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Abstract

Background: The two most common models for the evolution of metabolism are the patchwork
evolution model, where enzymes are thought to diverge from broad to narrow substrate
specificity, and the retrograde evolution model, according to which enzymes evolve in response to
substrate depletion. Analysis of the distribution of homologous enzyme pairs in the metabolic
network can shed light on the respective importance of the two models. We here investigate the
evolution of the metabolism in E. coli viewed as a single network using EcoCyc.

Results: Sequence comparison between all enzyme pairs was performed and the minimal path
length (MPL) between all enzyme pairs was determined. We find a strong over-representation of
homologous enzymes at MPL |. We show that the functionally similar and functionally
undetermined enzyme pairs are responsible for most of the over-representation of homologous
enzyme pairs at MPL |.

Conclusions: The retrograde evolution model predicts that homologous enzymes pairs are at
short metabolic distances from each other. In general agreement with previous studies we find that
homologous enzymes occur close to each other in the network more often than expected by
chance, which lends some support to the retrograde evolution model. However, we show that the
homologous enzyme pairs which may have evolved through retrograde evolution, namely the pairs
that are functionally dissimilar, show a weaker over-representation at MPL | than the functionally
similar enzyme pairs. Our study indicates that, while the retrograde evolution model may have
played a small part, the patchwork evolution model is the predominant process of metabolic
enzyme evolution.

ism. A is depleted from the environment, which means

Background

In 1945 one of the first theories regarding the evolution of
metabolic pathways, often referred to as the retrograde
evolution model, was proposed by Horowitz [1]. It states
that during evolution pathways assembled backward
compared to the direction of the pathway in response to
depletion of substrates from the environment. As an
example consider the following scenario: Enzyme E1 cat-
alyzes reaction A — B, where B is essential to the organ-

that an organism harboring an enzyme E2 that can cata-
lyze a reaction producing A from some other substrate in
the environment would be at an advantage. Since E1 can
already bind A there is a greater chance that El rather than
an enzyme without an affinity for A will be duplicated and
mutated into E2.
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In 1976 Jensen [2] proposed the recruitment evolution
theory, more often referred to as the patchwork evolution
model [3]. The patchwork evolution model states that
enzymes initially have broad substrate specificities and
that specialization takes place by way of gene duplication.
As an example consider the following: An enzyme E1 cat-
alyzes a reaction where either one of the substrates S1 and
S2 is accepted. Through gene duplication and random
mutation two different versions of E1 evolve; E1', which
only accepts S1 as a substrate, and E1" which only accepts
S2 as a substrate.

The retrograde evolution model was at first supported by
the discovery of operons, where the functionally related
genes in operons were thought to have evolved through
tandem duplications [4]. The theory that operons are the
remnants of tandem duplication has recently been criti-
cized by Lawrence and Roth [5], who instead proposed
that horizontal gene transfer may be the underlying mech-
anism for the occurrence of gene clusters. There are a few
known homologous genes coding for enzymes which cat-
alyze consecutive reactions and which therefore represent
possible cases of retrograde evolution: trpC, trpA and trpB
(in E. coli trpA and trpB are fused) that catalyze consecu-
tive steps of the tryptophan biosynthesis [6], hisF and
hisA in the histidine biosynthetic pathway [7] and metB
and metC in the methionine biosynthesis [8].

A few recent studies give some support for the retrograde
evolution model. Saqi & Sternberg [9] showed that a
super-family has a general tendency to appear in one or
two particular pathway(s). Rison et al [10] showed that
homologous enzymes are found at close distances within
the (extended) pathways of E. coli and Alves et al [11]
showed that homologous enzymes are also found close to
each other in the whole metabolic network using a modi-
fied version of the KEGG database[12,13].

The patchwork evolution model holds that there should
be many pairs of homologous enzymes that catalyze basi-
cally the same kind of reaction, where one or more sub-
strates are non-identical but similar. Support for this
theory is more abundant than for the retrograde evolution
model [14-17]. The TIM-barrel containing enzymes have
been found in many different pathways [14] and the
homologous pairs of small molecule metabolism
enzymes of E. coli have been shown to be evenly distrib-
uted within and across pathways [15,16].

Metabolic networks are often partitioned into pathways,
which are considered to be functionally separate units of
the network. The partitioning of the metabolic network
into pathways is not always straightforward [18]. As a
result there may be correlations that are not visible in a
pathway oriented perspective which will emerge in a
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whole-network oriented view. There is also an element of
arbitrariness involved in which compounds are consid-
ered promiscuous (compounds involved in many reac-
tions, e. g. H,0, ATP and cofactors) and which are not. We
have chosen to apply a simple network-based criterion.
We count the number of reactions a compound partici-
pates in within the complete metabolic network of E. coli.
The most common compounds are then considered pro-
miscuous and are excluded from part of the analysis.

In the study presented here we investigate whether
homologous E. coli enzymes can be found close to each
other in the complete, unpartitioned metabolic network
of E. coli as derived from the EcoCyc database [19]. We
subsequently investigate the homologous enzyme pairs
found close to each other in the network and classify these
enzyme pairs as cases of retrograde evolution and patch-
work evolution respectively. Finally we investigate
whether the correlation between metabolic network dis-
tance and homology differs for the enzyme pairs classified
as retrograde evolution cases compared to the patchwork
evolution cases.

Results and Discussion

Databases

Metabolic pathway information is available in several dif-
ferent databases such as EcoCyc [19], WIT [20], BRENDA
[21] and KEGG [12]. EcoCyc is an E. coli-specific database
and contains the metabolic complement of E. coli. We
chose EcoCyc over the other available databases for three
reasons: 1) EcoCyc contains information about the direc-
tionality of the enzymatic reactions, 2) Some enzymes
have not yet been classified according to the Enzyme
Commission (EC) system [22] (EcoCyc contains both EC-
classified enzymes and enzymes that fall outside of the EC
classification; There are 1172 enzyme entries in the data-
base and 781 of these have EC numbers.) and 3) EcoCyc
is freely available for universities and non-profit research
institutes.

Representation framework

The vertices of the graph we use represent the enzymes cat-
alyzing the reactions. One edge represents one or more
compounds. There will be an edge leading from an
enzyme E1 to an enzyme E2 if E1 catalyzes a reaction
where compound A is produced and E2 takes A as a sub-
strate. Reversible reactions, such as A = B, are separated
into two reactions, A — B and B — A. There can be at most
one edge in each direction between a pair of enzymes.
Note that the representation used herein is different from
the common representation of metabolic pathways where
the substrates and products are the vertices and the
enzymes catalyzing the reactions are the edges (Figure 1).
The type of network representation used in our study has
been used before for metabolic network analysis where it
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Common representation of the biotin metabolism. In the most common representation of biochemical reactions the reactants
represent the vertices of the network and the enzymes represent the edges. The drawing of the biotin metabolism was

redrawn from EcoCyc [19].

has been referred to as 'protein-centric' graphs [23] and
'reaction graphs' [24] (Figure 2).

Some reactions are physiologically irreversible and should
be represented accordingly. To encompass the directional-

ity information we use a directed graph to represent the
metabolic network of E. coli. As a result there are not nec-
essarily paths from every enzyme vertex in the network to
every other enzyme vertex.
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Protein-centric representation of the biotin metabolism. The protein-centric or reaction graph representation which was used
in our study has enzymes as vertices and reactants as edges. EC 2.3.1.47 is a neighbor of EC 2.6.1.62 because there is an edge
leading from EC 2.6.1.62 to EC 2.3.1.47. In the same manner, EC 2.6.1.62 is a neighbor of 2.3.1.47. In the biotin metabolism
example there are 8 enzyme neighbor pairs. Note that in our definition an edge can consist of one or more compounds and
there can only be one edge in each direction between two enzymes. The edges in blue font, representing CO,, between EC
2.3.1.47 and EC 6.3.3.3, are eliminated when the 20 most promiscuous compounds are removed from the network.

One of the most problematic aspects with metabolic net-
work analysis is how to handle the promiscuous com-
pounds. One may argue that because promiscuous
compounds are usually not the limiting factors of reac-
tions, the network would become more biochemically
meaningful if these compounds are removed [25].
However, to our knowledge there is no generally accepted
criterion to determine whether a compound participating
in a reaction is a current compound, cofactor or main
metabolite. In this study, we have chosen to formulate

and apply a simple network-based criterion. We count the
number of times a compound occurs as part of an edge in
the network. The most common compounds are then
considered as promiscuous compounds [11]. As in the
study performed by Wagner and Fell [24] we here conduct
our study with one network that includes all compounds,
including the promiscuous compounds, and another net-
work where the most promiscuous compounds have been
removed.
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Table I: Network parameters. The table contains some important characteristics of the network (see text for more detailed
description). The second column contains the network parameters for the whole network while the third column contains the network
parameters for the network where the 20 most promiscuous compounds have been removed. The average path length (D) is
determined by taking the average over the MPLs between all vertex pairs. The connectivity of a vertex is defined as the number of

vertices which it is connected to by an outgoing edge.

NETWORK PARAMETERS

0 COMPOUNDS REMOVED

20 COMPOUNDS REMOVED

Number of vertices (u)
Number of edges (k)

Mean connectivity (]; )

Connectivity standard deviation

Average path length (D)

Average path length (random network) (D,)
Clustering coefficient (C,)

Clustering coefficient (random network) (C))

1,172 1,172
224,972 11,365
192 9.7

I51 10

1.9 4.2

1.3 3.0

0.72 0.48
0.16 0.0074

Determination of network parameters

The directed graph derived from EcoCyc contains 1,172
vertices and 224,972 edges (Table 1). The network con-
sists of two components; one contains 2 vertices and a sin-
gle edge while the other component consists of the
remaining vertices. Except for the two enzymes (two chlo-
ride ion transporters) the whole metabolic network of E.
coli is therefore connected as one would expect from a uni-
cellular, autonomous and non-parasitic organism.

We examined which compounds are the most promiscu-
ous in the metabolic network graph by determining the
number of times the compounds occur as part of edges
connecting two vertices in the network. The most promis-
cuous compound is H,O, which appears as part of an edge
between 79,485 enzyme pairs (Table 2). The compound
frequency plot shows some scale-free network characteris-
tics in that there are a few compounds that occur very
often and most compounds occur as parts of edges 1, 2 or
3 times (Figure 3). We also determine which enzymes are
the most highly connected. The most highly connected
enzyme has 735 enzyme neighbors (Carbamoyl phos-
phate synthase) (Table 3).

It has been shown in previous studies that the metabolic
network of E. coli is a small world network [24-26]. The
definition of a small world graph is that its average path
length (D) is on the same order as the average path length
for a random graph, with the same number of vertices (n)
and mean connectivity ( ), but its clustering coefficient
(C,) exceeds that of the random graph by far [27]. C,is a
measure between 0 and 1 of the cliquishness of the graph
[27]. Each vertex' clustering coefficient (C) is calculated by
taking the number of edges between the vertex' neighbors
(m) divided by the maximum number of edges between
the vertex' neighbors, i.e if u is the number of neighbors
and the graph is directed C = m/(u(u - 1)). C, is the average
clustering coefficient for the graph.

Our network graph has C, = 0.72 which is large compared

to the clustering coefficient of the random graph C, = (f
- 1)/n = 0.16 (Table 1). The average path length for the
Erdos-Rényi random graph [28] is D, ~ In(n)/In(% ) =1.3,
which is smaller than but on the same order as the average
path length for the metabolic network (Table 1). Given
the large C, and the small D we can conclude that the

metabolic network of E. coli constructed from EcoCyc
shows some characteristics of a small world network.

Correlation between MPL and homology

We used PSI-BLAST [29] with an E-value cut-off of 10-¢
and 3 iterations for an all-against-all sequence compari-
son of the 1105 protein sequences coding for the meta-
bolic enzymes in E. coli. We chose the relatively strict E-
value cut-off in order to minimize the number of false
positives. We also ran PSI-BLAST against the SCOP data-
base [30] to increase the sensitivity and collect further
pairs of homologous enzymes. The proteins in the SCOP
database are ordered into a hierarchy consisting of class,
fold, super-family and family, with an increasing level of
structural similarity between the proteins. In our study,
enzymes belonging to the same super-family are consid-
ered homologous. Using these methods 8,218 homolo-
gous enzyme pairs were found.

There are 72 cases where two homologous genes code for
the same enzyme. The reason may for instance be that the
genes code for different subunits of the enzyme, that there
are multiple copies of one gene or that the genes code for
two isozymes. In addition there are 169 pairs of enzymes
which are clearly isozymes because they are homologous,
identified as separate enzymes in EcoCyc and catalyze the
same reaction. It is not clear what relationship these 241
pairs should have in our graph representation of the met-
abolic network. They may be included at minimal path
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Compound frequency distribution histogram for the metabolic network of E. coli. The 20 most promiscuous compounds have
been removed in the network analyzed here. The histogram shows how many compounds (y-axis, logged scale) that occur with
a certain frequency (x-axis) in the network. Compound frequency is defined as the number of times a compound occurs as part

of an edge.

length (MPL, Figure 4) 1 since they catalyze identical reac-
tions, or they may be included as a special category at MPL
0. For our analysis however, since we are interested in the
relationship between clearly different enzymes, we chose
not to include these probably fairly recent gene
duplications.

There are 209 E. coli genes which are each associated with
at least two enzymatic functions. Most of these multifunc-

tional enzymes are enzymes with broad substrate
specificities. 18 of these genes consist of two separate
regions which are clearly associated with two (or more)
different enzymatic functions (see Additional file 1 and
for instance [31,32]). We used EcoCyc to identify these
genes and Pfam [33] to localize the domains on the genes.
The domains were separated from each other and
included in the analysis as partial genes.
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Table 2: The most promiscuous compounds in the network. The frequency of a compound is the number of times the compound occurs

as part of an edge in the network.

RANK COMPOUND FREQUENCY
| H,O 79,485
2 ATP 46,579
3 H* 27,033
4 Mg2+ 26,384
5 ADP 23,954
6 Orthophosphate 23,189
7 Pyridoxal phosphate 10,091
8 NAD 7,710
9 NADH 5,742
10 Co, 4,245
] Pyruvate 4,130
12 NADP 3,638
13 NADPH 3,284
14 AMP 2,964
I5 NH, 2,692
16 Coenzyme A 2,638
17 L-Glutamate 2,302
18 Acetyl-CoA 982
19 Phosphoenolpyruvate 941
20 o, 920
21 2-Ketoglutarate 808
22 Mn2* 650
23 S-Adenosylmethionine 454
24 L-Aspartate 408
25 FAD 378
26 Fructose-6-phosphate 312
27 GAP 277
28 Zn2t 272
29 Sucrose 272
30 K* 268

There are 644,656 pairs of enzymes in the whole network
(Table 4). Of these, only 7,989 (1.2%) are homologous
enzyme pairs. There are 121,295 enzyme pairs at MPL 1.
4,662 (3.8%) of these are homologous enzyme pairs.
There appears to be a 3-fold over-representation of
homologous enzyme pairs at MPL 1 in the whole net-
work. In order to determine whether the observed over-
representation of homologous enzyme pairs at MPL 1 is
statistically significant randomized networks were con-
structed. There are many alternative ways to construct ran-
domized networks. We have chosen an approach that
preserves the topological properties of the network since
it has been shown that the metabolic network of many
organisms have some of the properties of scale-free net-
works [26]. We constructed many randomized networks
by starting from the original real network and shuffling
the enzyme identities between randomly chosen pairs of
vertices in the graph which preserves the network topol-

ogy (Figure 5).

The number of homologous enzyme pairs plotted against
MPL for the whole metabolic network of E. coli and the
standard deviations for the 1,000 randomized networks
are shown in Figure 6. In the real network there are 4,662
pairs of homologous genes at MPL 1, which is 58% of all
homologous pairs found (Table 4). In contrast typically
1,454 homologous enzyme pairs (18%) are found at MPL
1 in the randomized networks. Compared to the rand-
omized networks there is again a 3-fold over-representa-
tion of homologous enzyme pairs at MPL 1. If the
homologies were randomly distributed in the network we
would expect to see the line representing the real network
within the boundaries of the standard deviations for the
randomized networks in Figure 6. Instead, we find that
there is a significantly greater likelihood of enzymes at dis-
tance 1 from each other to be homologous in the meta-
bolic network of E. coli than in the randomized network.

The network includes promiscuous compounds such as
H,O, ATP and NAD. There are therefore homologous
enzyme pairs containing for instance NAD-binding
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NAD + Alcohol Aldehyde/Ketone + NADH
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NAD + H20 + Aldehyde <—— Carboxylate + NADH
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Figure 4

Minimal path length (MPL) between enzymes. a) The reactions catalyzed by EC 1.1.1.1 (alcohol dehydrogenase), EC 1.5.1.12 (I-
pyrroline-5-carboxylate dekydrogenase) and EC 1.2.1.3 (aldehyde dehydrogenase). b) There are severeral paths leading from
EC I.1.1.1 to EC 1.2.1.3. The shortest path goes from EC I.1.1.] through aldehyde to EC 1.2.1.3 and is of length | (MPL = I).

Table 3: The enzymes with the highest connectivities (k) of the network for the whole and the reduced networks. The connectivity of
an enzyme is here defined as the number of enzymes which it is connected to by an outgoing edge.

WHOLE NETWORK REDUCED NETWORK
RANK ENZYME K ENZYME K
| Carbamoyl phosphate synthase 735 Taurine dioxygenase 6l
2 ATP synthase 704 Aspartate transaminase 57
3 Phosphoenolpyruvate synthase 604 Isocitrate dehydrogenase 56
4 S-adenosylmethionine synthetase | 603 Malate oxidase 53
5 NAD+ synthase 599 Quinolinate synthetase 48
6 NADP phosphatase 583 Alpha-galactosidase 46
7 Asparagine synthase B 578 3-dimethylubiquinone 3-methyltransferase 46
8 Selenophosphate synthase 563 Transketolase | 45
9 Methionine adenosyltransferase 2 558 Fructose |,6-bisphosphatase Il 45
10 Mg2*-importing ATPase 558 Glutamate synthase (NADPH) 45
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Table 4: The numbers of homologous enzyme pairs and enzyme pairs found at MPLs 1-12. The fraction is simply the ratio between the
number of homologous enzyme pairs and the enzyme pairs. The reduced network is the network where the 20 most promiscuous

compounds have been removed.

WHOLE NETWORK

REDUCED NETWORK

MPL HOMOLOGS ENZYME PAIRS FRACTION HOMOLOGS ENZYME PAIRS FRACTION
| 4.662 121,295 0.0384 429 6,035 0.071
2 2,982 452,081 0.0066 561 33,203 0.017
3 340 67,857 0.0050 I,115 105,254 0,011
4 5 2,861 0.0017 1,472 146,932 0.010
5 0 553 0 1,188 99,240 0.012
6 0 9 0 611 47,115 0.013
7 - - - 265 18,975 0.014
8 - - - 97 5,707 0.017
9 - - - 25 1,217 0.021
10 - - - 9 230 0.039
I - - - | 17 0.059
12 - - - 0 2 0

Total 7.989 644,656 0.0124 5,773 463,927 0.013

domains that are at MPL 1 because their gene products
catalyze reactions involving that cofactor. It could be
argued that such coenzyme binding domains give rise to
skewed results in our analysis. To remedy this complica-
tion we removed 20 compounds, starting from the most
promiscuous compound (H,O) down to the 20th most
promiscuous compound (O,). We find that the
correlation between MPL and homology is preserved (Fig-
ure 7), indicating that the abundance of homologous
enzyme pairs at MPL 1 is not the result of common cofac-
tor-binding domains alone. We could also detect a mar-
ginally significant correlation between MPL and
homology at MPL 2 when the 20 most promiscuous com-
pounds had been excluded from the network (Figure 7).
No correlation could be detected at MPLs greater than 2.
These results were robust for variations in the number of
compounds that were removed from the network, i.e.
removing between 17 and 23 of the most promiscuous
compounds generated the same result (data not shown).

It could be argued that the over-representation of homol-
ogous enzyme pairs at MPL 1 is due to the fact that not all
cofactors have been removed by removing the 20 most
promiscuous compounds. To investigate this possibility
an alternative network was constructed where all the
cofactors, as defined by EcoCyc, were removed from the
network. In this alternative network the number of
homologous enzyme pairs at MPL 2 is just within the
boundaries of 3 standard deviations for the randomized
networks. The correlation at MPL 1 remained unchanged
(data not shown). Hence, the correlation between homol-
ogy and MPL at MPL 1 is not due to cofactor-binding
regions alone.

Rison et al [10] found an over-representation within the
extended pathways of E. coli at pathway distances 1, 2 and
3. Alves et al found that there is clustering of homologous
enzyme pairs at MPL 1 and 2 in the metabolic networks of
several organisms. We detect a clearly significant over-rep-
resentation only at MPL 1 in the metabolic network of E.
coli. Two possible explanations for the differences
between our results are that Alves et al performed a multi-
organism analysis while we analyze only E. coli and that
Rison et al looked at extended pathways rather than at the
whole network.

Analysis of the homologous enzyme pairs

We wished to investigate to which extent the retrograde
evolution model and the patchwork evolution model
respectively are responsible for the over-representation of
homologous enzyme pairs seen at MPL 1. In order to be
able to analyze the homologous enzyme pairs at MPL 1
further we use a rough criterion for discriminating
between cases that fit the retrograde evolution model or
the patchwork evolution model:

1) Patchwork model: Homologous enzymes with similar
functions probably evolved through patchwork evolution
events. Therefore homologous enzymes that evolved
through the patchwork evolution model should share the
same primary EC number.

2) Retrograde evolution: Homologous enzymes with dis-
similar functions are less likely to have evolved through
patchwork evolution events. Therefore homologous
enzymes that have different primary EC numbers are can-
didates for retrograde evolution.
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Preservation of network topology. The left side of the figure shows the numbers of vertices and edges in the original example
graph. The right side of the figure shows the numbers of vertices and edges for the randomized graph where the vertex identi-
ties (A, B, C. D, E, F, G, H) have been shuffled. The topological properties of the original graph are preserved in the rand-
omized graph.
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Normalized number of hits
o

Figure 6

Homology vs minimal path length (MPL) for the whole meta-
bolic network of E. coli. The plot shows the correlation
between homology and MPL when all compounds are
included. The solid line represents the real metabolic net-
work of E. coli. The dotted vertical lines represent three
standard deviations of the number of homologous enzyme
pairs for the randomized networks. The number of homolo-
gous enzyme pairs has been normalized by the average
number of homologous enzyme pairs for the randomized
networks.

We find that 304 enzymes (26%) have not been EC clas-
sified. Reactions that do not have EC numbers have been
classified by EcoCyc according to an EcoCyc-specific
scheme. We consider enzymes that belong to the same
EcoCyc reaction type as functionally similar. There are
some reactions that remain unclassified in EcoCyc. Pairs
including such enzymes are regarded as 'undetermined' in
our analysis.

240 (56%) of the homologous enzyme pairs at MPL 1
have similar functions (Table 5). One instance is 1-phos-
phofructokinase and 6-phosphofructokinase, which
catalyze similar reactions with the difference that 1-phos-
phofructokinase catalyzes a reaction involving fructose-1-
phosphate while 6-phosphofructokinase has fructose-6-
phosphate as a substrate (Figure 8a). These are clearly
analogous reactions whose homology can readily be
explained by the patchwork evolution model.

90 (21%) of the homologous enzyme pairs at MPL 1 are
functionally dissimilar (Table 5). One instance is compo-
nent I of anthranilate synthase (trpE) which is homolo-
gous to the two isozymes of isochorismate synthase (entC
and menF) (Figure 8b). If substrate depletion was the pri-
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Figure 7

Homology vs minimal path length (MPL) without the 20 most
promiscuous compounds. The plot shows the correlation
between homology and MPL when the 20 most promiscuous
compounds (Table 2) have been removed. The solid line rep-
resents the metabolic network of E. coli. The dotted vertical
lines represent three standard deviations of the number of
homologous enzyme pairs for the randomized networks. The
number of homologous enzyme pairs has been normalized by
the average number of homologous enzyme pairs for the
randomized networks.

mary selective pressure for the E. coli ancestor of these
enzymes, chorismate was probably the substrate being
depleted because it is the only compound that these two
reactions have in common. It is primarily among the 297
homologous enzyme pairs with dissimilar functions at
MPL 1 and 2 that the candidates for retrograde theory
enzymes can be found. However, it should be noted that
some of the candidates for retrograde evolution that have
been identified before are not included among our retro-
grade evolution candidates: We classify the enzymes, cod-
ing for the last two consecutive steps in the tryptophan
biosynthesis (trpA/trpB and trpC) as functionally con-
served because these two enzymes have the same primary
EC numbers (4.1.1.48 and 4.2.1.20). In the same manner
we classify the enzymes, coding for two consecutive steps
in methionine biosynthesis (metB and metC) (4.2.99.9
and 4.4.1.8) as functionally similar as well as the four
homologous consecutive enzymes in the peptidoglycan
biosynthesis (6.3.2.8, 6.3.2.9, 6.3.2.13, 6.3.2.10).

The functionally similar, dissimilar and undetermined
homologous enzyme pairs were plotted against MPL and
normalized against 1,000 randomized networks by the
same method as described above. From this procedure we
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1-phosphofructokinase
a) ATP + Fructose—1-phosphate<—— ADP + Fructose—1, 6-bisphosphate

6—phosphofructokinase

ATP + Fructose—6—phosphate

ADP + Fructose—1, 6—bisphosphate

Anthranilate synthase

b) Chorismate + L-Glutamine

Anthranilate + Pyruvate + L-Glutamate

Isochorismate synthase
Chorismate <— Isochorismate

Figure 8

Different types of homologous enzyme pairs at minimal path length (MPL) I. a) Enzymes that catalyze similar reactions. The
enzymes are at MPL | because they both catalyse reactions involving the metabolite fructose-1,6-bisphosphate. b) Enzymes
that catalyze reactions that are mechanistically different. These enzymes are at MPL | because they both catalyse reactions

involving chorismate.

Table 5: The numbers of functionally similar /dissimilar/undetermined homologous enzyme pairs at MPLs I-11 in the network where

the 20 most promiscuous compounds have been removed.

MPL SIMILAR DISSIMILAR UNDETERMINED
NO. HOMOLOGS % NO. HOMOLOGS % NO. HOMOLOGS %

| 240 56 90 21 99 23
2 233 42 207 37 121 22
3 515 46 395 35 205 18
4 693 47 553 38 226 15
5 579 49 469 40 140 12
6 326 53 231 38 54 8.8
7 146 55 101 38 I8 6.8
8 74 76 22 23 | 1.0
9 20 80 5 20 0 0
10 9 100 0 0 0 0
I | 100 0 0 0 0

Total 2836 49 2073 36 864 15

could determine that most of the correlation between
homology and MPL at MPL 1 can be attributed to
enzymes with similar functions (Figure 9) and enzymes
with undetermined function (data not shown). However,
there is still an over-representation of functionally dissim-
ilar homologous enzyme pairs at MPL 1 (Figure 10) indi-
cating that there is a statistically significant proportion of

the homologous enzyme pairs whose homology cannot
be attributed to chemical similarity. We also note an over-
representation at MPL 10 for the functionally similar
homologous pairs (Figure 9). The over-representation
consists of 9 pairs of homologous inner membrane MFS
transporters which show 15-20% sequence identity.
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Normalized number of hits
o

MPL

Figure 9

Homology vs minimal path length (MPL) without the 20 most
promiscuous compounds for functionally similar enzyme
pairs. The plots show the correlation between homology and
MPL for functionally similar (shared primary EC number)
enzyme pairs when the 20 most promiscuous compounds
have been removed. The solid line represents the metabolic
network of E. coli. The dotted vertical lines represent three
standard deviations of the number of homologous enzyme
pairs for the randomized networks. The number of homolo-
gous enzyme pairs has been normalized by the average
number of homologous enzyme pairs for the randomized
networks.

http://www.biomedcentral.com/1471-2105/5/15

10 T T T T T

Normalized number of hits
(4]

MPL

Figure 10

Homology vs minimal path length (MPL) without the 20 most
promiscuous compounds for functionally dissimilar enzyme
pairs. The plots show the correlation between homology and
MPL for functionally dissimilar (different primary EC number)
enzyme pairs when the 20 most promiscuous compounds
have been removed. The solid line represents the metabolic
network of E. coli. The dotted vertical lines represent three
standard deviations of the number of homologous enzyme
pairs for the randomized networks. The number of homolo-
gous enzyme pairs has been normalized by the average
number of homologous enzyme pairs for the randomized
networks.

The correlation between homology and network distance
at MPL 1 is mostly due to the homologous enzyme pairs
with similar functions which have evolved through
patchwork evolution and to homologous enzyme pairs
with undetermined function. While there is some statisti-
cally significant over-representation of functionally dis-
similar homologous enzyme pairs at MPL 1 which cannot
easily be explained by the patchwork evolution model, it
appears that the evolution of an enzyme that catalyzes a
new type of reaction is rare and increased enzyme specifi-
city driven evolution is more common which is in general
agreement with recent studies [16,15].

Conclusions

We constructed a representation of the whole metabolic
network of E. coli from EcoCyc and analyzed the distribu-
tion of homologous enzyme pairs over the network. We
conclude from our study that homologous pairs of
enzymes are more common at minimal path length
(MPL) 1 than expected by chance. This correlation persists
after the systematic removal of the most promiscuous
compounds from the network.

The retrograde evolution model predicts that homologous
enzyme pairs will be found at close distances in the
metabolic network. Like previous studies our study seems
to lend some support to the retrograde evolution model.
To investigate the support for the retrograde evolution
model further we analyzed the homologous pairs of
enzymes in order to distinguish between on the one hand
cases of patchwork evolution (broad-to-narrow evolution
of enzyme substrate specificity) and on the other hand
cases of retrograde evolution (evolution of a different
reaction mechanisms). We found that the correlation
between homology and network distance at MPL 1 is
mostly due to homologous enzyme pairs with similar
functions which have evolved through patchwork evolu-
tion and to homologous enzyme pairs with undetermined
function. However, there is a statistically significant over-
representation of functionally dissimilar homologous
enzyme pairs at MPL 1 which cannot easily be explained
by the patchwork evolution model. In conclusion, our
study indicates that while the retrograde evolution model
may have played a small part, the patchwork evolution
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model is the predominant process of metabolic enzyme
evolution.

The record of evolutionary history that is present in mod-
ern genome sequences does not give much support for the
retrograde evolution model [1] while Jensen's patchwork
evolution model [2] has substantially more support.
Horowitz aimed at explaining the emergence of metabolic
pathways at the origin of life. It is possible that the
subsequent mutations and gene rearrangements have
obliterated the traces of ancient retrograde evolution. The
patchwork evolution cases that we identify could be the
examples of more recent events in evolutionary history.
Further phylogenetic analysis of other genomes may shed
light on this issue.

Methods

Databases

EcoCyc is arranged into several different flat-files. We used
the enzrxns.dat file to extract the enzyme identifiers and
the reaction directions, the proteins.dat file to extract the
proteins coding for the enzymes, the genes.dat file to find
the genes coding for the proteins, the genes.col file to find
the Blattner identification number and the
compounds.dat file to extract the compounds that are
included in the reactions.

There were some reactions that were EC-number classified
but did not have a link to the corresponding enzyme in
the enzrxns.dat file. We could find 46 such cases and used
KEGG [12] and BRENDA [21] to correct this problem (see
Additional file 2).

Of the 1,172 enzyme identifiers available in EcoCyc, 44
were not connected to the rest of the network. Some other
enzymes have not yet been located in the genome, which
makes sequence comparison impossible, leaving the final
number of enzymes for our study at 1,085. The 1,105 pro-
tein sequences coding for these enzymes were extracted
from the Wisconsin-Madison E. coli genome project's flat-
file [34]. There were 519 compounds that were involved
in the reactions extracted.

Programs

A set of programs were constructed for determination of
the minimal path lengths (MPLs) for all enzyme pairs in
the network graph. For each E. coli enzyme the
neighboring enzymes were determined (Figure 11a). The
main program is a breadth-first search implementation
which determines all possible MPLs between all pairs of
enzymes (Figure 11b). The general idea for the algorithm
is the same as described in Jeong et al [26]. It should be
noted that because the graph representing the metabolic
network of E. coli is directed there may not be paths

http://www.biomedcentral.com/1471-2105/5/15

between all enzyme pairs in one graph component. All the
scripts used in this study were written in Python.

Authors' contributions
SL performed the analysis as a graduate student under the
supervision of PK.
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a) Determine neighbors for each enzyme

For each enzyme E1:
For each enzyme E2:
For each of E1’s reactions R1:
For each of E2’s reactions R2:
If compound on right side in R1 is on left side in R2:
E2 is a neighbor of E1

b) Determine Minimal Path Length

MPL_table = empty hash table (where MPLs between enzymes will be stored)
For each enzyme E1:

MPL = 1
used = empty hash table (for enzymes whose MPLs to E1 have been found
this_shell = E1’s neighbors
While MPL <= MAX_MPL:
next_shell = empty hash table (for the neighbors of this_shell)
For E2 in this_shell:
If not E2 in used:
MPL_table(E1, E2) = MPL
Put E2 in used
Put E2’s neighbors in next_shell
this_shell = next_shell
MPL += 1

Figure 11

Main algorithm. a) Determination of neighbors for each enzyme. b) Determination of minimal path length (MPL). The algorithm

is a bread-first search for the shortest distance between all pairs of enzymes. MAX_MPL is the maximum MPL under
investigation.

Additional material
Additional File 2

The text file additional_file_2.txt contains enzymatic reactions from Eco-
Additional File 1 Cyc's reactions.dat file which were associated with complete EC numbers
The text file additional_file_1.txt contains a list of some of the genes in E. and did not have links to the enzyme objects in EcoCyc's enzrxns.dat file.
coli which code for multifunctional enzymes. In this study these genes These reactions were added to our study using information from KEGG
were separated into two partial genes because the functions could be [12] and BRENDA [21]. The enzymatic reactions are included in this file
clearly associated with different domains. Each line in the text file consists with the EcoCyc reaction ID, EC number, common name, left side reac-
of the name for the partial gene, the EcoCyc ID for the enzyme associated tants, right side reactants, genes and reaction direction.
with the gene, the EcoCyc gene ID and the gene's Blattner ID. Click here for file
Click here for file |http://www.biomedcentral.com/content/supplementary/1471-
[http://www.biomedcentral.com/content/supplementary/1471- 2105-5-15-S2.txt]

2105-5-15-S1.txt|
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