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Abstract

Background: In addition to known protein-coding genes, large amounts of apparently non-coding
sequence are conserved between the human and mouse genomes. It seems reasonable to assume
that these conserved regions are more likely to contain functional elements than less-conserved
portions of the genome.

Methods: Here we used a motif-oriented machine learning method based on the Relevance
Vector Machine algorithm to extract the strongest signal from a set of non-coding conserved
sequences.

Results: We successfully fitted models to reflect the non-coding sequences, and showed that the
results were quite consistent for repeated training runs. Using the learned models to scan genomic
sequence, we found that they often made predictions close to the start of annotated genes. We
compared this method with other published promoter-prediction systems, and showed that the
set of promoters which are detected by this method is substantially similar to that detected by
existing methods.

Conclusions: The results presented here indicate that the promoter signal is the strongest single
motif-based signal in the non-coding functional fraction of the genome. They also lend support to
the belief that there exists a substantial subset of promoter regions which share several common
features including, but not restricted to, a relative abundance of CpG dinucleotides. This subset is

detectable by a variety of distinct computational methods.

Background

Since the publication of draft sequences for the human [1]
and mouse [2] genomes, several groups have run large-
scale comparisons of the sequences to detect regions of
conserved sequence. An initial survey of these was pub-
lished along with the draft mouse genome [2], with addi-
tional comparisons appearing since then [3]. Briefly,
protein coding genes are — as we might expect — among
the most strongly conserved regions, but homologous

sequences can be found throughout the genome. In total,
it is possible to align up to 40% of the mouse genome to
human sequence [4], but it seems likely that at least some
of this is just random "comparative noise" - regions of
sequence which serve no particular purpose but which,
purely by chance, have not yet accumulated enough muta-
tions to make their evolutionary relationship unrecognis-
able. However, it is widely accepted that some of the
noncoding-but-similar regions, especially those with the
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highest levels of sequence identity between the two spe-
cies, are preferentially conserved because they perform
some important function. It has been estimated that
around 5% of the genome is under purifying selection [2],
indicating that mutations in these regions have deleteri-
ous effects: a strong suggestion of some important
function.

Here, we apply the Eponine Windowed Sequence (EWS)
sequence analysis method method which uses a Relevance
Vector Machine (RVM) [5] to extract a minimal set of
short motifs which are able to discriminate between two
sets of sequences: in this case, a positive set of conserved
non-coding sequences and a negative set of randomly
picked non-coding sequences. The EWS model is an adap-
tion of the Eponine Anchored Sequence (EAS) model, first
applied for transcription start site prediction in [6] and
subsequently used to predict a range of additional biolog-
ical features including translation start sites and transcrip-
tion termination sites [A. Ramadass, unpublished] While
EAS is designed to classify individual points in a sequence
- a feature which allows the model to predict precise loca-
tions for features such as transcription start sites - EWS
classifies complete blocks (windows) of sequence. The
basis functions (inputs) of the RVM are sums of position-
weight matrix scores [7] across the whole window.

Results

We considered a set of alignments made by the blastz pro-
gram [4] between release NCBI33 of the human genome
and release NCBIM30 of the mouse genome. Since
unprocessed blastz aligns around 40% of human
sequence to the mouse genome, we chose to focus on the
'tight' alignments. These are a subset of alignments which
are rescored and thresholded using a set of parameters
given in [4], and cover only around 5.6% of the human
genome - a proportion much closer to the fraction of
bases thought to be under purifying selection [2].

In total, the tight blastz set contained 787173 blocks of
sequence with high-scoring alignments between the two
genomes. We considered only those blocks assigned to
human chromosome 6, a 170 Mb chromosome which has
recently undergone manual annotation of gene structures
and other features [8]. This chromosome included 44105
(5.6%) of the total alignments. These varied in length
from 34 to 9382 bases, with a length distribution skewed
towards relatively short alignments, as shown in figure 1.

Since we were interested in non-coding features of the
genome, we ignored all regions where an alignment over-
laps an annotated gene structure. This removed 20.8% of
aligned bases. It is possible that some genes, and espe-
cially pseudogenes, have been missed by the annotation
process, so we also removed portions covered by ab initio

http://www.biomedcentral.com/1471-2105/5/131

17000 —
16000
15000
14000 —
13000 —
12000 —
11000 —
10000 —
9000 —
8000 —
7000 —
6000 —
5000 —
4000 —
3000 —
2000 —

1000 \"—\‘r—\‘ﬁ

0 T T T T |

T
099 100-199 200-299 300-399 400-499 500-599 600-699 700-799 800+

Alignment length

Figure |

Blastz alignments between human chromosome 6
and the mouse genome. Histogram showing number of
alignments covering human sequences of various lengths.

gene predictions from the Genscan program [9]. This
eliminated an additional 4.3% of aligned bases. Finally,
repetitive sequence elements annotated by the programs
RepeatMasker [10] and trf [11] (5.9%) were removed
from the working set. The remainder of the aligned
regions were split into non-overlapping 200 base win-
dows, ignoring any portions less than 200 bases. This gave
a set of 13925 sequences which are well-conserved
between human and mouse - and therefore likely to be
functional - but which are very unlikely to be part of the
protein-coding repertoire. These formed the positive
training set for our machine learning strategy.

A negative training set of equal size was prepared by pick-
ing 200-base windows at random from the non-coding,
non-repetitive portions of chromosome 6, using the same
criteria to define repeats and coding sequence. While it is
probable that this set also included some functional
sequences, we would expect them to be represented at a
substantially lower level than in the conserved set.

These two sets of sequence were presented to the Eponine
Windowed Sequence machine learning system, as
described in the methods section. Randomly chosen 5-
base words were used as seed motifs, and three independ-
ent training runs were performed, each for 2000 cycles.
The set of motifs used in model 1 is shown in table 1.

While the exact set of motifs used in the model varied
somewhat from run to run, testing pairs of models on
non-overlapping windows from a 1 Mb region of human
chromosome 22 and plotting the scores showed that the
model outputs were highly correlated (e.g. figure 2). We
calculated the Pearson correlation coefficient for all pairs,
and in all cases this was greater than 0.96. From this

Page 2 of 7

(page number not for citation purposes)



BMC Bioinformatics 2004, 5:131

Table I: Motifs used in EWS homology model I. The entries in
this table show consensus sequences of the weight matrices used
in the model (note that it is possible for two distinct weight
matrices to have the same consensus sequence). Motifs are listed
in both forwards and reverse-complement orientation, and the
two sections of the table indicate whether that motif is given a
positive or negative weight in the learned linear model.

Postive Negative
Forward Reverse Forward Reverse
gtca tgac tacgt acgta
tattg caata gggca tgeee
tgeca tggca gtca tgac
ggca tgce acaat attgt
tacgt acgta gggc geeec
gtact agtac tact agta
taac gtta cctec ggagg
tet aaa ggca tgec
acaat attgt tattg caata
caatt aattg tattg caata
cagc getg aaatt aattt
cag ctg caat attg
cggat atccg gtat atac
aaatt aattt ccagg cctgg
geteg cgagc catg catg
ggc gce act agt
taagg cctta
aaaaa ettt

strong correlation, we concluded that any variations in the
model were simply the result of the trainer picking one
representative from a group of motifs which provide sim-
ilar information.

We scanned genomic sequences using these models at a
range of thresholds, and examined the results on the
Ensembl genome browser [12] using a Distributed Anno-
tation System [13] server. Visual inspection showed that
many of the highest-scoring regions were localised near
the start of genes. This prompted us to look at the distri-
bution of high-scoring sequences with respect to the starts
of a set of well-annotated genes. We considered the
GD_mRNA genes from version 2.3 of the human chromo-
some 22 annotation. These are confidently annotated
genes with experimental evidence as described in [14],
which confirms at least the approximate location of the
ends of the transcripts, and are independent from the
chromosome 6 training data. Figure 3 shows the density
of predictions with EWS scores > 0.90 relative to the anno-
tated 5' ends of these genes. This shows a strong peak of
predictions close to the annotated starts, demonstrating
that the model is predicting some sequences commonly
located around the transcription start site of genes. Com-
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Correlation of model scores. Scatter plot showing the
scores of EWS models | and 2 on a set of human sequences.
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Localisation of predictions. Density of predictions from
one of the homology models around known gene starts on
human chromosome 22

bining this observation with the fact that the model was
trained from conserved (and therefore presumed func-
tional) sequences, we believe that it is detecting signals
found in the promoter regions of genes.

Evaluation of promoter-prediction methods on a large
scale is a difficult exercise, since there are no large pieces
of genomic sequence for which we can be certain we know
the complete set of transcribed regions, and even in the
case of well-known genes we often do not know the
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Figure 4

Accuracy and coverage of TSS prediction. Plots of
Accuracy vs. coverage at a range of score thresholds (ROC
curves) for three independently trained homology models

precise location at which transcription begins. In [6], we
developed a pseudochromosome, derived from release
2.3 of the chromosome 22 annotation. As described
above, this includes a subset of 284 experimentally veri-
fied gene structures. The pseudochromosome was con-
structed to include these genes while omitting all other
annotated genes (which could be substantially truncated).
We considered predictions (groups of one or more over-
lapping windows which all have scores greater than some
chosen threshold) to be correct if they lie withing 2 kb of
an annotated gene start, and false otherwise. Plotting
accuracy (proportions of predictions which are correct)
against coverage (proportion of transcript starts which are
detected by one of the correct predictions) gives a Receiver
Operating Characteristic (ROC) curve. Using this crite-
rion, a totally random set of predictions would be given
an accuracy of around 0.07. ROC curves are plotted for the
three independently trained models in figure 4. Firstly,
this shows that predictive performance for all three mod-
els is rather similar. It also shows that they can function as
accurate promoter predictors, with accuracy rising to a
plateau of around 0.7, much higher than expected for ran-
dom predictions.

We picked model 1 for further study. Using a score thresh-
old of 0.91, this gives an accuracy of 0.68 and a coverage
of 0.31. We compared the set of genes correctly detected
by this model to two other methods: firstly, the Eponi-
neTSS predictor described in [6], and secondly, the pub-
lished results from the PromoterInspector program [15].
PromoterInspector results were mapped to pseudochro-
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Comparison of TSS prediction methods. Sets of pseu-
dochromosome promoters correctly predicted by three dif-
ferent prediction methods: EponineTSS [6] with a score
threshold of 0.999, Promoterinspector (labelled "Pro'spec-
tor"), and the homology-EWS model | with a score thresh-
old of 0.91 ("Homol_1").

mosome coordinates using the procedure described in [6].
Figure 5 shows how the set of promoters detected by these
three distinct methods overlaps. There are clearly strong
correlations between all three methods. In particular, at
this threshold the EWS homology model detects 98
promoters which were found by at least one of the other
methods, but only 4 novel promoters.

We investigated the robustness of the signal learned by
this process by retraining models with a variety of seed
word sizes, from 2 to 6 bases. During training, motifs can
be trimmed to lengths shorter than that of the seed words
(down to a minimum of 2 bases) but can never grow
longer than the seed word size. When evaluated on the
pseudochromosome, the resulting models always showed
a preference for regions around gene starts, regardless of
word length, as shown in figure 6. However, the accuracy
was reduced when using short seed words - particularly
words of length of 2. The best accuracy was seen for a seed
word length of 5, and decreased somewhat for words of
length 6.

This suggests that a large fraction (but not all) of the infor-
mation learned by these models can be encoded in
dinucleotide frequencies. It is well known that many tran-
scription start sites are close to regions of relatively high
CpG dinucleotide composition (CpG islands) [16]. To
investigate the contribution that CpG dinucleotides make
to our models, we deleted all CpG dinucleotides from the
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Effect of seed-word size of learning. Accuracy vs. cover-
age plots for models trained using seed word lengths of 2 to
6 bases.
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Effect of excluding CpG dinucleotides. Accuracy vs.
coverage plots for models trained using a range of seed-word
sizes, with all CpG dinucleotides removed from both training
and test data.

training data, then re-evaluated the resulting models on
the pseudochromsome (also with CpG dinucleotides
removed), as shown in figure 7. Perhaps not surprisingly,
dinucleotide models now show very little tendency to
detect gene starts. However, as the word size increases, the
preference for gene starts gradually increases, until a seed
size of 6 gives an accuracy comparable to that see when
CpG dinucleotides are included, although the maximum
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coverage before accuracy begins to drop rapidly is some-
what lower. Broadly similar results are seen if CpG dinu-
cleotides are randomly replaced with other dinucleotides.

Conclusions

We have shown here that, when presented with a set of
non-coding sequences which are strongly conserved
between human and mouse, a simple motif-oriented
machine learning system consistently builds models
which are able to detect a substantial fraction of human
promoter regions with good accuracy. This strongly sug-
gests that this promoter signal represents the most widely
used motif-based signal in functional non-coding
sequence. While the model learned here can clearly be
applied for the purpose of genome-wide promoter anno-
tation, in practise existing methods offer better coverage
and (in the case of the EponineTSS predictor) predictions
for the precise location of the transcription start site.

It is interesting that the promoter model learned by this
technique detected substantially the same set of promot-
ers as found by the EponineTSS and PromoterInspector
methods. It has previously been remarked that these two
methods detect similar sets [6], but this could perhaps be
explained by the fact that both methods were initially
derived from similar sets of known promoter sequences
(in both cases, training data was extracted from the EPD
database [17]. In the case of the homology models
described here, there is no connection with EPD, or any
similar set of known promoters: the training data was
picked purely on the basis of its high similarity to corre-
sponding portions of the mouse genome. These results
therefore support the alternate view that there is a partic-
ular 'easily detected' subclass of promoter sequences.

One distinct group of promoters, which previous results
show may correspond to this easily detected family, is the
set of promoters associated with CpG islands [16]. How-
ever, while a number of the motifs listed in table 1 are G/
C rich and/or contain the CpG dinucleotide, by no means
all of the motifs match this description, and indeed one
motif containing CpG has a negative weight in the linear
model - its presence in a sequence will reduce the model's
output score — while some A/T rich motifs have positive
weights. We therefore believe that the signals detected
here are significantly more complex than a simple over-
representation of CpG dinucleotides. Experiments with
smaller seed-word sizes support this assumption: while
dinucleotide-based models were also able to predict pro-
moter regions, the accuracy was lower than for models
including longer motifs. Finally, we show that while the
predictive capacity of dinucleotide models is largely
eliminated once CpG dinucleotides are removed from the
sequence, models including longer words are still able to
make correct promoter predictions in many cases. So
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while CpG dinucleotides are an important contribution to
the promoter signal, they are clearly not the only
component.

Methods

Genomic sequence and annotation

Human genome sequence release NCBI33 and mouse
genome release NCBIM30 were extracted from Ensembl
databases [12], which also contained gene predictions
from Genscan [9] and repeat data from RepeatMasker [10]
and trf [11]. Curated annotation of gene structures on
human chromosome 6 was obtained from the Vega data-
base [18]. Vega and Ensembl data was extracted directly
from the SQL databases using the BioJava toolkit with bio-
java-ensembl extensions [19].

Genome alignments

Human-mouse genome alignments were generated by the
blastz alignment program. These were subsequently re-
scored and filtered to give a 'tight' set of high-confidence
alignments, as described in [4]. We downloaded the tight
alignment set from the UCSC genome website [20].

Pseudochromosome for testing promoter-finding methods
A 16.3 Mb pseudochromosome sequence was produced
based on version 2.3 of the curated annotation for human
chromosome 22. This includes all the experimentally-val-
idated gene structures and their upstream regions, while
omitting regions containing genes that are predicted but
not fully verified. In the case of a pair of divergent genes
where one has been verified and the second has not, their
shared upstream region was cut at the midpoint. More
information about pseudochromosome construction is
given in [6].

Eponine Windowed Sequence learning

The Eponine Windowed Sequence (EWS) model is
designed by analogy to the Eponine Anchored Sequence
model first described in [6], but rather than targeting indi-
vidual points in the sequence, it is designed to classify
small regions or windows of a sequence, based purely on
their own sequence content.

The EWS model uses the Relevance Vector Machine [5]
algorithm to drive the training process. Relevance Vector
Machines solve classification and regression problems by
building Generalised Linear Models (GLMs) as weighted
sums of a "working set" of basis functions. During the
training process, those basis functions which are not
informative are given weights close to zero and eventually
discarded from the working set. To explore very large sets
of possible basis functions, it is possible to add extra basis
functions during the course of the training process [6].

http://www.biomedcentral.com/1471-2105/5/131

The "sensors" of the EWS model are DNA position-weight
matrices [7], which make convenient models of short
sequence motifs. When using weight matrices to analyse
sequence windows, we sum the weight matrix probability
scores for all possible positions within the sequence.
Normalising for the length of the sequence being
inspected and the size of the PWM, the basis functions of
the model take the form:

(5) 4w ISHWH+1 W1 )

#(S)= ————— w(s! ) 1
[SI=Iwl+1 5 1

where W(s) is the probability that sequence s was emitted

by weight matrix W, |S] is the sequence length, |W]| is the

weight matrix length, and SlJ denotes a subsequence from
itoj.

An initial set of basis functions is proposed by taking all
possible DNA motifs of a specified length (typically 5)
and generating weight matrices which preferentially rec-
ognise these motifs. As the relevance vector machine
trainer removes non-informative basis functions from the
working set, they are replaced by applying one of the fol-
lowing sampling strategies to a basis function picked ran-
domly from the working set:

¢ Generate a new weight matrix in which each column is
asample from a Dirichlet distribution with its mode equal
to the weights in the corresponding column of the parent
weight matrix.

e Generate a new weight matrix one column shorter than
the parent by removing either the first of the last column.

By using these sampling rules, the trainer is able to explore
motif space. The process of generating candidate motifs
using these rules then selecting the most informative
using the RVM can be seen as a form of genetic algorithm.
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