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Abstract

Background: We describe the E-RFE method for gene ranking, which is useful for the
identification of markers in the predictive classification of array data. The method supports a
practical modeling scheme designed to avoid the construction of classification rules based on the
selection of too small gene subsets (an effect known as the selection bias, in which the estimated
predictive errors are too optimistic due to testing on samples already considered in the feature
selection process).

Results: With E-RFE, we speed up the recursive feature elimination (RFE) with SVM classifiers by
eliminating chunks of uninteresting genes using an entropy measure of the SVM weights
distribution. An optimal subset of genes is selected according to a two-strata model evaluation
procedure: modeling is replicated by an external stratified-partition resampling scheme, and, within
each run, an internal K-fold cross-validation is used for E-RFE ranking. Also, the optimal number of
genes can be estimated according to the saturation of Zipf's law profiles.

Conclusions: Without a decrease of classification accuracy, E-RFE allows a speed-up factor of 100
with respect to standard RFE, while improving on alternative parametric RFE reduction strategies.
Thus, a process for gene selection and error estimation is made practical, ensuring control of the
selection bias, and providing additional diagnostic indicators of gene importance.

Background variables in the construction of classification models from

The study of gene expression patterns is expected to ena-
ble significant advances indisease diagnosis and progno-
sis. The main objectives of a discovery process based on
microarray data are the understanding of the molecular
pathways of diseases, their early detection, and the devel-
opment of measures of individual responsiveness to exist-
ing or new therapies. In particular, the perspective of
providing new targets for therapy and of developing clin-
ical biomarkers has given a strong impulse to methods for
ranking genes in terms of their importance as predictor

arrays [1-6].

In this paper, we address the problem of developing a
practical methodology for gene ranking based on the sup-
port vector machine classifier (SVM), a machine learning
method that is considered particularly suitable in the clas-
sification of microarray data [7-9]. A typical prediction
task for the methodology would be the identification of
patients resistant to a therapy or the definition of a 'termi-
nal signature', a set of genes and a decision rule identify-
ing short-term survivors who might benefit from specific
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therapies [10,11]. For example, recent results have shown
that the clinical outcomes of high grade gliomas [12] and
of cutaneous T cell lymphoma [11] may be better identi-
fied by gene expression-based classification than by histo-
logical classification or measures of tumor burden.

The methodology described in this paper is designed to
obtain a list of candidate genes, ranked for importance in
discriminating between classes, and the corresponding
SVM classification model. The method also provides an
honest estimate of the model accuracy on novel cases
(predictive accuracy).

Feature elimination for SYM

We have developed the entropy-based recursive feature
elimination (E-RFE) as a non-parametric procedure for
gene ranking, which accelerates — without reducing accu-
racy - the standard recursive feature elimination (RFE)
method for SVMs [6]. The RFE procedure for SVM has
been evaluated in experimental analyses [13] and it is con-
sidered a relevant method for gene selection and classifi-
cation on microarrays. However, RFE for SVM has high
computational costs. At each model building step, a pair
(classifier, ranked gene set) is constructed from samples in
a training set and evaluated on a test set, where training
and test are subsets of the data available for development
at this step. The contribution of each variable is defined
through a function of the corresponding weight coeffi-
cient that appears in the formula defining the SVM model.
The elimination of a single variable at each step (as in the
basic RFE procedure) is, however, inefficient. In a typical
microarray study, thousands of genes have very low SVM
weights in the initial steps. An alternative is the simultane-
ous removal of a fixed fraction of the genes (decimation)
or according to a parametric rule (e.g. the square root
function). These basic, parametric, acceleration tech-
niques or gradient based methods have been proposed in
machine learning studies [6,14,15], showing that accuracy
close to basic RFE may be obtained.

The aim of our E-RFE procedure is to provide a more flex-
ible feature elimination mechanism in which the ranking
is obtained by adaptively discarding chunks of genes
which contribute least to the SVM classifier. In our E-RFE
method, we cautiously discard, according to the entropy
of the weight distribution, several (possibly many) genes
at each step to drive the weight distribution in a high
entropy structure of few equally important variables (see
Methods for details). The procedure should accommodate
for the different SVM weight distributions arising from
supervised classification tasks on different microarray
data.

http://www.biomedcentral.com/1471-2105/4/54

The selection bias problem

As shown in the Results section, the E-RFE method
achieves a speed-up factor of 100 with respect to RFE. It
also produces a faster and more flexible gene elimination
curve than parametric versions of RFE. Finally, feature
elimination with E-RFE does not significantly degrade
accuracy with respect to the slower, one-step RFE.

These results have allowed us to adopt E-RFE for SVM as
the basis for a complete methodology scheme for gene
selection designed to control the "selection bias". This
bias causes a methodology flaw which is easily introduced
within gene selection procedures that depend on the opti-
mization of a classification rule ("wrapper" algorithms).
While this flaw can be reproduced with any wrapper algo-
rithm, the selection bias is a specific risk for RFE-SVM gene
selection procedures.

To separate the feature-selection process from the per-
formance assessment, the bias has to be corrected in the
estimates of prediction error whenever the selected model
is tested on data previously used to find the best features
[16]. This occurred in several early studies on microarrays
that discovered very few genes yielding classification mod-
els with negligible or zero error rates ("perfect" or "near-
perfect" classification with very few genes on arrays of
dozens of subjects and up to 20 000 genes). The flaw
unfortunately leaked into the original work on RFE, and it
is still being replicated in different supervised machine
learning approaches [17]. A typical contamination pattern
is the following. Consider a data set S and its three subsets
Sy S1, and S,. Suppose that the best feature set is obtained
on S, e.g. composed by the features of a classification
model with minimum cross-validation (CV) error esti-
mated on S,. The correct methodology requires that a
model with the optimal features is then trained on S, and
tested on S, to obtain an error estimate for new cases. But
if the test data set S, overlaps with the S, used in the selec-
tion process, even for disjoint S; and S,, an over-optimis-
tic error rate will be estimated on S,, possibly leading to
the conclusion that a panel of very few genes is adequate
to differentiate between classes. In particular, over-opti-
mistic error rates are being produced when the S, hold-out
set is not available and the CV error is computed on a part
of SyuU S;.

A flawed scheme can be assessed by developing models on
no-information data, i.e., by a random permutation of
class labels. Errors on a disjoint test set should result close
to the no-information error rate — approximately 50% on
a balanced data set in a binary classification task. Instead,
whenever the error is estimated on data previously used in
the feature selection process, a CV error close to zero can
be obtained with a small subset of genes even if a classifier
is trained on data with class labels randomly permuted,
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(see [16,17] and the synthetic and real examples in the
Results section in this paper).

Validation scheme

A more sophisticated experimental design is thus needed
to validate the performance of diagnostic methods based
on supervised class prediction rules on gene expression
data. An unbiased error estimation for models developed
on a reduced number of biomarkers must be obtained
from an external process operating out-of-sample from
the data involved in the selection process [18,17]. Two
strata of processes have to be considered, an external one
for performance assessment and an internal one for fea-
ture selection. At each level, a resampling and partition
method has to be applied, to smooth data variability and
balance class cardinalities.

The methodology scheme we propose for the validation
of supervised methods belongs to this family of experi-
mental designs and it is summarized in Fig. 1. The scheme
can be applied to alternative feature ranking procedures,
such as the penalized discriminant analysis (PDA)
[19,11]. It can also be used with SVM in conjunction with
other gene filters based on statistical tests (the correlation
coefficients [20], and the T-score filters [8,16,21,6,5,14];
see implementation in Results).

A crucial problem is that this kind of designs requires an
intensive replication of classifier builds, leading to a trade-
off between feasible computation times and the level of
sophistication in the development of the overall gene
selection process.

The availability of such a bias-correcting scheme also has
an important implication for gene panel sizes. A monot-
onic and exponential-like decrease of predictor accuracy is
typically found for increasing numbers of genes when the
complete method is used, and perfect classification is
rarely achieved with very small sets of genes. No intrinsic
cutoff for gene selection is thus automatically provided by
the classification models. The observation led us to adopt
a Zipf's power-law hypothesis for gene selection [22]. We
have thus used a strategy for gene selection that is based
on a saturation profile derived from an exponential
approximation of the classification error, as estimated by
the two-strata modeling scheme.

Results

The effect of selection bias on synthetic data

We set up two experiments on synthetic data in order to
elucidate the need for a complex methodology scheme, as
indicated in [17]. We considered first the dataset f1000-
5000, structured as follows: 100 samples described by
5000 features, in which 1000 of them are significant (i.e.
generated by 1000 Gaussian distribution centered in 1

http://www.biomedcentral.com/1471-2105/4/54

and -1, with standard deviation uniformly ranging
between 1 and 5), and the remaining are uniform noise in
the range [-2,2]. We first applied the RFE feature ranking
procedure to the whole dataset. The importance of fea-
tures for discrimination was then evaluated by creating a
sequence of SVM models based on an increasing number
of features (every single step at 1-15 genes, every 5 at 15—
50, every 10 at 50-200, every 100 at 200-1000; further
details are given in Methods). The performance was eval-
uated by a 10-fold CV procedure (one tenth of the data
held out and used for testing in turn, test results
averaged).

In Figure 2(a) we represent the average CV error over the
ten experiments: the selection bias effect is shown by the
f1000-5000 curve (solid line), which reaches a zero CV
error with only 9 features. Note that the error raises using
11 variables, and it is definitely zero for 12 or more
variables.

We set up a second data set of 100 samples described by
5000 uniform noise features in the range [-2,2]. We
applied the RFE feature ranking procedure to the whole
dataset and then we performed a 10-fold CV with different
feature subsets. In Figure 2(a), the f0-5000 curve (dashed-
dotted line) displays the average CV error over the 10
experiments. The selection bias effect can be read on the
obtained curve which shows a zero CV error with only 20
features. This is an even clearer example of the selection
bias effect: the features consist of pure noisy data (and
thus not separable at all), nevertheless the classifier indi-
cates some of them as relevant, reaching a 100% accuracy.

The effect of selection bias on real data

The potential for inducing the bias in a class prediction
study can be shown for the the colon cancer microarray
data set from [23]; the set consists of expression levels of
2000 genes from 62 tissues (22 normal and 40 tumor
cases, Affimetrix oligonucleotide arrays). The RFE error
curves shown in the right plot of Figure 2(b) were esti-
mated by leave-one-out cross-validation for models
trained on feature subsets of increasing size, after a feature
ranking performed on all the available data. The same
data were used for development and test: as a conse-
quence a zero error was obtained with only 8 genes (solid
curve). Surprisingly, when the procedure was applied to
the same data after a label randomization, a very similar
result was obtained without any class information: 14
genes were sufficient for a zero leave-one-out error esti-
mate (dashed line). This behavior was replicated by using
the other ranking methods we describe below.

Entropy-based ranking of microarray data
We tested the E-RFE ranking approach (see below) on
three well known data sets: (i) a colon cancer data set [23],
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The methodology scheme. In order to avoid the selection bias, an external resampling scheme (stratified partitioning) is cou-

pled to an internal K-fold cross-validation applied to the ranking method under study. The modeling procedure is replicated on
resampled versions of the original data set, with validation always operated on a test set disjoint from the development mate-
rial (dev) for the current run (VAL procedure). Modeling and feature ranking are computed by the internal OFS-M procedure
(e.g. a SVM for each E-RFE or RFE step). Within OFS-M, the procedure ONF is designed to estimated the optimal number of

features at the saturation of a Zip's law.

(ii) a lymphoma data set of 96 samples (72 cancer and 24
non cancer, cDNA) described by 4026 genes [24], and (iii)
a tumor vs. metastases data set, consisting of expression
levels of 16063 genes describing 76 samples (64 primary

adeno-carcinomas and 12 metastatic adeno-carcinomas,
Affimetrix oligonucleotide arrays) [13,10]. The original
public data were subjected to the following preprocessing
across genes: the vector of the expression values of every
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Subfigure 2(a): Synthetic data. Subfigure 2(b): Colon cancer. Comparison of leave-one-out error curves for synthetic
data and real data sets. The model error is computed on the data previously used for ranking. On synthetic data (a), the RFE-
SVM method achieves perfect classification with 9 of the 1000 relevant features (solid line) in data set fl000-5000. Moreover,
20 features are sufficient to reach perfect classification on the purely noisy data set f0—5000 (dashed-dotted line). In the right
panel (b) for the Colon cancer data from ref. [23], similar error estimates are obtained for the real data (perfect classification
with 8 genes — solid curve) and with randomized labels (dashed curve), for which 14 genes are sufficient to get a zero error

estimate.

gene was linearly rescaled to mean zero and standard
deviation one. We analyzed the properties of E-RFE by
considering the effect of recursive feature elimination on
the distribution of the weights in the SVM model.

In Figures 3(a)-3(c), referring to the tumor vs. metastases
data, we show how the distribution of the SVM weights is
modified by the entropy-based selective gene elimination.
At the beginning of the feature elimination process, the
construction of a SVM on the complete set of features on
the tumor vs. metastases data produces a large amount of
weights w whose cost function J (o) is concentrated
nearby zero (see Methods for the definition of J (a)). The
result is displayed in Figure 3(a): the n = 16063 J (a) val-
ues, normalized in the unit interval, are plotted in the left

panel, and their frequencies are stratified at 1/ Jn bin
width in the right panel.

With the one-step RFE algorithm, just one of the features
with negligible weight would be removed, while it would

be more efficient to eliminate a chunk of the lowest rank-
ing genes. On the other hand, eliminating genes at fixed
steps, or according to a specific parameterization intro-
duces the problem of making assumptions on the SVM
weight distribution, which may be specific of the microar-
ray data set. A process based on the entropy measure
(defined by Eq. 1 in Methods) allows to eliminate chunks
of uninteresting genes until the remaining distribution
stabilizes in a higher entropy regime of the weight distri-
bution, adapting to the characteristics of the microarray
data at hand.

Speedup of E-RFE

As described below, in E-RFE procedure we apply different
strategies for weight removal, according to a comparison
of the current entropy H and of the mean M of the weight
distribution with two thresholds H, and M,, respectively.
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Subfigure 3(a): Step I: weight distribution with H < H, ; Subfigure 3(b): Step I I: weight distribution with H >H,,
and M < M, ; Subfigure 3(c): Step 17: weight distribution with H >H,, and M >M, . Distribution of SVM weights at dif-
ferent steps of the E-RFE process (Tumor vs. metastases).
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Table I: Elapsed time
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E-RFE SQRT-RFE RFE
Colon 34 sec 194 sec 4700 sec
Lymphoma 128 sec 641 sec 29612 sec
Tumor vs. met. 1780 sec 12125 sec -

15000
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Remaining features
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0 50 100 150 200 250
Steps

Figure 4
Comparison of E-RFE and parametric SQRT-RFE feature
reduction strategies (Tumor vs. metastases).

For the low entropy structure with n = 16063 genes in Fig-
ure 3(a), 5678 genes are eliminated at Step 1. In 10
reduction steps we obtain a classification model based on
1293 features (Figure 3(b)). The distribution is still char-
acterized by many low weight values, which are selectively
removed by E-RFE: at Step 17 (Figure 3(c)) a subset of 315
genes is obtained, with a high entropy and less concen-
trated distribution. Only 15 genes will be eliminated.

Let us consider also a pa~~~=-ztric feature elimination in
which the leftmost bin of Y features is removed at each
step (SQRT-RFE method). In Figure 4 the number of steps
required by the E-RFE and SQRT-RFE methods on the
tumor vs metastases data set are compared along with the
number of undiscarded features at each step. The E-RFE
procedure is much faster in this task, as detailed in Table
1 for the three microarray data sets. Similar results were
found for the other datasets.

Accuracy of E-RFE

We analyze now the accuracy of the E-RFE and SQRT-RFE
methods as compared to the basic RFE procedure on the
colon cancer and lymphoma data sets. We also considered
two filter ranking methods, the Correlation Coefficients
(CC) in the version of [20], and the T-score method (TT),
previously applied to these data by different authors
[8,16,21,6,5,14]. In the tumor vs. metastases data set only
the E-RFE and SQRT-RFE methods were employed due to
computational feasibility reasons. Classification errors
were estimated by a random partition resampling scheme
over 50 repeated experiments, with a development-test
splitting, in proportion of 3/4-1/4, and preserving the
proportion of positive and negative cases for each set. For
each resampling, the five ranking methods were applied
to each development set, and linear SVMs were trained
using the ranked subsets of features. The performance was
then estimated on the independent test set, and finally
averaged over the runs. A full description of the experi-
mental scheme, designed to correct the effect of the selec-
tion bias, is given in Methods.

In Tables 2, 3 and 4 we report the average test errors of
SVMs for gene subsets of increasing car-dinality for each
data set. Very close errors and standard deviations are esti-
mated for E-RFE and RFE: accuracy is thus preserved even
though the E-RFE algorithm is much faster (about 100
steps instead of 2000 on colon cancer, about 120 instead
of 4026 on lymphoma and 116 instead of 16063 for the
tumor vs. metastases dataset). In general, for gene subsets
of fixed size, no significant difference is detected among
the RFE-based methods on the three datasets (t-test at
95% confidence level, df = 49). A significant difference is
found between the RFE-based methods and the CC or TT
methods for less than 300 genes.

An error estimate with a correction of the selection bias is
shown in Figure 5(b). Given a development/test split of
the data, we considered an internal K-fold cross-validation
experiment on the development data only. For K = 3, two
thirds of the development data were used at each cross-
validation step to build SVM models on feature sets of
increasing size ranked by the selected method. Models
were then tested on the remaining third of the develop-
ment data. The error curve in Figure 5(b) is estimated by
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Table 2: Estimated error rates (ATE) and standard deviations for an increasing number of features on colon cancer data (average over

50 experiments), for each of the ranking methods.

# genes E-RFE RFE SQRT-RFE CC TT

10 209 = 10.0 220+ 11.0 195+9.8 204+ 10.6 21.3+94
20 19.9 + 89 20.0 £ 9.1 19.3+£9.5 208 £ 9.6 19.2 £ 10.5
50 18.5+8.5 184 +9.0 172 + 8.1 20.7 £ 8.1 21.2+93
100 168 +78 17.3 £8.1 172 +82 21.5+96 220+ 105
300 172 +£82 17.6 £ 8.1 17.6 £82 19.7 £ 10.2 19.9 £9.5
500 17979 17979 175+74 17.7 £83 17.5+8.6
1000 16975 169+74 168 +73 17.1£75 175+76

2000 All features: 16.0 £ 7.5

Table 3: Estimated error rates (ATE) and standard deviations for an increasing number of features on lymphoma data (average over

50 experiments), for each of the ranking methods.

#genes E-RFE RFE SQRT-RFE CC TT
10 80+53 75+52 89+54 11.7+6.2 149 + 6.9
20 58+4.1 58+45 54+46 79%50 11.3+67
50 3.9+40 40+39 47 +39 73%55 6.3+42
100 4.1 £44 42+43 43 %43 58+48 47 £45
300 3.6+38 3.7+36 35+£37 39+42 39+44
500 34+£35 35%£36 35+£37 35+39 3.7+40
1000 3.7+£37 36+37 38+37 38+38 38+38

4026 All features: 38 +38

Table 4: Estimated error rates (ATE) and standard deviations for an increasing number of features on tumor vs. metastases data

(average over 50 experiments), for each of the ranking methods.

# genes E-RFE SQRT-RFE
10 179 +5.2 173+ 6.0
20 167 £2.9 16.1 £ 3.9
50 164 £ 3.8 162 +£35
100 16.2 + 3.7 15.8+35
300 13.7+43 13.6 +4.4
500 134 +44 13.6 + 4.8

1000 13.3+£5.2 13.3+£5.2
16063 All features: 12.9 £ 5.2

averaging over the CV test sets. The error does not reach
zero, but it exhibits a rapidly decreasing pattern which
suggests an exponential behavior (fit shown by a solid
line).

Such a pattern can be used to implement a feature selec-
tion procedure convenient for microarray studies. We

have analyzed the results obtained by applying an opti-
mal number of features (ONF) procedure designed to
compute an approximate estimate of the optimal number
of features n* for microarray data sets. Based on a K-fold
experimental structure, the cross-validation error curve is
fitted by an exponential map and n* is chosen as the point
where the error difference with the next point along the fit
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Subfigure 5(a): Global model; Subfigure 5(b): Run 40: Estimated 3-fold error curves for E-RFE models trained on fea-
ture sets of increasing size and without any use of test data in feature ranking (experimental run 40 of 50 on colon cancer). In
each plot, the solid curve is an exponential fit, while the saturating n* is indicated by a dotted line.

Table 5: Estimated error rates and optimal number of features for the global model (TE: CV errors, from ONF procedure; n*: optimal
number of features).

Colon Lymphoma Tumor vs. met.
Method TE (%) n* TE (%) n* TE (%) n*
E-RFE 15.9 80 6.3 70 14.5 70
RFE 15.9 70 52 80 - -
SQRT-RFE 17.4 70 6.3 80 15.8 80
CccC 224 35 73 70 - -
TT 16.1 35 4.2 90 - -

is less than 1/1000 of the error range (see dotted line in  the optimal numbers of features are similar for the RFE-

Figure 5(b); details are given below). based methods (E-RFE, RFE, SQRT-RFE) and greater than
those for CC and TT. On the other two data sets, no signif-

In Table 5 we show the results of the OFS-M procedure  icant differences were found.

application for a feature selection process where the SVM

models were developed for E-RFE and RFE on the com-  The complete methodology scheme introduced in Fig. 1

plete colon cancer, lymphoma and tumor vs. metastases ~ was applied to evaluate the predictive accuracy of the

data sets, respectively. For comparison, the OFS-M proce-  model obtained by the application of the OFS-M proce-

dure was also applied with CC, TT and SQRT-RFE feature =~ dure. We plugged the previous experiment within the

rankers and SVM classifiers. For the colon cancer data set, ~ more complex validation (VAL) procedure, detailed
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Table 6: Estimated error rates, standard deviations, and optimal number of features (ATE: mean of test errors, from VAL procedures,

averaged on B = 50 experiments; ﬁ* : average optimal number of features).

Colon Lymphoma Tumor vs. met.
Method ATE (%) _x ATE (%) - ATE (%) _*
n n
E-RFE 172+76 70 £ 24 3.8+43 80+9 16.6 +2.9 70 £ 28
RFE 18.1 +£84 70 £27 39+4.1 80+7 - -
SQRT-RFE 184 + 84 70 £ 27 43+4.6 80+9 162 +4.2 70 £25
CC 22.0 = 10.1 50 £ 31 6.0+48 80 14 - -
TT 209+94 45+ 30 5.7+45 80+ 11 - -

below. For each of the three microarray data sets, 50 devel-
opment/test splits were considered, and the ONF proce-
dure was replicated: on each of the b = 1,..,50
development sets, we used an internal 3-fold cross-valida-
tion for feature ranking and estimation of the error curve
and of the n* optimal number of features. In Table 6, we
report the average error on the independent test sets, and

the average 77, the average of the 50 n*. On the colon
cancer data, the optimal number of features was higher for
E-RFE, RFE and SQRT-RFE (about 70 against 50 for CC
and TT), but more accurate models were obtained. The
test error was close to 18% for the three wrapper methods
and greater than 20% for the two filter ones. On the lym-
phoma data, the mean expected number of features
resulted 80 for all methods, but with a lower test error for
the RFE-based methods. For the tumor vs. metastases data
set all the obtained results are similar regardless of the
method employed.

Diagnostics of E-RFE

Providing a measure of relative importance of genes in the
classification problem is a central product of gene ranking
procedures. For each of the genes selected in the optimal
feature sets over the total data as produced by E-RFE (80
features for colon cancer and 70 for the other two
datasets), we compared the SVM weights with the number
of extractions in the optimal gene subsets (gene multiplic-
ity) as resulting from the replicated experiments. Figure 6
shows the number of extractions of the i-th feature in rep-
licated experiments vs the weight function f,, (i) = max;
(Jw;]) - |w;| obtained by the SVM model with optimal
number of features. The points in the upper part of the
figure indicate variables not chosen in the global model,
but extracted in at least one run; the features labeled by a
capital Latin letter are those extracted at least 25 times
(threshold indicated by the dotted line) in the replicated
experiments.

We performed a simulation to examine the stability of the
gene multiplicity rank for E-RFE. We considered two syn-
thetic data sets, each of 100 cases (50 labeled 1 and 50
labeled -1) described by 1000 features: the 1000 features
in U, were all uniformly distributed in the interval [-2,2]
and thus not discriminating the classes. The second data
set U, was derived from U, by keeping unvaried 995
features and introducing 5 features normally distributed
with mean 1 or -1 according to class, and variance 1.5.

In Figure 7(A),7(B),7(C) we display the distribution of
the feature normalized position for the first 5 variables
according to the multiplicity rank computed over 50 rep-
licated runs for datasets U;, U, and colon cancer, respec-
tively. Let r(v,b) be defined as the rank of v at run b, and
n*b the optimal estimated number of features for the
colon cancer microarray at run b. The feature normalized
position of feature v at run b is then defined as v (v, b) = 1
-((r(v, b) - 1) / n*b), if r<n*b, and v (v, b) = 0, otherwise.
In practice, at run b, v(v, b) is maximal when v has rank 1,

.
and minimal when v is the last of the '™ features
considered.

The first 5 features for the no-information synthetic data
set U, in Figure 7(A) are in the lowest half of the range of
v. High scores may be produced by randomization at sin-
gle b runs, but the rank is not steadily maintained
throughout the 50 replicates. On the contrary, exactly the
5 relevant features of the synthetic data set U, obtain the
first multiplicity E-RFE ranks, with a limited variability,
shown in Figure 7(B). Thus the highest ranks are
constantly confirmed in the synthetic data set. The top 5
genes for the real data set displayed in Figure 7(C) have a
behavior much similar to the 5 relevant variables from U,,
with more variability.

In Tables 7 and 8 (respectively for colon cancer and lym-
phoma data), for each of the labeled points of the Figure
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Figure 6

Subfigure 6(a): Colon cancer; Subfigure 6(b): Lymphoma; Subfigure 6(c): Tumor vs. metastases. The accumu-
lated number of extractions (gene multiplicity) in 50 replicated runs is compared to the f, weight ranking function for features
selected by the E-RFE model trained on the whole data set at n* features. The groups of isolated points in the upper part of the
panels indicate variables in the optimal feature sets for the replicated and not extracted in the global model. The variables
labeled by capital Latin letter are those extracted more than 25 times in the replicates. The dotted line marks the 25 extrac-
tions threshold.
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Subfigure 7(A): U,; Subfigure 7(B): U,; Subfigure 7(C): Colon cancer. A comparison of multiplicity ranks for E-RFE
for two synthetic data sets (A: no relevant variables; B: 5 relevant variables) and (C) colon cancer microarray data. In each
panel, the boxplots indicate the distribution of the feature normalized position v (see text for the definition) for the 5 highest

rank features.

6, we report the gene name (Gene Accession Number for
colon cancer and Clone number for lymphoma) and the

| w |
Wseore = 1~ weight ranking. We also report the
max; (| w; [) V' 8 P
gene multiplicity, ie. the number of replicated

experiments in which the gene was in the optimal feature
set. In Table 8, the E-RFE ranking instead of the w,,, func-
tion is reported for variables not selected in the global
model and indicated by a letter in Figure 6.

Finally, random permutations of class labels were pro-
duced as described in Methods to detect additional
overfitting effects. The E-RFE procedure was then applied
and the mean error was computed for subsets of
increasing size. In Figure 8 we report the comparison
between test error curves on true and random labels for
colon cancer and lymphoma. The error on randomized
classes is close to 40% or above; a paired t-test confirmed
significant difference (p = 0 for all experiments) between
mean accuracy over random and true labels data. It is
worth noting that the error is less than 50% because of the
unbalanced proportion of classes.

Discussion

The best prediction accuracy on the colon cancer and lym-
phoma microarray data sets is obtained with more than
50 genes. The estimated error is less than 20% for the
colon cancer data, and less than 5% for lymphoma. For
the tumor vs. metastases dataset, we obtain an error lower
than 14% by using more than 300 variables. These results
are consistent with recently published work using a simi-

lar experimental schemes [16], while they differ from
results of perfect or near-perfect classification with very
few genes. Also considering the results of the experiments
with no-information data, we may conclude that several
promising results on microarray data may be descriptive
of the shattering properties of classifiers on the given
microarray data sets [18,16,17].

The exponentially decreasing behavior we observed after
correcting for selection bias is consistent with recent liter-
ature proposing that the relationship between cancer clas-
sification accuracy and gene ranking from microarray data
may be modeled by a power-law function, also called a
Zipf's law [22,25]. The exponential fit in the ONF proce-
dure and the power-law functions are rough but working
approximations for microarray data. In our experience,
the choice of a cutoff based on a Zipf's law fit was less
accurate than applying ONF with the exponential fit.

The ONF procedure defined by the exponential fit allows
the identification of a saturating number of genes. The
gene-ranking procedure can also be used to select larger or
smaller subsets of genes as biomarkers, according to prac-
tical considerations. The validation procedure provides an
error estimate for the selected subset in these cases. The
ONF procedure was developed for the recursive feature
elimination with SVM classifiers, and it results less accu-
rate with the basic CC and TT filter approaches. A similar
strategy similar to ONF is described in [26].

The VAL procedure allowed the estimation of model accu-

racy, optimal number of features, and a ranking of the
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Subfigure 8(a): Colon cancer data set; Subfigure 8(b): Lymphoma data set. Comparison of randomized class labels

and true labels error curves (ATE for E-RFE).

most important features on the three microarray data sets.
The entropy-based method E-RFE for the recursive feature
elimination process showed results comparable with the
more time consuming RFE and SQRT-RFE. The running
times for a complete feature ranking process on a Pentium
II1 1 GHz processor are reported in Table 1 for all data sets.
Proportional results were found for computations run on
an Open-Mosix cluster. The accelerated E-RFE method
therefore allows the standard use of complex model-eval-
uation and model-selection schemes.

On colon cancer data, all the variables extracted more
than 25 times in the replicated experiments are contained
in the list obtained by the global model. For the lym-
phoma data, all genes with multiplicity greater than 25
ranked within the first 165 genes of the global model, and
only 8 were not in the selected set of 70 genes. Finally, in
the tumor vs. metastases data set, only two features
extracted more than 25 times are not included in the 70
genes optimal feature set, but they rank 84th and 89th in
the reordered list.

Together with the rank based on SVM weights, gene mul-
tiplicity provides an additional measure of importance for
the extracted genes. A good correspondence between the

two indicators was found for the highest ranked genes. In
a simulation study, gene multiplicity allowed the identifi-
cation of the only relevant genes; moreover, the best
ranked genes in simulation and on real data seem to
maintain stability in the estimated rank. This property
might be exploited in future comparisons of ranked lists
produced by different ranking and classification methods.

Comparing Table 7 with other published work on the
colon cancer data, two genes (numbered as 20 and 42 in
the table) were also cited in the original study [23]. More-
over, twelve genes (5, 9, 10, 21, 25, 34, 37, 44, 46, 56, 71,
73) are also listed as important in [21], four genes (9, 10,
22,26)in [6], three genes (5, 9, 44) in [2], and 9 genes (5,
9,21,22,28, 34, 44,57, 71) in [4].

In all our experiments, the use of linear SVM was accurate
enough and provided faster performance than kernel-
based SVM. Thus we did not introduce methods for ker-
nel-based selection. However the scheme can be used to
test models defined by different SVM architectures.

As alternatives to the ranking methods discussed in this
paper in association to SVM supervised models, several
other procedures are available to researchers. In a similar
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Table 7: Features extracted in the global model on colon cancer data. GAN: Gene Accession Number; pos: rank with respect to the

SVM weight ranking w,,..; mult: multiplicity of the feature in the replicated experiments.
pos. GAN Wecore mult. pos. GAN Wecore mult.
I Té64012 1.000 34 4l T51261 0.590 32
2 K03474 0.971 34 42 T57619 0.590 41
3 T47383 0.886 35 43 D17532 0.581 5
4 H24401 0.867 36 44 R87126 0.581 42
5 Z50753 0.857 49 45 T74556 0.581 9
6 U00968 0.829 43 46 T61661 0.581 40
7 T57882 0.829 41 47 M82919 0.581 22
8 HO1418 0.771 26 48 M23115 0.581 4
9 HO08393 0.752 43 49 T84051 0.562 23
10 T62947 0.752 39 50 T72863 0.562 12
Il T67406 0.743 12 51 H49870 0.562 23
12 T51539 0714 21 52 u37012 0.562 25
13 X02875 0.705 9 53 Mé64231 0.562 16
14 T47424 0.705 19 54 M92287 0.562 15
15 R33481 0.695 30 55 T98835 0.562 I
16 R54097 0.695 23 56 J04102 0.552 18
17 T94993 0.686 I3 57 R36977 0.552 34
18 H64807 0.686 43 58 T79831 0.543 4
19 H81864 0.686 I 59 R67275 0.543 10
20 T58861 0.686 22 60 H64489 0.543 36
21 M76378 0.676 45 6l M31303 0.533 22
22 R88740 0.676 40 62 R15447 0.533 22
23 R80427 0.676 36 63 J03210 0.533 28
24 M81651 0.667 34 64 R81170 0.524 20
25 L07648 0.667 31 65 RO1755 0.524 Il
26 H81558 0.657 27 66 T51023 0.524 19
27 H16096 0.638 25 67 T51849 0514 21
28 H20709 0.638 41 68 749269 0.505 16
29 X68314 0.638 22 69 M20543 0.505 12
30 K02268 0.638 32 70 T40507 0.495 4
31 DI13315 0.638 9 71 M26383 0.495 I
32 H55916 0.629 31 72 T94579 0.495 28
33 M28219 0.629 20 73 Dl4812 0.486 12
34 02854 0.619 40 74 R59583 0.486 8
35 T79152 0.619 22 75 ™m80815 0.476 25
36 R44418 0.619 29 76 H20289 0.467 9
37 T47377 0.610 35 77 R62549 0.429 14
38 HO06061 0.610 27 78 R39531 0.410 I
39 M35878 0.600 18 79 X17025 0410 14
40 T41204 0.590 17 80 T88902 0.390 I

framework, the PDA based software CLEAVER [27] can be
used in a combination of supervised classification and
gene ranking. In [11], the authors based a first reduction
of the number of genes on the t-test, one of the most used
strategies for gene filtering. Variation filters and signal-to-
noise ratio, also used together with random permutation
testing, are other valid alternatives [12].

While attempting to reproduce results from other authors,
we noticed the existence of a "preprocessing bias", also
mentioned in [16]. The bias appears to originated with the
application of ad-hoc strategies for reducing the effect of

outliers. We decided to adopt the standard normalization
for all data sets in our experiments. For instance, in the
colon cancer example, due to the lack of additional inde-
pendent data, we choose not to apply any squashing func-
tion optimized for outlier control. In developing
diagnostic methods for microarray data, an additional
adaptation to test data may be hidden in the choice of the
normalization procedures and parameters. The method-
ology scheme implemented for E-RFE might be a candi-
date system for an unbiased estimate of the optimal
preprocessing metaparameter related with the predictive
model structure.
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Table 8: Features extracted in the global model on lymphoma data (pos. from | to 70). Additional features extracted more than 25
times in the replicated experiments are also included (pos. from A to H). Clone no: Clone number; w,_,..: SVM weight ranking for genes
used in global model, or the position in the E-RFE ranked list for the others; mult: multiplicity of the feature in the replicated

experiments.

pos. Clone no. Wecore mult. pos. Clone no. Wecore mult.
| 503881 1.000 50 40 39884 0.544 16
2 1287796 0.985 49 41 1186281 0.544 44
3 1341250 0.765 34 42 1351015 0.544 30
4 1271120 0.706 21 43 684020 0.544 16
5 322160 0.691 31 44 1251072 0.544 28
6 687112 0.691 39 45 824531 0.544 24
7 1318136 0.691 41 46 1418925 0.529 14
8 1288950 0.691 40 47 200409 0.529 Il
9 510467 0.691 44 48 1371484 0.529 39
10 1305134 0.676 25 49 162165 0.515 21
Il 1337246 0.662 30 50 26997 0515 22
12 23173 0.662 19 51 489681 0515 32
13 259029 0.662 49 52 1358061 0.500 28
14 1371026 0.662 24 53 489258 0.500 30
15 1355812 0.647 36 54 1372042 0.500 31
16 1356420 0.647 26 55 1320355 0.500 22
17 1369321 0.647 32 56 511705 0.485 16
18 1671933 0.647 50 57 1350862 0.485 20
19 825389 0.632 19 58 1352146 0.485 26
20 1357342 0.632 43 59 1358079 0.485 12
21 1337669 0.618 9 60 1269099 0.471 22
22 1301441 0618 14 6l 686150 0.471 9
23 1185361 0618 18 62 262914 0.471 25
24 261517 0.618 30 63 1671645 0.471 39
25 502220 0.603 21 64 186286 0.456 18
26 1670890 0.588 36 65 125180 0.441 30
27 1242035 0.588 12 66 1251853 0.441 12
28 683659 0.588 32 67 1367485 0.441 10
29 826216 0.588 22 68 1308118 0.441 20
30 684852 0.588 24 69 21822 0.412 17
31 1370359 0.574 48 70 360242 0.412 |
32 1367815 0.574 16 A 683659 71 47
33 1339325 0.574 8 B 813256 80 27
34 1341469 0.559 50 C 1056995 110 29
35 1071581 0.559 17 D 1334414 104 26
36 1186027 0.559 9 E 1672205 129 41
37 1318616 0.559 42 F 201890 74 28
38 122874 0.544 37 G 685351 163 25
39 1369566 0.544 15 H 1300834 93 33
Conclusions In order to correctly deal with the problem, we have devel-

The new E-RFE algorithm was designed to estimate the rel-
ative importance of genes, with applications for predictive
classification on array data. The algorithm is shown to
preserve the accuracy achieved by the SVM classifier by
using other ranking methods. At the same time it achieves
a significant reduction of the computational workload.
This result is crucial because high-throughput data analy-
sis must also include the resampling procedures needed to
ensure an honest estimate of accuracy and thus to avoid a
gene selection process mainly driven by overfitting.

oped an experimental set-up for analysis and prediction
on microarray data. This set-up has allowed us to correctly
identify the impact of the selection bias on synthetic and
real data sets.

By controlling the risk of overoptimistic predictions,
which have affected a number of recently published
works, this set-up has provided a support for the
identification of the function which associates prediction
accuracy to the number of genes. On this basis, we have
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also pointed out a strategy for the individuation of a satu-
rating subset of genes.

A basic advantage of the E-RFE method, within the exper-
imental set-up we have adopted, is the automatic adapta-
tion to the different weight distributions coming from
prediction models developed from different DNA chips.
Automatic model selection based on an extension of E-
RFE may become of further interest for the integrated
treatment of all the phases of the array analysis, including
the selection of parameters for data normalization
purposes.

Finally, it is important to start investigating new diagnos-
tic criteria for the comparison and possibly the combina-
tion of ranked lists of genes computed from different
supervised methods on the same array data.

Methods

Model selection and assessment

The experimental set-up proposed in this paper is partially
similar to those described in [5,16], and it may be summa-
rized as an external stratified partition resampling scheme
coupled with an internal K-fold cross-validation, to be
applied to E-RFE or to other feature ranking methods at
each run. This intensive double model selection and error
estimation process is graphically outlined in Figure 9. The
method is composed by three main blocks:

OFS-M procedure (Figure 9(a)): given a training set TR, a
feature ranking method produces a list of ranked features
RF, from which an optimal feature set OFS of size n* is
selected. Based on OFS, a model M is developed by a suit-
able learning method. The optimal number of features n*
is computed by the ONF procedure, while the accuracy of
OFS-M is to be validated by the VAL procedure.

ONF procedure (Figure 9(b)): given a training set TR, this
procedure is applied to select the optimal number of fea-
tures based on a ranking method. A resampling procedure
is iterated K times, each time producing a (TR,, TS, split
of TR. A feature ranking method is applied to TR;, produc-
ing a ranked list RF;; a family (My;, F,;) of models M, is
produced, one for each increasing F,; feature subsets. The
M, models are evaluated on the TS, test data, computing
test errors TE,, and the average error curve
TE: = lZK TE.: ; . .

i T g Luk=1 UK s obtained. An exponential fit proce-

dure is applied, and the n* value leading to saturation in
terms of the exponential curve is returned as the ONF
result.

VAL procedure (Figure 9(c)): the OFS-M procedure is val-
idated over B replicated experiments (runs) using a resam-

http://www.biomedcentral.com/1471-2105/4/54

pling scheme. The model with n* features is operated on
the test set, in order to minimize risk of data overfitting,
obtaining a TE? error. The procedure returns the expected

test error ATE = %ZleTEb and a resulting feature rank-

ing score RF.

The first step is to build the (SVM) model through the
OFS-M procedure on the whole dataset. As a resampling
scheme for the ONF procedure, for compatibility with
class cardinalities in the microarray data sets, we use a
three-fold cross-validation and we obtain the optimal
feature set for the data set, as in Figure 5(a). The feature
ranking criteria considered are E-RFE, RFE, SQRT-RFE,
Correlation Coefficients (CC) and T-score (TT): for proper
comparisons, the same datasets (from resampling as well
as from the training/test splits) are used for all criteria. For
the model validation, we set up B = 50 experiments
according to the following guidelines:

¢ the resampling scheme used in the VAL procedure con-
sists in splitting the dataset into training and test set with
proportion 3/4-1/4; class priors are preserved within the
split.

¢ the resampling procedure used in ONF is a three-fold
cross-validation; class priors are preserved within the
folds.

e the curve representing the cross-validation error versus
the number of mostly relevant features given in the

b

previous step is fitted by an exponential map g(x)=a- oX

(a, b estimated by least-squares);

¢ the optimal number n* of mostly relevant features for
the running experiment is chosen as the point where the
error difference with respect to the next point is less than
1/1000 of the cross-validation error range (i.e. the differ-
ence between the maximum and the minimum cross-val-
idation error); two examples of this fitting procedure are
reported in Figures 5(b) and 5(a).

The total number of extractions (multiplicity) of the n
selected features from the optimal feature sets over all the
B experiments of the VAL procedure additionally provides
a measure of relative importance for the selected features.

Finally, a randomization procedure was used to detect
design problems. First we built 50 new data sets starting
from the colon cancer dataset by randomizing the labels
via permutation and then we applied B = 20 times the VAL
procedure on each of those no-information data sets.
Since a statistical analysis (t-test) revealed that fewer ran-
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Subfigure 9(a): OFS-M procedure; Subfigure 9(b): ONF procedure; Subfigure 9(c): VAL procedure. Methodol-

ogy flowcharts.
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domizations were sufficient to reach a significant result, a
procedure involving only 25 new data sets (built as in the
colon cancer case), each undergoing B = 10 VAL runs, was
set up for the lymphoma data set. No randomization pro-
cedure was carried out for the tumor vs. metastases data
set due the heavy workload of the involved computation.

E-RFE

The Recursive Feature Elimination (RFE) is a well-known
feature selection method for support vector machines
(SVM), firstly introduced in [6]. In brief, a SVM realizes a

N
f(x) =0 oyiK(x;, %) +b,
where the coefficients a = (a;) and b are obtained by train-

classification  function

,,,,,

{-1,1} and K( -, -) is the chosen kernel. In the linear case,
the SVM expansion defines the hyperplane f(x) = <w, x> +

b, with w = Zfil 0,;¥;X; . The idea is to define the impor-
tance of a feature for a SVM in terms of its contribution to
a cost function J(a). At each step of the RFE procedure, a
SVM is trained on the given data set, ] is computed and the
feature less contributing to J is discarded. In the case of
linear SVM, the variation due to the elimination of the i-

th feature is 6](i)=wl?- ; in the non linear Ccase,

oJ(i) = lothoc _L o' Z(—i)o

2 2 ,where Z; ;= yy, K (x;, x;). The
heavy computational cost of RFE is a function of the
number of variables, because a SVM must be trained each
time a variable is removed. The removal of chunks of var-
iables at every loop represents a feasible approach, and it
was suggested in [6]. However, at the first loops of the RFE
algorithm, many weights are generally similar and con-
centrated nearby zero, as shown in Figure 3(a). In the
standard RFE algorithm we would eliminate just one of
the many features corresponding to a minimum weight,
while it would be convenient to remove all of them at

once. Another possible choice is to remove [\/#R J; fea-

tures at each step, where R is the set of the remaining fea-
tures, thus obtaining the SQRT-RFE procedure. We
developed an ad hoc strategy for an elimination process
based on the structure of the weight distribution. This
strategy was first described in [28]. We introduce an
entropy function H as a measure of the weight distribu-
tion. To compute the entropy, we split the range of the
weights, normalized in the unit interval, into n,,, intervals

(with n;,, = [«/#R J ), and we compute for each interval the
relative frequencies

_ #9J(i)

;= , =1,..,n;
1 #R mt.
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Entropy is then defined as the following function:

Ny
H= —2 pilog, pi- 1)

i=1
The following inequality immediately descends from the
definition of entropy:
0<H<log,n

int*
The two bounds corresponds to the situations:
e H = 0: all the weights lie in one interval;

® H = log, n;,, : all the intervals contain the same number
of weights.

The new entropy-based RFE (E-RFE) algorithm eliminates
chunks of genes at every loop, with two different proce-
dures applied for lower or higher values of H. A scheme is
detailed in Figure 10. The distinction is needed to remove
many genes that have a similar (low) weight while pre-
serving the residual distribution structure, and also allow-
ing for differences between microarray classification
problems. Let {pw,};.x be the projected weights, i.e. the
weights linearly projected in the interval [0,1] ; let H be
their entropy and H, a threshold to discriminate feature

importance. We set H, = %logz n;,; to equally split the

entropy values range. When H >H, the weights are not

concentrated: nevertheless, in some cases, many of them
have approximately the same low value, as shown in Fig-
ure 3(b).

To take care of the situation where many weights are close
to 0, it is necessary to introduce a further discriminating
measure. Let M be the mean of the projected weights and
M, a suitable threshold for such a measure. This threshold
must be chosen to decide which projected weights should
be eliminated: in fact, the situations where M < M, are pre-
cisely those when many features should be discarded. A
meaningful value for the considered datasets is M, = 0.2.

When H >H, and M >M, (as in Figure 3(c)), the features

1
whose weight lies in the interval |:O,.—:| are discarded.
nt

In the remaining cases (H >H, and M < M,, as in Figure
3(b), or H< H,, Figure 3(a)), we cautiously discard the fea-

tures whose weight is in the leftmost quantile through a
bisection procedure. The stopping condition is that no

1
more than half of the features with weights in [O'EM:|

should be discarded. We take a conservative approach by
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Pseudocode for E RFE algorithm

Given the training set S = {(Xk, yk)} ey, o Xk €R", yp €{ 1,1}
Initialize : R = {1, ,n}, subset of remaining features

F = (), ranked list of features

while(#R > R;){
train SVM on S = {(xk()icr, Yr) }re1, N
compute 6.J(i) Vi€ R
linearly transform 46.J(7) into pw;, ranging on [0, 1]
split [0, 1] into n;y,; intervals

#{P;;‘;%’mn} j=1, Mint
Nint

compute p; =

compute entropy as H = ij log, p;
j=1
compute M = mean (pw;)
if (H>Hy & M > M;){
remove from R the features st pw; € [0 L}

? Nint
and put them at the top of F’
}
else {
compute L; =log, pw; Vie R
compute M = mean (L;)
compute A = #{L; < M}

set conv =0
while (conv = 0){
set M = 1M

if (8 < 5A){

set conv =1
}

}

}

}
while (R # 0){

use RFE algorithm
}

Figure 10

compute = #{L; < M}

remove from R the § features st L; < M
and put them at the top of F’

| 1 .
Scheme of the E-RFE algorithm. In the case of linear SYM, §J(i) = wi2 : in the non linear case, 9J(i) = EothOL - E(th(—l)(x ,

int

where Zij =y K(x;, xj). We chose R, = 100, n;,, = L\/ﬁJ , H; = %logz Ny, and M, = 0.2. At the end of the algorithm F, will

contain the complete ordered list of the variables, and R will be empty.

reverting to one-step RFE when the number of variables
has been reduced below a threshold value R,, which has to
be chosen as a suitable compromise between the compu-
tational cost and the estimated size of supposed optimal

features subset. For the three microarray data sets R, = 100

was used. As a further caution, the classification methods
were compared at a finer resolution for smaller subsets of
genes: every single step at 1-15 genes, every 5 at 15-50,
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every 10 at 50-200, every 100 at 200-1000. The extensive
comparisons among methods with the complete valida-
tion scheme were run on a Open-Mosix cluster of 38
processing units (1 GHz Pentium).
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