technically feasible. The
successful implementation of this framework has substan-
tial implications for the ultimate success of software
development. Further, the ability for such projects to be
quickly utilized in other arenas of biology, improved by
multiple developers, or to be evolved to handle changing
requirements is directly affected by the initial choice of a
core data model [1].

Most modern programming languages are well comple-
mented with standard libraries and components that

remove a great deal of necessary low-level computational
tasks. For example, arrays, lists, and vectors all provide for
easily implemented methods of managing and manipu-
lating sets of data. Since there are characteristic operations
and common manipulations of data lists, the use of stand-
ard constructs is an advantage to the developer. Develop-
ers who use these standards wherever possible will
increase the speed of development and robustness of the
result. Improvements to implementation are transparent
and inheritable, mundane algorithms do not need to be
developed or repeatedly utilized, and successful use can
be repeated in future projects [2].

The Knowledge Discovery Object Model (KDOM) is an
open source API written with Java 1.4 [3] that attempts to
embrace this ideal for biological data. Characterizing and

Page 1 of 13

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14583100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2105-4-51
http://www.biomedcentral.com/1471-2105/4/51
http://www.bcgsc.ca/bioinfo/software
http://www.bcgsc.ca/bioinfo/software
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2003, 4

standardizing commonalities in biological knowledge uti-
lization can divert more development focus to novel crea-
tions. Although scientific literature holds many examples
of how to approach the creation of an ontological system
[4,5], KDOM provides a core API to decrease the time and
effort needed to deploy such a system, including the
means to allow a user to visualize and manipulate the
data.

Results and Discussion

Biological knowledge

What are the commonalities in biological data? Take the
example of a "gene". An in silico gene can have a sequence,
an annotation, possibly a chromosomal location, func-
tional motifs, or similarities to other genes. Not all of
these properties can be assumed to be enduring. It is cer-
tain that new properties will be discovered. However, we
are confident that the larger definition of a gene will
remain accurate for the foreseeable future. Further, we
know that data relationships have inference in and of
themselves. In a microarray experiment, an oligonucle-
otide is spotted onto a slide, and washed with labelled cell
RNA that will hybridize depending on the level of expres-
sion of genes containing that oligo's sequence. The oligo-
nucleotide has a sequence, a position on the slide, and an
observed colour when the experiment is performed. It is
not the oligonucleotide itself, nor the colour, or even the
corresponding gene that provide the inference of the
experiment. It is the combination of the three that offer
knowledge. This reality as it relates to building an effective
ontology has been previously described [4].

Describing knowledge

KDOM incorporates the above philosophy in its architec-
ture. Since the API is Java-based, object-oriented tech-
nique is a focus. The API contains almost 40 classes, but
the modelling of information primarily involves three: all
biological data is a subclass of BiologicalData; the storage,
acquisition, and management of acquired knowledge is
handled through the BiologicalBrain; and interactions
between data are described with a BiologicalLink (Figures
1,2). This is intended to model a labelled graph (which
can be specified as directed or undirected by the imple-
menter), where each BiologicalData object is a vertex, and
each BiologicalLink object is an edge.

At this basic level, KDOM offers several advantages:

First, data is managed such that once an instance of a
unique object is created; it is guaranteed to be the only
instance of that object within the system. Unrelated pro-
cedures within the application domain can freely create or
call instances of objects, knowing that existing instances
will be utilized. For example, the developer could define
three types of BiologicalData called Chromosome, Gene, and

http://www.biomedcentral.com/1471-2105/4/51

FunctionalDomain. If the user of the application invokes a
procedure where all Genes from a single Chromosome are
acquired for use, a subsequent procedure acquiring all
Genes with a given FunctionalDomain will use the existing
Gene objects if appropriate.

Second, the developer need only define the object itself
and its relationship to other objects once. If another task
(possibly undertaken by a different developer) requires
the same object type (or the same relationship between
objects) the existing KDOM infrastructure can be utilized.

Third, properties of the data are acquired only when
needed, and need only be acquired once. If a property of
the Gene is "annotation", the BiologicalBrain will retrieve it
when first needed, and the system will automatically uti-
lize it again on subsequent procedures.

This approach saves computational energy, physical
memory, and development time. These benefits increase
as the amount of data in the system increases. Further,
unrelated analyses can become meaningfully connected,
thus presenting the opportunity for hypothesis discovery.

Using KDOM does not preclude the effective use of other
Java-based bioinformatics APIs, such as BioJava [6] or BTL
[7]. In fact, the functionality of these packages would
complement the goal of KDOM. Where KDOM would
provide the logical framework for defining and managing
data definitions and relationships, other packages can
assist in providing methods to obtain or manipulate this
information.

Acquiring knowledge

Methods used for data acquisition are numerous. Flat
files, databases, or the World Wide Web are potential
sources of data. This fact necessitated flexibility in the
KDOM approach. Therefore, the BiologicalBrain, as the
responsible component, utilizes developer-implemented
BiologicalNervousSystems to acquire data (Figure 1).

The advantage of this design is that "nervous systems" can
be swapped or combined depending on the requirements
of the system. This allows a developer to simultaneously
utilize information from many different sources and for-
mats using KDOM as a semantic layer. Since this aspect of
the developer's KDOM implementation is centralized, it
allows relatively easy migration to a different data storage
system when and if required, or the inclusion of optimi-
zations within the acquisition procedures that will benefit
the entire system.

Standardized data description and delivery systems, some
of which are ontological in design and already model data
using the labelled graph approach, are an area of research

Page 2 of 13

(page number not for citation purposes)

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/51

Werkd
Database Fiat Files Wide
Z Web
—— .
| Y L

“NervousSystem

v

. Y
.(* S, "N,
. LAY

Pass on requests for _—' H N l 2 .
information to developer- L _‘. I1legal*RequestException

implemented data store)

(database, file, web, etc.) 7_ o Q@teﬂewoussystemeration

1 *Brain
.7 -~ "= ---.@@
u/ "

*BrainListener S '- supervises requests by

*container objects for field-
by-field information (and
requests for '‘related’ objects
from *pData objects), maintaing
singleton pattern of all

. objects, Toads and

_-' characterizes data type

: definitions, and maintains
rasters of data sets.

M *Dataset i
= *Container 1
M 1/ A e T

(*pDataSetListener)

Y
N M
L

M
[*Fieldpefinition |-—~

stores collections of B “\
“pata and takes on . 1
the cammon "
characteristics of e N *FieldListener
the stored objects. .
*pata
o=
/’ = N
1/ T & EquivalentLink
*pataListener M - :
M - — HierarchyLink
- -{ *Linkpefinition |
- -
perforns some developer- . s 1l RelatedLink
inplemented procedure on, 1 / \\
the *Data object. .° [
& = similarLink
L ~ » - 3
[*Path] M‘{ *LinkRestriction
*Action
*DataAction | LEGEND

*InitializationAction l : Listener/Interface
*RestrictionAction I ® o
\ *InitializationRestrictionaction I I:| Class/Object
Figure |

API architecture. An overview of the core classes that form the API. Abstract classes that require further implementation
by a developer are shown in green and have italicized text. Most class names contain the word 'Biological', and so for brevity,
this word has been replaced by an asterisk. Objects with a logical interaction are denoted by thick dotted lines, objects that are
intrinsically related are denoted with a dashed line, object inheritance is shown using a solid line (with the arrow pointing to
the superclass), and alternating dotted-dashed lines indicate an object that throws a specific exception (with the arrow pointing
to the exception).

Page 3 of 13

(page number not for citation purposes)

BMC Bioinformatics 2003, 4

NyProtein - Bi P wr——
FIELD_ACCESSION = 73562
FIELD_ANNOTATION = protein X
FIELD_SEQUENCE = WNVLEGFRVT...

http://www.biomedcentral.com/1471-2105/4/51

in : Biol : i
FIELD_ACCESSION = 12345
FIELD_NAME = zinc finger

MyRelationship : ProteinRedion::FuncDomainReqgion

FIELD_SCORE = 0.873

FIELD_START_COORDINATE = 10
FIELD_END_COORDINATE = 50

Figure 2

An example of data relationships represented within the API. A protein and a functional domain (both subclasses of
BiologicalData) have a hierarchical relationship. The hierarchy relationship (a subclass of BiologicalLink) is extended to describe
a protein region (with a start and end coordinate), and further extended to describe a functional domain region (which also

includes a confidence score).

and development that could be particularly agreeable to a
KDOM implementation. The distributed annotation sys-
tem (DAS) [8], BioMOBY [9], and the Resource Descrip-
tion Framework (RDF) [10] are recent examples.

The separation of "what" the information is and "how" it
is obtained is a fundamental approach in ontology build-
ing [4]. It is also a particular advantage in larger projects,
as it makes these two needs individually transferable and
manageable.

Data relationships

The relationship between data and the context in which a
relationship exists is of fundamental importance. In the
simplest system, relationships might be stored as an inter-
nal list inside a data object. However, the relationship
would be unidirectional and the meaning of the relation-
ship itself is not explicit.

KDOM utilizes a BiologicalLink class to describe the con-
text of the relationship and provides a bidirectional asso-
ciation. Several BiologicalLink subclasses (RelatedLink,
EquivalentLink, HierarchyLink, and SimilarityLink) are pro-
vided with the API to define the most common data rela-
tionships. These can be further subclassed to provide
more specific context, and to define properties specific to
the relationship. The API also supports multiple relation-
ship types between the same two classes of data.

For example, a functional domain and a protein share a
hierarchical (parent-child) relationship. The relationship
itself may be associated with a mathematical score
describing the confidence that a particular domain is truly
present, and the coordinates of the putative domain in the
protein sequence itself (Figure 2).

Graphical user interfaces

Typically, Java-based applications are highly GUI-ori-
ented. The KDOM system provides abstract methods and
some limited default implementations for providing con-
text-specific interface components. For example, the dis-
play of a "gene" as it relates to a "functional domain" will
differ from a "gene" as it relates to a "chromosome" (Fig-
ure 3). These take the form of extensions of common
Swing components (TableCellRenderer, ListCellRenderer,
and so on), making implementation straightforward
(details in Figure 4).

The API also features support for displaying individual
object properties in a context-sensitive manner. For exam-
ple, an "annotation" property for a gene would be dis-
played to the user differently than the "image" property
for a chromosome.

This provides a high level of GUI component sharing
between separate deployments of the KDOM implemen-
tation. This is particularly valuable when a consistent look
and feel across many projects is advantageous or
desirable.

Other features

The API also contains a number of other features too
numerous to list in full. Among them: a type-safe con-
tainer class to store sets of BiologicalData and includes
methods to facilitate threaded batch processing and set
operations; internal row and column management, and
cell and list renderers so sets of data can be quickly dis-
played and manipulated in tabular or list format; a multi-
threaded, internal data request queue, which allows for
large amounts of data to be retrieved without disrupting
user interaction with the application; robust data seriali-
zation in XML, which provides a portable and efficient

Page 4 of 13

(page number not for citation purposes)

BMC Bioinformatics 2003, 4

http://www.biomedcentral.com/1471-2105/4/51

MyGene ; BiologicalData;Gene |4

MyInteraction ; Hierarchylink::ChromosomeRegion »MyChromosome : Biol

icalData::Chromosome

FIELD_ACCESSION = 12345
FIELD_ANNOTATION = Gene X

FIELD_START_COORDINATE = 1615242
FIELD_END_COORDINATE = 1624831

FIELD_NUMBER = 7

LL
*

o/ Mo - Bintonicaibets Fundiion aibomel

FIELD_ACCESSION = 12345
FIELD_ANNOTATION = GeneX

FIELD_START_COORDINATE = 3256
FIELD_END_COORDINATE = 3357

FIELD_ACCESSION = 4567
FIELD_FIELD = domain XYZ

L
Y

Figure 3

Graphical components implemented by the developer called using KDOM methods. The intrinsic display of a
"gene" object linked to a "chromosome" or "functional domain" differs depending on the context.

method to store the results of data analyses; a centralized
drag-and-drop extension for user-driven manipulation of
KDOM objects; data and dataset listeners for creating
responsive application components; and custom Class-
Loaders that allow data definitions to be found at run-
time without specifying a CLASSPATH directive.

A KDOM example

Consider the previously described example of a microar-
ray experiment, and we have a developer that wants to
implement a system where the expression of a particular
gene can be visualized. For this system, we can create four
objects, representing: a sample, an individual array spot,
the slide, and the genes that correspond to each spot (Fig-
ure 5). We can further define the relationships between
the sample and a spot, a spot and the slide, and the spot
and a gene (Figure 5). Figures 6 and 7 show partial imple-
mentations of these objects in Java code. It is worth noting
that in these particular implementations, the relationship
is directed; and so, the relationships themselves are sub-
classes of a HierarchyLink, and the parent and child iden-
tities are constant (i.e. it is always the spot that is "washed
with" the sample).

Now that we've defined the "what" of the biological data,
we can define "how" to acquire it by implementing a Bio-
logicalNervousSystem (Figure 8). Once this has been
accomplished, another task requiring the same informa-
tion can and should utilize this implementation. Of
course, the implementation can be optimized or extended
to include additional information in the future, without
interfering with code that already utilizes a particular Bio-

logicalData object. If one now wants to display all the
genes expressed above a certain level, very little coding is
required (Figure 9), and future tasks using the same infor-
mation will be free of the initial overhead of defining new
data types and data acquisition routines.

Ongoing development and future enhancements

The API continues to undergo active development. In par-
ticular, we intend to develop and integrate a sophisticated
memory-management and serialization model so that
very large-sized data collections can be utilized. Serializa-
tion of information could adopt one or more of the
emerging standards (e.g. RDF) to facilitate further code
reuse and utilization of information with existing
packages.

The next generation of the API will include a mature
"action-defining" concept (the ability is loosely imple-
mented in the current version). This improvement would
provide a developer with the ability to define task-specific
modifications or interrogations of biological data within
the data definition themselves. Thus, the component-
sharing philosophy of KDOM would be extended to
object-manipulation tasks, as well as data definitions and
relationships.

For example, if one has defined a relationship between
genes via homology, it may be desirable to generate an
algorithm that determines whether a given similarity is
important for the current task. Consider a task where an
investigator requires a list of genes that have greater than
80% similarity to a particular target, and are found in the

Page 5 of 13

(page number not for citation purposes)

BMC Bioinformatics 2003, 4

http://www.biomedcentral.com/1471-2105/4/51

| TableModel | TableColumnModel)
ListModel)
List)
*DataSet I (ListCellRenderer)Q—I *ListCellRenderer |
(tablecelleditor)+——{ *celleditor |
(Tablecellrenderer)G—I *Cellrenderer |
| TableColumn |'0—| *Column *FieldColumn |
*setColumn |
*pathColumn |
O LocusLink - 0Ox
Edit Relationships Data Fields
i)
Accession | Annotation | Human Refseq
834 caspase 1, apoplosisrelated cysteine protesse (intedeukia 1 5 ISd 15431331 caspase 1 isofoem delta W | a
835 caspase 2, apoptesisrelated cysteine protease (neural precy 4 ESd 14790185 ocaspase 2 isoform 4 v
j-x_] caspase 3. apoptesisrelated cysteine protease 2 B 14730118 caspase 3 prepropiotein o
837 catpate 4, apoptosisrelated cyfteine protease 3 B 15451909 caspase 4 isofoem Qamma precomor. catpase 4 'V
833 caspase 5. apoptesisrelated cymeine protease 4757313 ocaspase 5, precursor, CASPS, large subunitmise_feasture
-] caspase O, apoptosisrelated cysteine protease 2 B 14918482 caspase 6 isoform alpha preproprotein; caspas ™
80 caspase 7. apoptosisrelated cysteine protesse 4 B 21536271 caspase 7 isoform deita, large subunit v
241 catpaie 8. apoptesisrelated cyMeine protesie s B 15718705 caspase 8 iseform D v
242 caspase 9, apoptesisrelated cymteine protease z B4 14790127 caspase O soform beta prepropeotein b
j-=x} caspase 10, apoplosisrelated oysteine protesse 4 54 14916489 Caspase 10 isoform o v
1077 DNA fragmentation facter, S0&Da, beta polypeptide (cmnﬂ 4758149 DNA fagenentation factor, 90 kD, betapolypeplide |
anaR penase A2 _anastockeialated cuctaine notesee bt

91 rows (0 selected)

Figure 4

Classes useful for GUI development. An overview of classes useful for GUI development. Boxes denote classes, and
rounded boxes denote interfaces. Inheritance and interface implementation is denoted with a connecting line (where the
arrowhead denotes the superclass or interface). Classes and interfaces that are part of standard Java/Swing are coloured blue.
The bottom screenshot is an example of a user interface from the DISCOVERYspace application (Zuyderduyn S et al., in

preparation), created using the API.

mouse or human genome. The action model would
define the implementation of this need (via, perhaps, a
"numerical cutoff" action), and efficiently apply it to the
current KDOM system. Further, these actions could be
combined or linked together to create reusable analysis
pipelines.

A developer repository is under construction, as of this
writing, of KDOM data definitions. This repository would
provide structures for common biological concepts. A
developer could obtain the required objects relevant to a

particular project, and would inherit their functionality,
including GUI components for display of particular prop-
erties or data relationships. The developer would merely
have to implement a BiologicalNervousSystem that con-
forms to their storage platform or data acquisition system
to obtain the defined information. This collection of data
types will consist of two general layers: an abstract layer of
definitions of common biological concepts, and a further
supplementary layer of extended definitions specific to
the contents of common biological databases.

Page 6 of 13

(page number not for citation purposes)

BMC Bioinformatics 2003, 4

Sample

SpotHybridizationLink

Yy

http://www.biomedcentral.com/1471-2105/4/51

MicroarraySpot

SpotLink

Slide

SequenceFragmentLink

Gene

Figure 5

An example object definition set for microarray experiments. This is a theoretical set of objects that one might imple-
ment to describe a microarray experiment. BiologicalData subclasses are shown in with bold outlines, and BiologicalLink sub-

classes are shown with thin outlines.

Two successful implementations of KDOM

The KDOM API has been used as the foundation in an
application called DISCOVERYspace (S. Zuyderduyn et
al.,in preparation). This application uses a MySQL back-
end, populated using a set of recently developed parsing
tools (R. Varhol et al., in preparation), to supply data with
a focus on gene expression analysis and visualization. The
application provides a flexible framework for exploring
publicly available data and utilizing stored analyses (such
those generated with BLAST [11] or HMMR [12]). A par-
tial class diagram of the KDOM implementation is shown
in Figure 10.

Another application called SAGEsoma (P. Ruzanov et al.,
in preparation) provides the ability to visualize gene
expression data on a karyotype.

The development of SAGEsoma occurred almost com-
pletely independently of DISCOVERYspace, yet the two
applications were able to share and benefit from develop-
ment of the same KDOM implementation. Further, inte-
gration of SAGEsoma into DISCOVERYspace as a plugin

was seamless, whilst allowing both to retain their stan-
dalone capabilities.

Conclusions

The Knowledge Discovery Object Model (KDOM) API
provides an application framework for bioinformatics
software development in Java. The model provides a well-
defined system for knowledge management and utiliza-
tion, and facilitates efficient development of medium to
large-scale software projects with multiple developers, or
an easily managed system for creating smaller single-
developer projects with minimum overlap and overhead.
KDOM complements well with other bioinformatics Java
APlIs.

The API provides a foundation for a logical, structured
framework for data modelling, and can provide insights
that result in novel hypotheses.

The API is open-source, with conditions, and can be

obtained from http://www.bcgsc.ca/bioinfo/software.

Documentation and code examples are also available.

Page 7 of 13

(page number not for citation purposes)

http://www.bcgsc.ca/bioinfo/software

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/51

public class MicroarraySpot extends BiologicalData {
public MicroarraySpot(Object accession) throws BiologicalDuplicateException {
super(accession);

}

1/ //
// Field/Property definitions //
// BiologicalField.createField(String English name, Class data type, //
1/ String description, boolean is_core_value) //
1/ 1/

public static final BiologicalField FIELD OLIGO_SEQUENCE =
BiologicalField.createField(“Oligonucleotide Sequence”, String.class,
“The oligo sequence at this spot.”, true);
public static final BiologicalLinkDefinition LINK_SLIDE =
BiologicalLinkDefinition.createDefinition(“SpotLink”, “Slide”);
public static final BiologicalLinkDefinition LINK GENE =
BiologicalLinkDefinition.createDefinition(“SequenceFragmentLink”, “Gene”);

public String identity() { return “Microarray Spot”; }
public BiologicalField getPrimaryKeyName() { return FIELD OLIGO SEQUENCE; }
// Columnar definitions and GUI components would be defined here.

}

public class Gene extends BiologicalData {
public Gene(Object accession) throws BiologicalDuplicateException {
super(accession);

}

public static final BiologicalField FIELD ACCESSION =
BiologicalField.createField(“Accession”, String.class,
“The unique accession for this gene.”, true);
public static final BiologicalField FIELD ANNOTATION =
BiologicalField.createField(“Annotation”, String.class,
“A description of the gene.”,true);
public static final BiologicalField FIELD SEQUENCE =
BiologicalField.createField(“Sequence”, String.class,
“The nucleotide sequence of the gene.”, false);

public String identity() { return “Gene”; }
public BiologicalField getPrimaryKeyName() { return FIELD ACCESSION; }
// Columnar definitions and GUI components would be defined here.

}

public class Sample extends BiologicalData {

public Sample(Object accession) throws BiologicalDuplicateException {
super(accession);

}

public static final BiologicalField FIELD IDENTIFIER =
BiologicalField.createField(“Identifier”, String.class,
“A unique identification code.”, true);
public static final BiologicalField FIELD PREPARER =
BiologicalField.createField(“Preparer”, String.class,
“The name of the slide preparer.”, false);

public static final BiologicalLinkDefinition LINK SPOT =
BiologicalLinkDefinition.createDefinition(“SpotHybridizationLink”, “Spot”);

public String identity() { return “RNA Sample”; }
public BiologicalField getPrimaryKeyName() { return FIELD IDENTIFIER; }
// Columnar definitions and GUI components would be defined here.

Figure 6
Several partial implementations of BiologicalData. Partial Java code is shown for implementations of a microarray spot,
RNA sample, and a Gene.

Page 8 of 13

(page number not for citation purposes)

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/51

public class SpotHybridizationLink extends HierarchyLink {
// Constructors defined here.

// //
// Field/Property definitions //
// BiologicalField.createField(String English name, Class data type, //

String description, boolean core value) //
// //

public static final BiologicalField FIELD EXPRESSION =
BiologicalField.createField(“Expression”, Number.class,
“The level of expression.”, true);
static {
FIELD EXPRESSION.setRequired(true); // the expression level must exist
}

// always maintain direction of relationship

public BiologicalData getInitiator() {
if(super.getInitiator() instanceof MicroarraySpot) { return super.getInitiator(); }
return super.getTarget();

}

public BiologicalData getTarget() {
if(super.getTarget() instanceof Sample) { return super.getTarget(); }
return super.getInitiator();

}

public String getVerb() { return “washed with”; }

// Columnar definitions and GUI components would be defined here.

}

public class SequenceFragmentLink extends HierarchyLink {
// Constructors defined here.

// //
// Field/Property definitions //
// BiologicalField.createField(String English name, Class data_type, //
// String description, boolean core value) //
/7 //

public static final BiologicalField FIELD START COORDINATE =
BiologicalField.createField(“Start Coordinate”, Integer.class,
“The start coordinate of the sequence.”, true);
public static final BiologicalField FIELD END COORDINATE =
BiologicalField.createField(“End Coordinate”, Integer.class,
“The end coordinate of the sequence.”, true);
static {
FIELD START COORDINATE.setRequired(true);
FIELD END COORDINATE.setRequired(true);
}

// always maintain direction of relationship
public BiologicalData getInitiator() {
if(super.getInitiator() instanceof MicroarraySpot) { return super.getInitiator(); }
return super.getTarget();
}
public BiologicalData getTarget() {
if(super.getTarget() instanceof Gene) { return super.getTarget(); }
return super.getInitiator();

}

public String getVerb() { return “is a fragment of”; }

// Columnar definitions and GUI components would be defined here.

Figure 7

Several partial implementations of BiologicalLink. Partial Java code is shown for implementations of the relationship
between an RNA sample and a microarray spot (SpotHybridizationLink), and between a microarray spot and a gene sequence
(SequenceFragmentLink).

Page 9 of 13

(page number not for citation purposes)

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/51

class MyNervousSystem extends BiologicalNervousSystem {

public boolean createConnection(BiologicalData requestor,
BiologicalLinkDefinition link def)
throws UnsupportedNervousSystemOperation ption, IOl ption {
switch(getRequestorCode(requestor)) {
case MyConstants.MICROARRAY_ SPOT:
return MySpotLinkHandler.link((MicroarraySpot)requestor, link def);
case MyConstants.GENE:
return MyGeneLinkHandler.link((Gene)requestor, link def);
default:
throw new UnsupportedNervousSystemOperationException (
“Can’t find handler for “ + requestor.getClass().getName());
} // switch

}

private class MySpotLinkHandler {
public boolean link(MicroarraySpot spot, BiologicalLinkDefinition link def)
throws UnsupportedNervousSystemOperationException {
// Will create a relationship between a microarray spot and
// and a gene, where the property of the relationship is the
// coordinates of the spot oligo sequence within the gene sequence.
if(link def.getName().equals(“LINK GENE”)) {

Integer start_coord;
Integer end coord;
String gene accession;

// Look up information from a file supplied by array manufacturer.
// (Code omitted for brevity.)

// Get the instance of the gene (created automatically it if it doesn’t already
// exist in the system).
Gene gene = (Gene)BiologicalData.instance(Gene.class, gene accession);
BiologicalLink.instance(link def, spot, gene,
new BiologicalPropertyValue[] {
BiologicalPropertyValue.instance(
SequenceFragmentLink.FIELD START COORD,
start_coord),
BiologicalPropertyValue.instance(
SequenceFragmentLink.FIELD END COORD,
end coord) });
return true;

} // if
throw new UnsupportedNervousSystemOperationException (
“No method defined to relate Gene to “ + link class.getName());
} // method link(MicroarraySpot, BiologicalLinkDefinition)

}

public Object requestInformation(BiologicalData requestor, BiologicalField key)
throws IOException {
// Implementation here reads in requested information from a file.
// This method is called internally by the API whenever a particular is not
// available.
// For example:
if(key.equals(Gene.FIELD ANNOTATION)) {
String annotation;
// Look up annotation for gene (Code omitted for brevity).
requestor.setProperty(key, annotation);
// We could also set additional properties here at the same time to
// circumvent a future request if this is more efficient.
return annotation;

}

// Other components of a functioning nervous system would go here.

}

Figure 8

A partial BiologicalNervousSystem. The focus in this example is in supplying a relationship between a Gene and a
SequenceFeature. This particular example is illustrative and therefore very explicit. A typical nervous system implementation is
generally more dynamic.

Page 10 of 13

(page number not for citation purposes)

BMC Bioinformatics 2003, 4

Figure 9

// Assume a microarray slide object has been obtained in another operation
void printExpressedGenes(final Slide slide, final Number min_expression) {

/| Define a restriction to return only highly expressed genes
BiologicalLinkRestriction|] restriction = new BiologicalLinkRestriction|) {
BiologicalLinkRestriction.createRangeRestriction(
SpotHybridizationLink.FIELD EXPRESSION,
min_expression, Double.MAX VALUE) };

for(Iterator iter = slide.getlInteractions(Spot.LINK SLIDE); iter.hasNext();) {
SpotLink link = (SpotLink)iter.next();
String slide coord = link.getProperty(SpotLink.PROPERTY COORDINATE).toString();

MicroarraySpot spot = (MicroarraySpot)link.getLinkedData(slide);

/] Get the expression at the spot for the sample, and restrict the results to
I/ those with the specified level of expression.
for(Iterator iter2 = spot.getlInteractions(Sample.LINK SPOT, restriction);
iter2.hasNext();) {
SpotHybridizationLink obs = (SpotHybridizationLink)iter2.next();
Gene gene = (Gene)spot.getlInteractionData(MicroarraySpot.LINK GENE).next();

System.out.println(new StringBuffer().
append(gene.getProperty(Gene.FIELD ACCESSION)).

append(“ “).
append(gene.getProperty(Gene.FIELD ANNOTATION)).
append(“ ").

append(link.getProperty(SpotHybridizationLink.FIELD EXPRESSION)).
append(“ (“).

append(SpotLink.FIELD COORDINATE).

append(“)").toString());

Y
Y
Y
Execute:
printExpressedGenes(slide, new Integer(30000));

Output:

12345 Gene X 32432.2 (A3)
54838 Gene A 84732.1 (C5)

http://www.biomedcentral.com/1471-2105/4/51

Two example procedures using a KDOM implementation. The first displays a list of supplied genes and their sequence

features. The second obtains a list of genes with a particular feature of interest.

Page 11 of 13

(page number not for citation purposes)

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/51

REFSEQ i B UNIGENE
Pruitt and Maglott 2001 RN Boguskl and Schuler 1995

o B Protein s SWISSPROT
Bairoch and Apweiler 2000
Y
BiologicalData « FunctionalDomain |« Balem:npg'v::l 2002
r
PSORT
Disease SAGETag Nakai and Horton 1999
r'y
OMIM
OMIM 2002
REFSEQ Hierarchy SAGETag |ee@rdy | yNiGENE
b
Similarity
Related Similarity
A 4
oMM |eRelated I swissprOT
b r
Related Hierarchy Hierarchy
y A
PFAM PSORT

Figure 10
A partial diagram of our own implementation of KDOM. The top portion shows object inheritance, and the bottom
portion shows data relationships.

Page 12 of 13

(page number not for citation purposes)

BMC Bioinformatics 2003, 4

Authors' Contributions

SZ conceived of, designed and coded the API. S] provided
high-level, practical considerations, resources, and scien-
tific direction for the project.

Acknowledgements

SZ would like to acknowledge the valuable criticisms and comments of
Chris Fjell, Mehrdad Oveisi, Shawn Rusaw, and particularily Neil Robert-
son. SZ would also like to thank Peter Ruzanov for implementing the API
in the SAGEsoma project. This work was supported by funding from
Genome Canada and the British Columbia Cancer Foundation.

References

I. Uschold M and Gruninger M: Ontologies: Principles, methods
and applications. Knowledge Engineering Review 1996, 11(2):.

2. Jazayeri M: Component programming — a fresh look at soft-
ware components. In Proceedings of the 5th European Software Engi-
neering Conference: September 25-28 1995; Sitges, Spain 1995:457-478.

3. Sun Microsystems: Java Development Kit 1.4.0. 90/ San Antonio
Road, Palo Alto, CA 94303 2002 [http://www.java.sun.com/j2se/|.4].

4. Stevens R, Goble CA and Bechhofer S: Ontology-based Knowl-
edge Representation for Bioinformatics. Brief Bioinform 2000,
1:398-414.

5. Wiechert W, Joksch B, Wittig R, Hartbrich A, Honer T and Mollney
M: Object-oriented programming for the biosciences. Bioinfor-
matics 1995, 11:517-534.

6. BioJava [http://www.biojava.org

7. Pitt WR, Williams MA, Steven M, Sweeney B, Bleasby A] and Moss DS:
The Bioinformatics Template Library — generic components
for biocomputing. Bioinformatics 2001, 17:729-737.

8. Dowell RD, Jokerst RM, Day A, Eddy SR and Stein L: The Distrib-
uted Annotation System. BMC Bioinformatics 2001, 2:7.

9. Wilkinson MD and Links M: BioMOBY: an open source biologi-
cal web services proposal. Brief Bioinform 2002, 3:331-341.

. Resource Description Framework [http://www.w3.org/RDF]

I, Altschul SF, Gish W, Miller W, Myers EW and Lipman D): Basic local
alignment search tool. | Mol Biol 1990, 215:403-10.

12. Eddy SR: Profile hidden Markov models. Bioinformatics 1998,
14:755-763.

13. Pruitt KD and Maglott DR: Refseq and LocusLink: NCBI gene-
centered resources. Nucleic Acids Res 2001, 29:137-140.

14. Boguski MS and Schuler GD: ESTablishing a Human Transcript
Map. Nat Genet 1995, 10:369-371.

15. Bairoch A and Apweiler R: The SWISS-PROT protein sequence
database and its supplement TrEMBL in 2000. Nucleic Acid Res
2000, 28:45-48.

16. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Grif-
fiths-Jones S, Howe KL, Marshall M and Sonnhammer ELL: The Pfam
protein families database. Nucleic Acids Res 2002, 30:276-280.

17. Nakai K and Horton P: PSORT: a program for detecting the
sorting signals of proteins and predicting their subcellular
localization. Trends Biochem Sci 1999, 24:34-36.

18. Online Mendelian Inheritance in Man OMIM™
www.ncbi.nlm.nih.gov/omim]

[htep://

http://www.biomedcentral.com/1471-2105/4/51

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 13 of 13

(page number not for citation purposes)

http://www.java.sun.com/j2se/1.4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11465057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11465057
http://www.biojava.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/17.8.729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/17.8.729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/17.8.729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=58584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=58584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11667947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2105-2-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.w3.org/RDF
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/jmbi.1990.9999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/jmbi.1990.9999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/14.9.755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9918945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/29.1.137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7670480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7670480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=102476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=102476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/28.1.45
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=99071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=99071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/30.1.276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0968-0004(98)01336-X
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0968-0004(98)01336-X
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0968-0004(98)01336-X
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10087920
http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/omim
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Biological knowledge
	Describing knowledge
	Acquiring knowledge
	Data relationships
	Graphical user interfaces
	Other features
	A KDOM example
	Ongoing development and future enhancements
	Two successful implementations of KDOM

	Conclusions
	Authors' Contributions
	Acknowledgements
	Acknowledgements

	References

