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Abstract
Background: Recent technological advances in high-throughput data collection allow for
experimental study of increasingly complex systems on the scale of the whole cellular genome and
proteome. Gene network models are needed to interpret the resulting large and complex data
sets. Rationally designed perturbations (e.g., gene knock-outs) can be used to iteratively refine
hypothetical models, suggesting an approach for high-throughput biological system analysis. We
introduce an approach to gene network modeling based on a scalable linear variant of fuzzy logic:
a framework with greater resolution than Boolean logic models, but which, while still semi-
quantitative, does not require the precise parameter measurement needed for chemical kinetics-
based modeling.

Results: We demonstrated our approach with exhaustive search for fuzzy gene interaction models
that best fit transcription measurements by microarray of twelve selected genes regulating the
yeast cell cycle. Applying an efficient, universally applicable data normalization and fuzzification
scheme, the search converged to a small number of models that individually predict experimental
data within an error tolerance. Because only gene transcription levels are used to develop the
models, they include both direct and indirect regulation of genes.

Conclusion: Biological relationships in the best-fitting fuzzy gene network models successfully
recover direct and indirect interactions predicted from previous knowledge to result in
transcriptional correlation. Fuzzy models fit on one yeast cell cycle data set robustly predict
another experimental data set for the same system. Linear fuzzy gene networks and exhaustive rule
search are the first steps towards a framework for an integrated modeling and experiment
approach to high-throughput "reverse engineering" of complex biological systems.
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Background
While similarity (homology) of DNA sequence between
organisms can be used to propose potential gene functions,
transcriptional regulation, and protein pathways (e.g.,
[1]), there are often major differences in the protein prod-
ucts, functions, and pathway involvement of genes with
nearly identical sequences [2]. Consequently, sequence
homology may be viewed as a means of generating an ini-
tial "draft" hypothesis for the gene network of a newly
sequenced organism that can be built upon using high
throughput experimental techniques such as DNA chips
and microarrays for mRNA transcript profiling [3], pro-
tein abundance profiling with mass spectroscopy and 2-D
gel electrophoresis [4], and protein-protein and protein-
DNA binding assayed using SELDI mass spectrometry [5]
and protein chips [6]. In addition, new genetic technolo-
gies, in particular small interfering RNA (siRNA) for selec-
tive gene suppression facilitate high-throughput
massively parallel perturbation of the gene and protein
networks of biological systems [7].

Given the potential scale and complexity of experiments
and resulting data sets, biologists need a modeling and
simulation framework to optimally design experiments
and interpret results. The problem is not simply one of
"reverse engineering" to find the optimal "best fit" gene,
protein, and/or metabolite interaction model to explain a
set of experimental results; rather, modeling should sug-
gest the range of hypotheses that can potentially explain
the results of one experiment and select the optimal next
experiment to reduce the number of possible alternative
hypotheses, with the goal of converging to a biological
system model that can be used to predict the effect of
molecular perturbations.

A major challenge of modeling biological systems is that
conventional methods based on physical and chemical
principles require data that is difficult to accurately and
consistently obtain using either conventional biochemical
or high throughput technologies, which typically yield
noisy, semi-quantitative data (often in terms of a ratio
rather than a physical quantity) [3]. In particular, micro-
array gene expression ratios are ultimately obtained from
pixel counts of relatively messy images. Boolean networks
(e.g. [8]) are computationally simple and do not depend
on precise experimental data, and thus they are suitable
for handling both the complexity of biological networks
and the challenge of generating and comparing multiple
hypothetical networks as described in the above scheme.
However, Boolean models have inadequate dynamic res-
olution to accurately describe the behavior of a biological
network [9]. In contrast, differential equation models
(e.g., [10]) can be computationally expensive and sensi-
tive to imprecisely measured parameters. Even the lower
throughput RT-PCR method for gene expression measure-

ment (as described in [10]) cannot produce quantitatively
precise data that can be accurately mapped to actual
mRNA concentrations in the sample. Because of computa-
tional limitations, continuous modeling approaches (e.g.,
[10,11]) are limited to finding the single model that best
fits experimental data given some set of constraints, such
as a maximally sparse gene interaction network [11].

Fuzzy logic [12] provides a mathematical framework that
is compatible with poorly quantitative yet qualitatively
significant data. Fuzzy logic is a natural language for lin-
guistic modeling, thus it is consistent with the qualitative
linguistic-graphical methods conventionally used to
describe biological systems. Fuzzy models are rule-based;
accordingly, there is a potential scalability problem as the
number of antecedents ("inputs" to the rule) and variable
states ("resolution" of inputs and rule outputs) increase,
causing combinatorial explosion. Non-scalable conven-
tional fuzzy logic has previously been used to analyze
microarray data [13]. However, because of the nonlinear
scalability of the modeling method and resulting compu-
tational expense of generating rules for multiple inputs,
this method allows for only one possible positive and one
possible negative regulator for each gene, thus yielding
few biologically meaningful insights and experimentally
testable hypotheses.

The problem of rule set combinatorial explosion is
addressed by the union rule configuration (URC) devel-
oped by Combs and Andrew [14], which allows for linear
growth in rule set complexity with both resolution
(number of states) and number of inputs (rule anteced-
ents) at the cost of having to represent nonlinear relation-
ships between inputs as hidden layers [15]. In the linear
(URC) fuzzy logic scheme, there are distinct fuzzy rules
for each individual input to a given output. For example,
given input variables A and B to an output C, there would
be a set of rules relating A to C (e.g., "If A is LOW then C
is LOW", "If A is HIGH then C is HIGH") and another set
of rules relating B to C (e.g. "If B is LOW then C is HIGH",
"If B is HIGH then C is LOW"). After each rule is applied
individually, the intermediate evaluations of the fuzzy
state of the output variable ("node") are aggregated by a
fuzzy union (logical OR) operation (e.g. by summing or
taking the resulting memberships in the fuzzy sets defin-
ing the state of the output). This contrasts with conven-
tional fuzzy logic (or the "intersection rule
configuration"), which has rules relating all combinations
of inputs evaluated by a fuzzy intersection (logical AND).
For the example with inputs A and B to output C, rules
would read as, e.g., "If A is LOW and B is LOW then C is
LOW", "If A is LOW and B is HIGH then C is HIGH", etc.,
leading to a combinatorial explosion avoided by the URC.
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The utility of linear (URC) fuzzy logic has been demon-
strated in its ability to qualitatively model the lac operon
of E. coli [16,17]. In our previous work, a URC fuzzy logic
model was constructed from existing qualitative biologi-
cal knowledge about the interaction of genes and limited
quantitative data on protein and metabolite concentra-
tion and enzyme kinetics, showing the power of linear
fuzzy logic to describe complex multi-component regula-
tion. Here, the linear fuzzy logic method is extended to
tackle the inverse problem of gene network reconstruction
from real quantitative microarray data where there are
many inputs. This involves both methods for mapping the
experimental data to the fuzzy logic membership func-
tions and a useful implementation of the URC fuzzy logic
to represent the gene networks. In addition, a robust algo-
rithm for performing searches through the exponentially
large space of possible gene networks is presented.

To address the problem of generating all plausible hypo-
thetical network models that explain an experimental data
set, we are initially proceeding with an exhaustive search
of possible gene interactions to find those that fit the data
within some error threshold. Thus, the problem we are
tackling is of exponential complexity with O(mN) growth
in the number of possible rules for the behavior of a given
"output" gene of a gene interaction node, where N is the
number of (input) genes that can possibly control it and
m is the number of possible rules describing the effect of
each single input gene on the output gene. On the other
hand, if a linear fuzzy logic scheme is not used, the prob-
lem would grow at an unacceptably high O(mN^N) rate.
The number of possible rules for each gene-gene interac-
tion (m) is given by nn, where n is number of fuzzy sets
that describe the state of a variable. Hence, we will con-
strain the size of the problem by (i) setting the minimum
number of fuzzy sets to three, the minimum for meaning-
ful resolution, (ii) limiting the number of possible input
genes that are allowed to control the output of the output
gene at each node of the fuzzy network model, and (iii)
not allowing nonlinear gene interactions which would
require hidden layers. The last condition is not particu-
larly severe, as a typical nonlinear interaction (e.g., "xor")
interaction between two regulatory proteins at a gene is
mediated by an intermediate complex between the pro-
teins that can be represented as an independent node in a
network model. Therefore, "hidden layers" may generally
be avoided by including more biological detail as explicit
nodes in the model: for example, explicitly including the
temporary interaction between proteins within a scaf-
folded cellular signal transduction complex, or by incor-
porating as model nodes the various topological states of
a region of DNA influencing transcription factor binding,
or in general, adding sufficient biological detail such that
interactions between inputs can be linearly modeled.

We apply partially scalable, linear fuzzy network mode-
ling to a data set commonly used for demonstrating com-
putational methods in systems biology, microarray
experiments of yeast cell cycle gene expression [18]. These
data were obtained in 1998, prior to subsequent technical
and statistical advances to improve data quality. However,
to keep our case study as general as possible and demon-
strate the ability of the fuzzy logic approach to handle
other similarly noisy data sets, we do not do any data
processing other than the fuzzy modeling process
(described in the Methods). Exhaustive search is used as a
brute force "reverse engineering" method to find all possi-
ble gene network models that fit the data for a set of
twelve genes known to participate in the yeast cell cycle.

We show that the search converges to a small number of
models describing the expression of each gene within a fit
tolerance. Models found from the data for one particular
yeast cell cycle time series are also capable of qualitatively
predicting data from another time series experiment (i.e.,
one using a different cell synchronization method). In
addition, given the constraints of the search algorithm
(described in more detail in the Methods) and our limita-
tion to pure transcriptional data, we find that the best fit-
ting fuzzy network models collectively recover some direct
and indirect functional relationships between genes pre-
dicted by interactions found by previous biochemical
experiments as well as quantitative and statistical meth-
ods based on transcriptional correlations.

Results
Yeast cell cycle data set
As a proof of concept, we have used exhaustive search to
generate fuzzy gene networks based on yeast (Saccharomy-
ces cerevisiae) cell cycle microarray time series data sets pre-
sented in [18] (which included data from [19]).
Researchers frequently use these data sets to demonstrate
and validate statistical and clustering analysis (e.g.,
[20,21]), mathematical modeling [22,23], and reverse
engineering methods [21,24]. Biological details of the
yeast cell cycle transcriptional network and some compu-
tational methods for its analysis are reviewed in [25].

S. cerevisiae cell cycle regulatory protein-DNA interactions
were also the subject of a recent extensive experimental
study [26] and there is a large amount of previously
obtained biological knowledge on the interaction of yeast
cell cycle proteins, i.e., information contained in the Yeast
Proteome Database [27] and the KEGG pathway database
[28]. Consequently, predicted transcriptional network
models we derive for the Spellman et al. [18] data set can
be tested against numerous independent data sets and
compared with models obtained using other methods.
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We focus on the 12 key yeast cell cycle genes listed in
Table 1 with descriptions taken from the Yeast Proteome
Database. The protein products of these genes have been
extensively studied using conventional biological tech-
niques and are known to regulate each other and play key
roles in controlling cell cycle. Consequently, observed cor-
relations between the genes of Table 1 in cell cycle micro-
array data are most likely the result of real biological

activity rather than noise. In addition, cell cycle gene sub-
sets similar to this one have been the subject of other
recent gene network modeling and reverse engineering
publications (e.g., [21,24]). Figure 1 shows the current
understanding of the interactions of the cell cycle protein
subset.

There are three sets of gene expression time series in [18]
measured for cells synchronized by different methods,
called the cdc15, alpha, and cdc28 sets. We fit models on
the basis of the cdc15 data set since it contains the least
number of missing data. Time points in the cdc15 set for
which there is missing data for one or more of the 12
genes are excluded from the rule search. We perform an
exhaustive search with a maximum of 4 inputs per node,
as detailed in the Methods. A Microsoft Excel workbook
with the complete fitting data set is provided in Addi-
tional File 1, including all the fuzzy rule models for each
gene obtained from exhaustive search with an EMIN thresh-
old of approximately 0.6.

Results of fitting to data
Figure 2 shows the number of rule models found in the
exhaustive search that fit the expression time series of the
CLN1 gene (using the cdc15 data set) at different error tol-
erance levels (EMIN, as defined by Equation 4 in the Meth-
ods). It shows typical behavior for the exhaustive rule
search. The number of fuzzy models that fit a gene expres-
sion time series decreases exponentially as the fit tolerance
(EMIN) increases, up to a maximum tolerance above which
no models fit the data. A successful search generally con-
verges to a small number of distinct models at the maxi-
mum fit tolerance, representing "plausible" hypothetical
transcriptional networks that can explain the available
data. In some cases, though it did not occur for any of the
genes analyzed here, the search fails and there are a large
number of models with similar poor fit scores and no suit-
able subset of "plausible" models.

Known Yeast Cell Cycle InteractionsFigure 1
Known Yeast Cell Cycle Interactions. Schematic of 
known yeast cell cycle interactions between protein prod-
ucts of the twelve genes we studied (Table 1). An arrow indi-
cates a positive interaction and a closed circle indicates a 
negative interaction. A dashed line indicates a protein-pro-
tein (e.g., phosphorylation, etc.) interaction and solid lines 
indicate direct transcriptional regulation. Genes are shown 
adjacent to each other when they are treated as a cluster in 
the KEGG pathway diagram (in the case of SBF and MBF the 
genes code for protein subunits). A connection inside a clus-
ter indicates regulation of the whole cluster simultaneously. 
The interactions are located along an approximate time axis 
through the stages of the cell cycle (G1, S, G2).

Table 1: List of Genes in the Fuzzy Network Model Subset of genes involved in the yeast cell cycle selected for our demonstration 
network. Descriptions taken from the Yeast Protein Database (Costanzo et al., 2000; URL: http://www.proteome.com/
YPDhome.html).

GENE NAME ORF DESCRIPTION

SIC1 YLR079W inhibitor of the Cdc28-Clb protein kinase complex
CLN1 YMR199W G1/S-specific cyclin
CLN2 YPL256C G1/S-specific cyclin
CLN3 YAL040C G1/S-specific cyclin
SWI4 YER111C transcription factor, subunit of the SBF factor
SWI6 YLR182W transcription factor, subunit of SBF and MBF (check this)
CLB5 YPR120C B-type cyclin
CLB6 YGR109C B-type cyclin
CDC6 YJL194W initiates DNA replication, active late G1/S
CDC20 YGL116W cell division control protein
CDC28 YBR160W cyclin-dependent protein kinase
MBP1 YDL056W transcription factor, subunit of MBF
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The plausible model subset generally contains common
rule patterns. For example, Table 2 lists the models for
CLB5 expression with the highest fit scores found in the
exhaustive search. The rules are in the format used for the
example described in the Methods section. Table 3 shows
three models for each gene in the network: the best fitting
rule (highest score) and the two highest scoring rules with
different combinations of input genes. The scores for each
of the three models are provided in corresponding rows at
the bottom of the table. Figure 3 shows the best fitting
interaction network diagrams for each node gene from
Table 3.

To test whether the linear fuzzy gene network models
found for one set of experimental data (i.e., cdc15 syn-
chronization time series) can accurately predict another
set of results for the same system, we analyzed the micro-
array time series for alpha cell synchronization presented
in [18]. There are some missing values for some genes at
some time points in the alpha data set, which are set to
zero and could potentially lead to discrepancies between
the modeling and experimental data only at those points.
Figure 4 shows the predicted time series for the expression
ratio of four genes (CLN1, CDC28, SWI6, and CLB5) given
the highest (except for CLN1, second-highest) scoring
models in Table 3. (The second-best fitting model is used
for CLN1 because it consists of four inputs, including all
three inputs in the highest-scoring model along with
another gene. Thus, it represents a more general "consen-
sus" model for CLN1.) These models fit the original cdc15

training data with very different calculated tolerances (as
measured by the fit error E) ranging from 0.510 (CDC28,
Figure 4B) to 0.930 (CLN1, Figure 4A).

Discussion
Using exhaustive search, we found linear fuzzy networks
that predict cdc15 cell cycle microarray data for the expres-
sion of most of the twelve yeast genes we analyzed. The
rule search typically converged to a small set of "plausi-
ble" models at a given fit error (E) tolerance for each gene
(with exponential convergence as shown in Figure 2).
Even for genes for which no highly fitting model could be

Table 2: Best Fitting Rules for CLB5 Each row represents rules relating inputs (in columns) to CLB5. Rule format described in Methods; 
e.g., [3 3 1] for CDC20 means "If CDC20 is 1 (Low) Then CLB5 is 3 (High); if CDC20 is 2 (Med) then CLB5 is 3 (High); if CDC20 is 3 (High) 
then CLB5 is 1 (Low)."

Fit(E) SIC1 CDC20 CLN3 SWI6 CLN1 CLN2 CLB6 SWI4 CDC28 MBP1 CDC6

0.881 --- 3 3 1 --- --- --- 1 1 3 1 2 3 --- --- --- 1 2 3
0.877 --- 2 3 1 --- --- --- 1 1 3 1 2 3 --- --- --- 2 2 3
0.875 2 2 3 2 3 1 --- --- --- 1 1 3 1 2 3 --- --- --- ---
0.871 --- 3 2 1 --- --- --- 1 1 3 1 3 3 --- --- --- 1 2 3
0.869 --- 3 2 1 --- --- --- 1 2 3 1 2 3 --- --- --- 1 2 3
0.862 --- 3 3 1 --- --- --- 1 2 3 1 2 3 --- --- --- 1 1 3
0.862 --- 3 3 1 --- --- --- 1 1 3 1 3 3 --- --- --- 1 1 3
0.860 --- 3 3 2 --- --- --- 1 2 3 1 2 3 --- --- --- 1 1 3
0.859 --- 3 3 2 --- --- --- 1 2 3 1 2 3 --- --- --- 1 1 2
0.859 --- 2 2 1 --- --- --- 1 2 3 1 2 3 --- --- --- 2 2 3
0.857 --- 2 3 1 --- --- --- 1 2 3 1 2 3 --- --- --- 2 1 3
0.856 --- 2 3 1 --- --- --- 1 1 3 1 2 3 --- --- --- 1 2 3
0.856 --- 3 2 1 --- --- --- 1 1 3 1 2 3 --- --- --- 1 3 3
0.854 2 2 3 3 3 1 --- --- --- 1 1 3 1 2 2 --- --- --- ---
0.854 1 1 2 3 3 1 --- --- --- 1 1 3 2 3 3 --- --- --- ---
0.852 2 2 3 2 3 1 --- --- 1 2 3 1 1 3 --- --- --- --- ---
0.852 --- 3 3 1 --- --- --- 1 1 3 2 3 3 --- --- --- 1 1 3
0.851 --- 3 3 1 --- --- --- 1 1 3 1 2 2 --- --- --- 1 2 3

Fuzzy Rule Search ConvergenceFigure 2
Fuzzy Rule Search Convergence. Histogram of the 
number of fuzzy rules for CLN1 expression at different fit 
error (E) levels.
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found, such as SWI4, the best model (fitting at E = 0.620)
predicts the qualitative behavior of independently meas-
ured alpha time series data (Figure 4C). Moreover, models
that are more predictive (E > 0.8) of the cdc15 training
data provide quantitatively accurate predictions of the
alpha data (Figures 4A and 4D). Notably, these consist-
ently good fits for the alpha data set were achieved using
exactly the same arctangent data normalization and
fuzzification scheme applied to the cdc15 data set. This
suggests that the fuzzy processing methods described here

can be generally applied for data sets obtained from differ-
ent microarray experiments, provided a roughly symmet-
ric distribution of Log2 ratios about 0, such that sets 1 and
3 both remain meaningful – though the ratios could be re-
centered if necessary. In general, our results demonstrate
the ability of qualitative fuzzy rule models to interpret the
results of quantitative data and make predictions that can
be statistically analyzed. Consequently, these models can
be used to pose experimentally testable hypotheses.

Table 3: Three Best-Fitting Models for Each Gene* Rules are in the same format as in Table 2 (see Methods). In this case, the genes in 
rows are inputs to genes in columns. The three best combinations of rules are in consecutive rows for each input; i.e., the best fit rule 
combination is the first row of each input block with the fit score (E) in the first row of the last block in the table. * Models are in rows, 
e.g., the best-fitting model for SIC1 has the input CLB5 with the rule (1 3 3), MBP1 with rule (3 1 1), and CDC6 with rule (1 2 3) 
corresponding to the fit error E = 0.689.

OUTPUTS
INPUTS SIC1 CLB5 CDC20 CLN3 SWI6 CLN1 CLN2 CLB6 SWI4 CDC28 MBP1 CDC6

SIC1 --- 2 2 3 3 2 1 1 1 3
--- 2 2 3 2 1 3 1 3 3 3 2 1 1 2 3
--- 2 2 3 2 1 3 1 3 3 3 2 1 1 2 3

CLB5 1 3 3 --- 1 3 3
1 3 3 --- 1 1 3
1 3 3 --- 1 1 3 3 2 1

CDC20 3 3 1 --- 3 3 2 3 2 1 1 3 3
2 3 1 --- 3 3 1
2 3 1 --- 3 1 1 1 3 3

CLN3 3 1 2 --- 3 3 1 2 2 3 3 3 2 1 2 3
--- 3 2 1 2 1 3 1 1 3

3 1 3 --- 3 3 1 1 1 3
SWI6 1 3 1 3 2 1 --- 3 1 2
(SBF) 1 3 1 3 1 1 --- 1 2 1 3 1 2 2 3 1

1 3 1 3 2 1 --- 1 2 3 3 1 1
CLN1 3 3 1 --- 1 2 3 1 2 3 1 1 2 3 1 1

3 2 1 --- 1 3 3 1 2 3 3 1 1
1 2 3 3 1 1 --- 1 3 3 1 3 3 3 1 2

CLN2 1 1 3 3 1 1 3 1 3 1 3 3 --- 1 1 3
1 1 3 3 2 1 3 1 3 1 3 3 --- 1 1 3
1 1 3 3 1 3 1 3 3 --- 1 1 3

CLB6 1 2 3 1 1 3 1 1 3 --- 1 1 3 1 3 3 3 1 3
1 2 3 1 1 3 1 1 3 1 1 3 --- 1 1 3 1 3 3

3 3 1 1 1 3 1 1 3 --- 1 2 3 1 3 3
SWI4 --- 3 2 1
(SBF) 1 1 3 2 3 3 --- 3 3 2

--- 3 2 1 1 2 3
CDC28 3 1 3 ---

---
3 1 2 ---

MBP1 3 1 1 3 3 1 2 1 3 3 3 1 ---
(MBF) 3 1 1 2 3 1 1 2 3 3 3 1 ---

3 2 1 3 3 1 2 3 2 1 1 3 3 3 1 2 2 3 ---
CDC6 1 2 3 1 2 3 1 1 3 3 2 3 ---

1 3 3 1 2 3 1 3 1 3 2 3 3 2 3 ---
1 2 3 2 2 3 2 1 3 3 2 3 ---

Fit (E) 0.689 0.881 0.703 0.792 0.620 0.943 0.877 0.714 0.782 0.510 0.624 0.764
0.643 0.875 0.702 0.768 0.599 0.930 0.837 0.706 0.768 0.508 0.624 0.758
0.631 0.852 0.695 0.746 0.596 0.916 0.835 0.705 0.763 0.498 0.622 0.720
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Measurements of mRNA expression from microarray
experiments complement information from additional
gene knockout, DNA-protein and protein-protein
experiments. A model based on pure transcriptional data
will thus necessarily contain indirect relationships
between proteins and miss other direct purely protein-
protein interactions. However, gene network models can
suggest functional roles and relationships for genes and
proteins, and these models are necessary in complex sys-
tem analysis to design and interpret further experiments
that will specifically determine protein function and iden-
tify actual chemical interactions. To see what biological
insights can be derived from fuzzy gene network models,
we can examine areas of agreement and discrepancies
between the best-fitting models found in our exhaustive
search (shown in Table 3 and Figure 3) and the current
understanding of the yeast cell cycle network (summa-
rized in Figure 1).

Focusing on CLN1, we found positive regulation by CLN2
and negative regulation by CDC20 (Figure 3), which are
correlations expected from biological knowledge (as
shown in Figure 1) and found by Soinov, et al. using a
supervised learning method [21]. In addition, the model
for CLN1 includes a direct connection with CDC28 and an

indirect connection with MBP1 (through regulation of the
SBF complex) that are consistent with their relative posi-
tions in the cell cycle (Figure 1). The best-fit model for
CLN1 depended solely on a positive interaction with
CLN2, revealing the strong co-transcriptional connection
between CLN1 and CLN2. The connection between CLB5
and CLB6 was also found in the model for CLB5. Other
successfully found interactions include the negative regu-
lation of CDC6 by CLB6 and the positive regulation of
CLB6 by MBP1.

Some biologically accurate relationships were found that
were absent from the supervised learning analysis of [21].
Notably, the model successfully recovers the apparent
inhibition of CLB5 by CDC20, which is not shown in Fig-
ure 1 (based on the KEGG pathway) but arises from cdc20
protein presenting clb5 protein to proteases for
degradation (as included in the model of [22], references
within). There are several biological relationships that are
not found in the best-fitting networks of Figure 3, such as
an interaction between SWI6 and SWI4 (which form a
multiprotein complex). The best-fitting models for SWI4
include a repressing action by MBP1, which is
inconsistent with biological knowledge (Figure 1) sug-
gesting that MBP1 and SWI4 activity should correlate
(since they act at the same stage in the cell cycle). How-
ever, closer examination of the Spellman data set reveals
that the amplitude of MBP1 transcription varied within a
small range, and the measurement could have been very
noisy, resulting in a potential error by the algorithm. (It
should be noted that no correlation is identified between
MBP1 and SWI4 by the supervised learning algorithm in
[21].)

In general, determining which relationships found in the
fuzzy gene network represent biologically accurate inter-
actions is a question that must be resolved by analyzing
other data sets or from new experiments. The multiple
plausible hypothetical input gene combinations can be
used to optimally design experiments to add most infor-
mation for least effort (time and cost) to revise fit errors
and produce a new, more realistic set of hypothetical
networks.

Conclusions
In this work, we describe partially scalable, linear fuzzy
logic models for biological network modeling. We dem-
onstrate our approach by developing network models that
accurately predict transcriptional data from typically
noisy and semi-quantitative microarray experiments.
Looking at the transcription network alone provides us
with a view of the system at the "gene interactions" level.
As measurement technology rapidly advances, the
methods we describe can be extended to comprehensive
heterogeneous data sets. To address the problem of

Best Fit Model of Yeast Cell Cycle InteractionsFigure 3
Best Fit Model of Yeast Cell Cycle Interactions. Dia-
gram of the best fitting gene interactions for each node gene, 
as shown in Table 3. Solid lines ending in an arrow represent 
positive interactions (induction, e.g., [1 2 3], [1 3 3], etc.), 
dotted lines ending in a closed circle represent monotonic 
negative interaction (repression, e.g., [3 2 1], [3 1 1], [1 1 2], 
etc.), and dash-dot lines ending in a diamond represent an 
interaction that is both positive and negative (e.g., [3 1 3], [1 
3 1], etc.).
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analyzing the complex results of an exhaustive fuzzy
model search and designing optimal experiments, we are
currently developing pattern recognition methods to bet-
ter visualize and interpret potentially large sets of models.
In addition, we are considering stochastic methods to
accurately sample and characterize the "space" of all pos-
sible fuzzy models to (a) more efficiently identify the sub-
set of plausible models and (b) identify common patterns
among all the models to gain a better understanding of
the system and its evolution. While it is tempting to
develop methods to obtain a single "optimal solution" as
in a classic inverse problem, this is not appropriate for
complex biological systems. Scarcity of both data and bio-
logical understanding mean that at best experiments will
merely limit the space of potential solutions.

Biological system analysis is a dynamic reverse engineering
problem, requiring continuous acquisition of new experi-
mental data – data that should be acquired from
experiments designed and informed by continuous mod-
eling. Linear fuzzy rule network models are a promising
methodology for an integrated modeling and experimen-
tal approach. Since fuzzy rule models are enumerable,
methods developed for combinatorial optimization can
be extended to them. Moreover, linear fuzzy network
models can simultaneously contain both quantitative and
qualitative information, providing a common framework
for a broad range of biological data, including mass spec-
trometry analysis, RT-PCR, single cell imaging, metabolite
profiling, and other technologies yet to be developed.

Fuzzy Model Fit to Numerical DataFigure 4
Fuzzy Model Fit to Numerical Data. Comparison of experimental (solid black line) gene expression ratios from the alpha 
cell synchronization data set (Spellman, et al., 1998) and the predicted time series of the best-fitting fuzzy model (grey line) for 
genes CLN1, E = 0.930 (A), CDC28, E = 0.510 (B), SWI6, E = 0.620 (C), and CLB5, E = 0.881 (D).
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Methods
Converting between numerical data and fuzzy sets
We use three fuzzy sets, Low (or 1), Medium (2), and
High (3) to represent the magnitude of gene expression, as
defined in Figure 5. Fuzzification (conversion to fuzzy rep-
resentation) of a numerical datum x is performed by find-
ing the corresponding fuzzy set memberships y1, y2, and y3
(with values ranging from 0 to 1.0) given the linear func-
tions shown in Figure 5, where

Defuzzification (conversion back to numerical representa-
tion) is performed using the "simplified centroid
method" [29], with point set definitions shown in Figure
5. Following a fuzzy rule evaluation that returns fuzzy set
memberships y = [y1 y2 y3] in sets 1 (Low), 2 (Med), and 3
(High) respectively, the estimated numerical result of the

evaluation, , is given by the centroid for the points
located at -1, 0, and +1 for each set respectively, or

The fuzzy set definition and centroid defuzzification of
Equations 1 and 2 were selected to maximize computa-
tional efficiency during exhaustive search: all 27 rules can
be represented by easily implemented algebraic functions
and it is possible to design the implementation to avoid
as many costly if/then comparisons as possible. In addi-
tion, the scheme perfectly reproduces monotonic linear
positive and negative interactions (i.e., the functions f(x)
= x and f(x) = -x are quantitatively equal to monotonic
fuzzy rules, which can be written using notation from the
following section as [1 2 3] and [3 2 1] respectively) so it
generally will not introduce systematic error in the model.

To apply this scheme for defuzzification and fuzzification
scheme, experimental data must be projected on to the
interval -1.0 through +1.0. Thus, log base 2 expression
ratios are normalized by taking the arctangent of each
ratio and dividing by π/2, yielding a symmetric transfor-
mation covering the desired interval. Previous work nor-
malized expression ratios by the maximum value found in
the experiment [17] or used different fuzzy set definitions
for each variable [16], but those approaches suffer from a
lack of universality across data sets and makes it difficult
to compare and integrate data from different experiments.
On the other hand, the arctangent method is defined
across infinity, so no data will be "out of range". It also
takes into account the fact that gene expression ratios
often "saturate", and the difference between different
degrees of high and low ratios are not necessarily biologi-
cally significant (this is because of the optical methods for
measuring microarrays and the exponential error intro-
duced using RT-PCR). When used in conjunction with the
overlapping fuzzy set mappings shown in Figure 5, these
"middle" values will tend to land in the Medium set (2).

Comparing fuzzy predictions to numerical data
The fuzzy rule relating the input of a single gene to an
ouptut node gene can be expressed as a rule vector r. For
example, the rule r = [3 2 1] corresponds to the linguistic
rules:

If Input is Low (1) then Output is High (3)

If Input is Med (2) then Output is Med (2)

If Input is High (3) then Output is Low (1)

Given the fuzzified expression of an input gene y =
[y1 y2 y3] obtained using Equation 1 and the general fuzzy
rule r = [r1 r2 r3], the resulting fuzzified expression of the
output gene z will be:

Numerical-Fuzzy Data ConversionFigure 5
Numerical-Fuzzy Data Conversion. Fuzzification (top) 
and defuzzification (bottom) schemes used in this analysis, 
showing conversion to and from values in the interval [-1,1] 
on the x-axis and fuzzy sets LOW (1), MED (2), and HIGH 
(3). See text for details.
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In general, node behavior is the result of N input genes
acting on the output gene simultaneously. In the linear
fuzzy logic scheme, the rule for each input gene is evalu-
ated separately, leading to intermediate outputs zi:

These intermediate fuzzy values are summed algebraically
to obtain the final resulting fuzzy value for node gene
expression:

This result is defuzzified using Equation 2 to evaluate the
output of the node. For three fuzzy sets, there are 33 or 27
possible rules describing the effect of a single gene on
another gene. Thus, if there are N input genes for a node,
there are 27N total possible rule combinations describing
the behavior of the node gene.

In general, no rule combination will be an exact fit to real
experimental data. Given some tolerance to fitting error,
there will be multiple possible rule combinations, repre-
senting plausible hypothetical gene network models. In
our present work, we define the error of the fit for the M
data of the output gene x = {x1,x2,...,xM} as

where  is the set of defuzzified numer-

ical predictions (typically log expression ratios) and  is
the mean of the experimental data set x. A perfect fit
results in a maximum E of 1.0. This error score was chosen
because while it is quantitative, it emphasizes the correla-
tion in qualitative behavior between the fit and prediction
instead of the absolute numerical fit, which can be diffi-
cult to model with the limited resolution of three fuzzy
sets. We can use the fitting error to rank these models, and
use rule patterns consistent throughout all plausible mod-
els as a basis for constructing the template of a final net-
work model that can be tested experimentally.

Example of fuzzy rule evaluation
As an example to illustrate fuzzy gene networks using a
simple rule combination, we consider three genes (G1,
G2, G3) with log base 2 expression ratios measured at
three different times:

G1 = {-3.0 0 +3.0}

G2 = {0.3 0 -0.3}

G3 = {+1 0 -1.0}

Using the arctangent normalization to project the ratios
on [-1,1], we obtain

G1 = {-0.795 0 +0.795}

G2 = {+0.186 0 -0.186}

G3 = {+0.500 0 -0.500}

which can be fuzzified using Equation 1 to yield:

G1 = {[0.795 0.205 0] [0 1.0 0] [0 0.205 0.795]}

G2 = {[0 0.814 0.186] [0 1.0 0] [0.186 0.814 0]}

G3 = {[0 0.5 0.5] [0 1.0 0] [0.5 0.5 0]}

with vectors for each time point containing set member-
ship in Low (1), Medium (2), and High (3). Consider the
following rules for G1 and G2 as input genes to G3:

G1:G3 = [3 2 1]

G2:G3 = [1 2 3]

where the rules can be written in English as

If G1 is Low (1) then G3 is High (3)

If G1 is Med (2) then G3 is Med (2)

If G1 is High (3) then G3 is Low (1)

If G2 is Low (1) then G3 is Low (1)

If G2 is Med (2) then G3 is Med (2)

If G2 is High (3) then G3 is High (3)

Now, the evaluations of the rules taken individually are

G1:G3 = {[0 0.205 0.795] [0 1.0 0] [0.795 0.205 0]}
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G2:G3 = {[0 0.814 0.186] [0 1.0 0] [0.186 0.814 0]}

The sum of two intermediate outputs (Equation 3) is the
predicted fuzzy behavior of G3 for the three time points,
which can be defuzzified using the point-centroid method
(Equation 2) and transformed back to real numbers on [-
1,1]:

G3 = {[0 1.019 0.981] [0 2.0 0] [0.981 1.019 0]} =
{0.491 0 -0.491}

These numbers can be transformed back to a Log2 expres-
sion ratio by inverting the normalization (multiplying by
π/2 and taking the tangent):

G3 = {0.97 0 -0.97}

Finally, we use Equation 4 and the experimental data for
G3 to calculate the fit error for this rule combination:

which compares to a maximum E = 1.0 for a perfect fit.

Exhaustive network search
In general, a possible model for a node can include any
combination of the genes available to act as inputs. In the
work described here, we consider potential interactions of
12 genes. Thus, a rule for any one gene can include as
inputs any combination of any number of up to all 11
other genes. Since each input gene can influence the node
by any one of the 27 possible fuzzy rules, there are approx-
imately 1016 possible rule combinations for each of the 12
genes, making the exhaustive search method practically
impossible. Thus, the number of possible inputs to a node
must have a maximum constraint to make exhaustive
search tractable.

Studies of network topology through the experimentally
observed association of proteins suggest that in many
cases only few regulatory proteins are observed to directly
influence the expression of a gene [26,30-32]. For our
transcriptional network searches, we use the constraint of
up to 4 input genes to any node. Thus, for each node gene,
each of the other 11 genes occurs as an input alone and
also in combination with any of up to 3 of the other genes
as multiple inputs. Our use of this input constraint does
not necessarily restrict the full range of interactions that
can be found for the genes in our network, since all possi-
ble combinations of 1 through 4 of the genes are searched
sequentially. For example, in our fitting of rules to CLN3,
we considered the following potential input combina-
tions: SIC1 alone, SIC1 and CLN1 together, SIC1-CLN1-

CLN2, SIC1-CLN1-CLN2-CLN3, CLN1, CLN1-CLN2,
CLN1-CLN2-CLN3, CLN1-CLN2-CLN3-SWI4, CLN2,
CLN2-CLN3, etc. If we include all combinations from 1
through 4 of the genes taken from the 11 total possible
inputs, then the total search space for each of the 12 genes
consists of approximately 108 rules (taking about 10 min-
utes on a PowerMac G4 using a single 450 MHz proces-
sor). Simulation files used to generate all the data
presented here are available from the authors upon
request.
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