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Abstract
Background: The prediction of ancestral protein sequences from multiple sequence alignments is
useful for many bioinformatics analyses. Predicting ancestral sequences is not a simple procedure
and relies on accurate alignments and phylogenies. Several algorithms exist based on Maximum
Parsimony or Maximum Likelihood methods but many current implementations are unable to
process residues with gaps, which may represent insertion/deletion (indel) events or sequence
fragments.

Results: Here we present a new algorithm, GASP (Gapped Ancestral Sequence Prediction), for
predicting ancestral sequences from phylogenetic trees and the corresponding multiple sequence
alignments. Alignments may be of any size and contain gaps. GASP first assigns the positions of gaps
in the phylogeny before using a likelihood-based approach centred on amino acid substitution
matrices to assign ancestral amino acids. Important outgroup information is used by first working
down from the tips of the tree to the root, using descendant data only to assign probabilities, and
then working back up from the root to the tips using descendant and outgroup data to make
predictions. GASP was tested on a number of simulated datasets based on real phylogenies.
Prediction accuracy for ungapped data was similar to three alternative algorithms tested, with
GASP performing better in some cases and worse in others. Adding simple insertions and deletions
to the simulated data did not have a detrimental effect on GASP accuracy.

Conclusions: GASP (Gapped Ancestral Sequence Prediction) will predict ancestral sequences
from multiple protein alignments of any size. Although not as accurate in all cases as some of the
more sophisticated maximum likelihood approaches, it can process a wide range of input
phylogenies and will predict ancestral sequences for gapped and ungapped residues alike.

Background
Predicting ancestral protein sequences from a multiple
sequence alignment is a useful tool in bioinformatics [1].
Many evolutionary sequence analyses require such predic-
tions in order to map substitutions to a particular lineage
(e.g. [2,3]). In other situations, the predicted ancestral
sequence alone may provide a more representative func-

tional sequence than a simple consensus sequence con-
structed from an alignment.

Nevertheless, predicting ancestral sequences is not a sim-
ple procedure. It relies on a quality alignment plus an
accurate – and correctly rooted – phylogenetic tree. Strict
consensus methods are quick but can suffer from over-
representation of larger clades of related sequences, which
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contribute more sequences to the consensus than more
sparsely populated clades. Maximum Parsimony (MP)
methods [4] overcome this problem by minimising muta-
tional steps, rather than maximising agreement with the
terminal sequences. MP, however, cannot distinguish
between several equally parsimonious predictions. More
sophisticated likelihood-based methods exist that can
give probabilities for different ancestral sequences (e.g. [5-
8]) and implementation such as CODEML [5] and
FASTML [7] provide a good balance between speed and
accuracy. However, many of these programs cannot pre-
dict ancestral sequences for columns of the alignment that
have one or more gapped residues [9].

GASP (Gapped Ancestral Sequence Prediction) is an
ancestral sequence prediction algorithm that is designed
to handle gapped alignments of any size using a combina-
tion of MP and likelihood methods. Although probably
not as accurate as some of the more sophisticated maxi-
mum likelihood approaches, it permits the estimation of
ancestral states at residues that are gapped in any
sequences of the alignment with comparable accuracy to
that of ungapped residues.

Implementation
The GASP algorithm
Input
GASP uses input from three sources: a multiple sequence
alignment (MSA); an accompanying phylogenetic tree in
Newick format [10]; and a Point Altered Mutation (PAM)
substitution probability matrix, such as that of Jones et al.
1992 [11]. Sequences are read in from the alignment and
node relationships established from the tree. The tree may
be already rooted or rooted using GASP and must have
branch lengths. Bootstrap values are not used by GASP but
will be read if present. Sequences in the tree file can be
represented by numbers (matching the order of the fasta
alignment) or the first word of the sequence name. Details
of the input formats can be found at: http://bioinformat
ics.rcsi.ie/~redwards/gasp/.

Output
GASP outputs an alignment in fasta format with both
input terminal sequences and predicted ancestral node
sequences. Ancestral sequences can either be grouped
together at the end of the file or interspersed throughout
the terminal sequences to reflect the tree topology (Figure
1(a)). Three tree files are also output from GASP: (1) New-
ick format of the original input tree, rooted (Figure 1(b));
(2) A raw text version of the tree, with internal nodes
numbered as for the output sequence file; (3) Newick for-
mat tree with node numbers instead of bootstrap values,
which can be opened with K Tamura's TreeExplorer pro-
gram [12] (Figure 1(c)). Branch lengths in this last file are
replaced with the most likely PAM distance for a given

branch, where PAM likelihoods for each branch are calcu-
lated as the product of each individual residue:

where pX is the likelihood for a PAM distance of X (see
'Ancestral sequences' below), i is the ancestral amino acid
at position r,j is the descendant amino acid at position r,
pijX is the substitution probability of i to j in a PAMX
matrix, and N is the number of residues in the alignment.
Substitutions involving gaps are ignored in this
calculation.

This allows a visual comparison between the branch
lengths of the input phylogeny and the predicted branch
lengths given the ancestral sequence predictions.

Gaps
If the MSA has gaps, GASP will first assign gap status to
every residue at every node. Insertions and deletions are
assumed to be equally likely, although a gap is assigned in
the case of a tied probability (below). For each residue r,
GASP starts at the tips and works deeper into the tree,
assigning a probability of a gap at each node n, which is
equal to the mean probability of a gap at the descendant
nodes:

where p is the gap probability for residue r at node n. p1
and p2 are the gap probabilities for r at the two descendant
nodes.

Terminal branches are given a probability of 1 if a gap is
present or 0 if not. Once the root is reached, the gap status
is fixed for the root. If the probability of a gap is greater
than or equal to 0.5, residue r is fixed as a gap, otherwise
r is fixed as a 'non-gap'. GASP then works back up the tree
from the root, this time using the new ancestral gap prob-
ability and both descendant gap probabilities to recalcu-
late the gap probability:

where p0 is the gap probability for r at the ancestral node.

As with the root, r is fixed as a gap if p ≥ 0.5. This continues
until all nodes are assigned as 'gap' or 'non-gap'.
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Ancestral sequences
Once gaps are assigned, ancestral sequences are predicted
in a similar fashion. Each residue r is assigned a probabil-

ity for each amino acid at each node n. At the tips, r has a
probability of 1 for the amino acid that is present in the
MSA. GASP then works down the tree assigning

Sample output from GASPFigure 1
Sample output from GASP. (a) The first 100 columns of a typical GASP ancestral sequence prediction output. Sequence 
order matches the default vertical ordering in the tree files produced by GASP. (b) A rooted version of the input tree. Lengths 
of branches are those defined in the input file. (c) A new version of the input tree with nodes labelled and branch lengths recal-
culated based on ancestral sequence prediction. Note. Data is output in (a) fasta format and (b & c) Newick format but for vis-
ual clarity the file has been shown using (a) BioEdit [14] and (b & c) TreeExporer [12].
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probabilities based on the descendant nodes, branch
lengths and a substitution matrix. By default, the PAM
matrix of Jones et al. 1992 [11] is used. This is a PAM1
matrix, which represents the probability that a given
amino acid will be substituted by each other amino acid
when the mean substitution rate is 1/100 residues. To
make a PAMX matrix, which represents a length of evolu-
tionary time where a sequence will have undergone X sub-
stitutions per 100 residues, the PAM1 matrix is multiplied
by itself X-1 times:

where i is the ancestral amino acid,j is the descendant
amino acid, k is the 20 possible transitory amino acids, pijX
is the substitution probability of i to j in a PAMX matrix,
pik(X-1) is the substitution probability of i to k in a PAM(X-
1) matrix and pkj1 is the substitution probability of j to k in
a PAM1 matrix.

Unless the ancestral node has a gap (as calculated above)
at position r, the ancestral probabilities for each amino
acid are calculated for the two descendant branches indi-
vidually, using a PAMX matrix, where X is 100 times the
branch length as substitutions per site, i.e. a branch of 0.1
substitutions per site would use a PAM10 matrix:

where pi is the probability of amino acid i at residue r of
node n, pijX1 and pijX2 are the probabilities of substitution
from amino acid i to each amino acid j in the appropriate
PAM matrix for the two descendant branches, pdj1 and pdj2
are the probabilities of amino acid j being at position r at
the two descendant nodes.

Once the root is reached, the most probable amino acid is
fixed as the ancestral sequence. As with gaps, GASP then
works back up the tree, using the fixed ancestral node
amino acid and the descendant node probabilities to give
new probabilities for each amino acid. The most probable
amino acid is then fixed and the process continues until
all residues and all nodes have a fixed sequence.

GASP is primarily designed for reasonably small trees (6–
30 sequences), although there is no limit on input tree
size. For larger trees, probabilities for each amino acid get
very small near the root, which can lead to a heavy bias
towards the fixed ancestral amino acid when GASP works
back up the tree. To counter this GASP arbitrarily reduces

any probabilities below a certain exclusion threshold
(0.05 by default) to zero, thus reducing the slow accumu-
lation of very unlikely amino acids.

Variations
To optimise the PAM matrices used for probability calcu-
lations, GASP uses the variable branch lengths read from
the input phylogeny. There is also an option to fix the
PAM distance used for all branches, which would allow
the use of trees without branch lengths.

Assignment of ancestral amino acids with the GASP algo-
rithm is achieved by combining data from the descend-
ants of a given node n and its direct ancestor n0. This
ancestor itself is heavily influenced by the descendants of
n but also by the 'outgroup' to n, namely those sequences
that are descendant to n0 but not to n. The outgroup infor-
mation contained by the ancestral node n0 can be vital in
determining the correct sequence for n when the
descendants of n are variable. For this reason, the GASP
algorithm will, by default, fix ancestral sequences as it
moves back 'up' the tree from the root, increasing the rel-
ative weighting of the outgroup to the two descendants.
Because there is a chance of the wrong amino acid sweep-
ing back up the tree (especially if rare amino acid proba-
bilities are allowed to accumulate by reducing the
exclusion threshold), there is an option to use amino acid
probabilities from the ancestral node in the last stage of
GASP rather than giving the fixed amino acid an ancestral
probability of 1. This option should be used with caution.

Simulated datasets
Basic trees
To test the GASP algorithm, a number of artificial phylog-
enies were simulated. Because there is a practically limit-
less number of possible tree sizes (in both numbers of
sequences and branch lengths) and phylogenies, it was
decided to test the algorithm on a set of simulated phylog-
enies based on real phylogenies that formed a subset of
those for which the algorithm was originally written. This
set comprised 94 neighbour-joining trees of protein fami-
lies. Each tree contained at least two subfamilies of at least
3 members each, giving in total between 6 and 127
sequences. (The program used to generate these simulated
phylogenies is also available from the author for testing
the algorithm on a different set of trees.)

Simulations started by creating a random protein
sequence 100 amino acids long. Each residue was
assigned an amino acid randomly as determined by the
amino acid frequencies in all the human sequences of
SwissProt-TrEMBL (Release 42) [13]. Sequences then
evolved according to the template phylogeny. For each
branch, residues were randomly substituted as described
below until the total number of observed changes (ignor-
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ing multiple hits) equalled or exceeded the branch length
of the phylogeny, which was not corrected for multiple
hits. At this point, a new node was created with the new
sequence and the tree split into two descendants. This pro-
ceeded until the whole phylogeny had been recon-
structed. Each template tree seeded ten randomly
simulated datasets. Algorithms were then given as input
the simulated alignment and the parent phylogeny with
'real' branch lengths as calculated during simulation.
(Note that PAML does not use these branch lengths.)

Substitution methods
Three substitution methods were used. In the first 'PAM
Equal Rates' model, the PAM1 matrix of Jones et al. 1992
[11] was used, giving variable rates of evolution for differ-
ent amino acids and different substitution likelihoods.
For comparison, a purely random substitution matrix was
used where every amino acid had an equal probability of
evolving into every other amino acid (the 'Random Equal
Rates' method). Under these methods, different residues
have similar rates of evolution. A further model was used
based on the PAM1 method where residues had different
probabilities of evolving, before amino acid-dependent
PAM effects are considered. Under this 'PAM Variable
Rates' model, 40% sites evolved at the 'normal' rate, 20%
half-rate, 20% double rate, and 20% almost fixed (1/50
rate). Note that the observed branch lengths remain the
same as the normal 'PAM Equal Rates' method but highly
variable sites will be more likely to have multiple substi-
tutions under the 'PAM Variable Rates' method.

Gapped data
Because one of the main advantages of GASP is its ability
to deal with gaps, a second test dataset was generated from
the 'PAM Equal Rates' set of trees, this time with gaps
added. The addition of gaps was kept simple so that the
exact same trees could be used for the gap analysis, allow-
ing direct comparison of the results with gaps and with-
out. (See Testing the GASP Algorithm, below.) To do this,
gaps were limited to single insertion/deletion ('indel')
events per column of the MSA, allowing them to overlay
onto the existing simulated 'PAM Equal Rates' data. In
addition, no indels occurring next to root were allowed as
it is impossible to judge without an outgroup whether
such an event would be an insertion or deletion.

To make the gaps, each residue r of the simulated
sequences was considered in turn and had a probability of
50% of containing an indel. Gaps were all of length 1
(although two gaps may fall side by side, by chance).
Although unrealistic for testing multiple alignment or
phylogeny reconstruction programs, such a simplification
is not a problem for ancestral sequence prediction as each
residue is treated independently. The short gaps meant
that, for the same total number of gapped residues, there

is a higher diversity in the phylogenetic positioning of the
indels.

Indels were placed randomly with respect to evolutionary
time. Each node in the simulated data has an 'age', which
is the number of rounds of potential substitution it took
to complete the simulation after that node was formed.
Each indel occurs at a random age T between the tip (age
0) and the oldest direct descendant node from the root. A
random branch (not leading to root) is then selected for
which the ancestral node is older than T and the descend-
ant node is no older. This is the branch on which the indel
occurred. The indel is randomly assigned as an insertion
or deletion event with equal probability. If it is an inser-
tion then the ancestral node plus all nodes outside the
descendant clade have residue r replaced with a gap. If it
is a deletion then the descendant node and all its descend-
ants have residue r replaced with a gap.

Results and discussion
Testing the GASP algorithm
The simulated trees and alignments were run through the
GASP algorithm. Because the 'real' sequence of each sim-
ulated node was known, it was then possible to determine
the accuracy of GASP predictions. To test the different
parts of the GASP algorithm, predictions were also made
using modified GASP algorithms with parts of the model
excluded.

Because prediction for invariant sites is trivial for all meth-
ods, the expectation is that accuracy is inversely related to
the number of variable sites. Therefore, comparisons of
methods are presented as a percentage of the variable
sites. In this context 'variable sites' are defined independ-
ently for each node as those sites for which not all
descendant nodes (including termini) have the same
sequence as the ancestral node.

The simulated phylogenies are of different sizes. Consid-
ering all nodes of all trees would bias results towards the
larger trees. To avoid this, each tree was arbitrarily reduced
to four representative nodes:

1. 'Root' = The root of the tree.

2. 'Near Root' = A direct descendant node of the root.

3. 'Mid Tree' = A random node approx. midway in the tree.

4. 'Near Tip' = A direct ancestral node of a terminal
sequence.

To determine whether the GASP algorithm was useful its
performance was compared to a crude consensus
sequence at each node. Where two amino acids were
Page 5 of 10
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present at equal frequencies in a column of the MSA, the
most frequent amino acid in the total MSA was selected
for the ancestral sequence. GASP may be considered crude
compared to some existing Maximum Likelihood
approaches and so its performance was also compared to
that of both ML algorithms implemented by the
CODEML program from the PAML package [5], namely
the marginal reconstruction algorithm of Yang et al. 1995
[6] and the joint reconstruction algorithm of Pupko et al.
2000 [7]. In addition, the MP method implemented in the
PAMP program of PAML [9] was also tested for
comparison.

The GASP model marginally out-performs all methods
tested for constructing the ancestral sequence at the root
of the tree (Figure 2). For all other representative node
groups of the tree, GASP is comparable to the MP algo-
rithm of PAMP but slightly inferior to both ML algorithms
implemented in CODEML. PAMP is inferior to the ML

methods at all levels of the tree. (In our hands, CODEML
crashed in nearly 8% of cases. The problem was consistent
and the troublesome input files crashed CODEML every
time. However, there was no obvious difference between
input files that presented CODEML with troubles and
those that did not (Data not shown). To make a fair com-
parison of algorithms, data is only shown for datasets that
did not cause CODEML to crash.)

Although the ML algorithms of Yang et al. 1995 and
Pupko et al. 2000 performed better overall for internal
nodes, this difference was not seen for every node of every
tree. At each level, GASP is sometimes better and some-
times worse than all three other algorithms (Figure 3).
This is also true when comparing the three other algo-
rithms with each other (Data not shown).

Mean accuracies of methods using the 'PAM Variable Rates' ModelFigure 2
Mean accuracies of methods using the 'PAM Variable Rates' Model. Error Bars are Standard Errors. Percentage 
Accuracies are calculated for variable sites only (see text for details). The Percentage Accuracy for all sites is higher in all cases 
(Data not shown). The 'PAM Equal Rates' and 'Random Equal Rates' Models gave very similar results (Data Not Shown). Data 
shown includes only those phylogenies that did not crash CODEML (see text).
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Difference in prediction accuracies between GASP and three alternative algorithmsFigure 3
Difference in prediction accuracies between GASP and three alternative algorithms. (a) Yang et al. 1995 ML [6], 
(b) Pupko et al. 2000 [7] and (c) PAMP [9]. Percentage Accuracies are calculated for variable sites only and only those phylog-
enies that did not crash CODEML are shown (see text for details). Positive values indicate GASP is better than the other algo-
rithm and negative values the reverse. Results for each tree depth are calculated separately. Values shown are for 'PAM 
Variable Rates' simulations only but the other evolutionary models give very similar results (Data not shown).
Page 7 of 10
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GASP variants
Four individual elements of the GASP algorithm were
explicitly tested by disabling each in turn and comparing
the results to those generated by the complete algorithm.
The four variants run were:

(a) using fixed PAM matrices rather than matrices derived
from observed tree branch lengths.

(b) fixing ancestral sequences on initial pass towards root
without a second pass back up the tree.

(c) no filtering of rare amino acid probabilities.

(d) using ancestral probabilities when working back up
the tree rather than fixed ancestral amino acids.

Elements (a) and (b) were chosen for testing because they
increase computational time, while (c) and (d) may not
intuitively give the best results.

For the phylogenies used in these simulations, all four var-
iants performed worse than the standard GASP algorithm
(data not shown). Using a fixed PAM distance for all
branches rather than approximating the PAM distance
using tree branch lengths (a) gives an unfair weighting to
long branches and thus increases the probability of substi-
tutions that are, in reality, unlikely. Fixing ancestral
sequences on the way 'down' the tree to the root (b) does
not use any outgroup information and is therefore signif-
icantly worse at distinguishing between two or more
amino acids with similar ancestral probabilities. Less intu-
itive is the effect of reducing low amino acid probabilities
to zero (c) and using fixed ancestral sequences when
recalculating amino acid probabilities using all three con-
nected nodes (d). Indeed, excluding these two elements
have a much smaller effect but still reduce the overall
accuracy of the algorithm (data not shown).

Using fixed amino acids when working back up the tree
increases the influence of the outgroup sequence. As was
seen by the difference in accuracy between predictions at
the root and nodes near the root (Figure 2), outgroup
information is very important in predicting the correct
sequence. (Predictions at the root are considerably weaker
because there is no outgroup to help discriminate
between alternative ancestral states.) Filtering out rare
amino acids has a small effect in these trees but would be
expected to have a larger effect in deeper trees. If rare prob-
abilities are not removed then the most likely amino acid
in each position will have an ever-diminishing likelihood,
while highly unlikely ancestral sequences will find their
probabilities ever-increasing. In very deep trees, this could
result in probabilities being homogenised in the deep
nodes. When fixed ancestral sequences are used to make

predictions back up the tree, the fixed ancestral amino
acid would potentially swamp the reduced probabilities
in descendant nodes near the root, and sweep the root
amino acid up the tree incorrectly. If this filtering is turned
off when using larger trees, it is recommended that ances-
tral node probabilities be used instead of fixed ancestral
sequences (i.e. combining (c) and (d)).

A final test was performed to compare the use of 'real' ver-
sus 'observed' branch lengths. (This was possible because
the simulations kept track of not only what changes really
occurred but also how many were 'visible', i.e. not correct-
ing for multiple substitutions.) This is not testing the
GASP algorithm per se but does provide information on
the importance of using an accurate phylogeny construc-
tion algorithm. (The PAML package does not require pre-
defined branch lengths and is therefore only affected by
errors in supplied topology and not in branch lengths.) In
many cases there was no difference. However, nearer to
the root, using observed branch lengths rather than the
real ones decreased prediction accuracy slightly. This
decrease was correlated with total tree age (data not
shown). This would imply that branch lengths corrected
for multiple substitutions should be used for trees fed into
the GASP algorithm, particularly with deep trees contain-
ing long branches.

Gapped data
A central part of the GASP algorithm is its ability to handle
gapped alignments. As expected, GASP correctly placed
100% of simple gaps used in this test. (Each column of the
alignment has a maximum of one indel, which is descend-
ant of the root branches.) To analyse the effect of gaps on
prediction accuracy, pairwise comparisons were made
between the gapped datasets and the corresponding
ungapped simulations (Figure 4). As would be expected,
some of the gapped data shows reduced prediction
accuracy because, as with the root of the tree, there is no
'outgroup' information directly following an insertion
event. In many situations, however, accuracy is increased.
This is because a gap is easier to predict accurately (having
only two states, present or absent) than an amino acid
(which could be one of twenty). The Consensus method
shows a similar pattern but with a smaller fraction of trees
showing an increase in accuracy (Data not shown).

DNA data
Although explicitly designed for use with protein
sequence alignments and trees, it is relatively simple to
convert GASP for use with nucleotide datasets. To do this,
a new 'PAM matrix' should be created with substitutions
probabilities for A, C, G and T only. This structure would
allow the user to fit fairly complex substitution models,
with different substitution probabilities for each pair of
nucleotides. If the aligned sequence is coding DNA,
Page 8 of 10
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however, it is highly recommended to use the protein
sequences or a different algorithm such as those in the
PAML package [5], as the adjusted PAM matrix would not
take any consideration of codon positions.

Conclusions
We have presented an algorithm for predicting ancestral
sequences in gapped datasets. At the root of the tree, GASP

marginally outperforms three existing algorithms imple-
mented in the PAML package. For other nodes of the tree,
however, the ML algorithms of CODEML [5-7] generally
perform better than GASP, while PAMP [9] gives a similar
performance. The main advantage of GASP is its ability to
use gapped datasets. Simple indel patterns are accurately
predicted by GASP and do not greatly decrease ancestral
sequence prediction accuracy. The GASP algorithm can be

Difference in GASP prediction accuracies of methods using gapped and ungapped 'PAM Equal Rates' simulationsFigure 4
Difference in GASP prediction accuracies of methods using gapped and ungapped 'PAM Equal Rates' simula-
tions. Percentage Accuracies are calculated for variable sites only (see text for details). Positive figures indicate that accuracies 
for the gapped dataset are higher than for the corresponding ungapped dataset. Results for each tree depth are calculated 
separately.
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reliably run on either Windows or UNIX platforms with
no discernable instability.

For real life datasets, as for all evolutionary studies, predic-
tions are dependent on the quality of input alignments.
Gapped residues are, by their nature, often located in
regions of evolutionary instability and therefore the inter-
pretations of predictions at such sites require extra care. In
many scenarios, however, gaps are introduced into align-
ments by the missing termini of fragment sequences. In
these situations, the complete sequences that form the rest
of the alignment may be very well aligned and so it is
highly desirable to have an algorithm that can process the
gaps introduced by the truncated sequences.

Availability and requirements
Project name: GASP (Gapped Ancestral Sequence
Prediction)

Project home page: http://bioinformatics.rcsi.ie/~red
wards/gasp/

Operating system(s): Platform Independent. (Tested on
PC (Windows 98/XP) and UNIX (Red Hat Linux 7.3))

Programming language: Perl.

Other requirements: None.

License: None.

Any restrictions to use by non-academics: Author's per-
mission required.
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