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Abstract

Background: A major goal of cancer research is to identify discrete biomarkers that specifically
characterize a given malignancy. These markers are useful in diagnosis, may identify potential
targets for drug development, and can aid in evaluating treatment efficacy and predicting patient
outcome. Microarray technology has enabled marker discovery from human cells by permitting
measurement of steady-state mRNA levels derived from thousands of genes. However many
challenging and unresolved issues regarding the acquisition and analysis of microarray data remain,
such as accounting for both experimental and biological noise, transcripts whose expression
profiles are not normally distributed, guidelines for statistical assessment of false positive/negative
rates and comparing data derived from different research groups. This study addresses these issues
using Affymetrix HG-U95A and HG-U 133 GeneChip data derived from different research groups.

Results: We present here a simple non parametric approach coupled with noise filtering to
identify sets of genes differentially expressed between the normal and cancer states in oral, breast,
lung, prostate and ovarian tumors. An important feature of this study is the ability to integrate data
from different laboratories, improving the analytical power of the individual results. One of the
most interesting findings is the down regulation of genes involved in tissue differentiation.

Conclusions: This study presents the development and application of a noise model that
suppresses noise, limits false positives in the results, and allows integration of results from
individual studies derived from different research groups.

Background expression of thousands of genes in a given sample. Such
DNA microarrays have become a useful tool in biomedi-  expression profiles could predict genetic predisposition to
cal research as they can be used to determine the relative  disease, serve as a set of diagnostic markers, define better
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drug treatments options for existing diseases (pharmacog-
enomics), or mark the precise nature of disease progres-
sion. A major limitation of this technology is the lack of
uniform data mining strategies. This study integrates com-
plementary approaches to more effectively analyze
Affymetrix GeneChip microarray data derived from sev-
eral different types of solid tumors. If the noise is consist-
ent and reproducible it can be filtered from the data and
some false positives can be eliminated. There are two prin-
cipal sources of noise in microarray experiments: biologi-
cal noise and technical noise. Biological noise consists of
variation among patients and tumor locations, variation
in the cellular composition of tumors, heterogeneity of
the genetic material within tumor due to genomic insta-
bility. Technical noise consists of differences in sample
preparation and experiment variables which include non-
specific cross hybridization, differences in the efficiency of
labeling reactions and production differences between
microarrays. Biological noise cannot be corrected but it
can be accounted for with statistics using replicates of the
treatments or conditions. However, the noise derived
from experimental techniques is reproducible and its
boundaries can be modeled. It has been observed that in
differential gene expression comparisons of any given
gene, there is a greater variance in the fold-change calcula-
tion at lower signal intensities [1,2], and when comparing
replicate samples, lower expression values tend to have
greater variance in signal intensity. This suggests that
larger errors can occur when lower signals are used to
compute fold-changes in differential comparisons. Fold
change, computed in this way, can lead to extraneous
inclusions in lists of significantly up-regulated or down
regulated genes. For example, a fold change of two calcu-
lated from intensities of 25 and 50 may not be as trustwor-
thy as a fold-change of two determined between intensity
values of 2,000 and 4,000. Thus, the purpose of error
boundary modeling is to reduce the influence of less trust-
worthy fold-change calculations in the analysis of differ-
ential microarray data. The efficacy of coupling a noise
boundary model to an analysis method has been previ-
ously shown for two color cDNA arrays [3-6].

The principal concerns when using microarray data
derived from different labs to identify cancer markers is
that chip-to-chip normalization cannot eliminate differ-
ences in cRNA synthesis and labeling, hybridization pro-
tocols, scanner settings and image processing software.
Variable RNA quality can influence the amount of indi-
vidual cRNAs generated. The laser power on scanners can
differ causing saturation of high intensity probe sets and
may have a more variable estimation of the very low
expressed transcripts.

Two studies [7,8] have successfully classified different
types of cancer by their molecular profile on microarrays
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using hierarchical clustering and support vector machine
(SVM) techniques. Both studies found that their markers
comported a high number of genes whose expression dif-
fered among the normal tissues of origin. The approach
taken in this paper is that the cancer samples are com-
pared first to their normal tissue and then the most dis-
criminating genes for each cancer vs. normal comparison
are compared between cancers. This circumvents normal-
ization problems due to lab-specific parameters (scanner
settings, labeling, hybridization variables) and tissue spe-
cific artifacts, as each cancer biopsy is compared to its cor-
responding normal tissue processed by the same research
group, in the same environment. These environmental
parameters and artifacts are assumed to be similar for the
normal and cancer biopsies and should cancel out. This
allowed the selection of the genes that best discriminated
between the normal and tumor samples. These classifiers
were then evaluated to see if they were specific to the dif-
ferent types of cancers. Since gene expression measure-
ments of individual Affymetrix GeneChips probe sets
frequently do not follow a normal distribution, a non-
parametric analysis was used.

The commonly used t-test tests to see if two populations
have a different mean but does not test the overlap of the
populations. Selecting markers with minimal overlap in
their expression between the normal and tumor states
would improve their predictive value. We developed a
method to find such markers using an un-weighted voting
scheme. This non-parametric method for marker selection
was chosen so that no assumptions on the shape of the
data distribution were required. The computed noise
boundary makes the selection criteria more stringent,
eliminating many false positives signals and highlighting
genes that are differentially expressed most consistently in
comparisons between a cancer and its corresponding nor-
mal tissue. This integrative approach can yield a signature
of distinct transcripts distinguishing a variety of solid
tumors.

The objectives of this work were three fold: 1). develop a
noise boundary for GeneChip data, 2). develop an algo-
rithm for selecting markers with minimal overlap in their
expression between the normal and tumor states, 3). inte-
grate the analysis of previously published data from differ-
ent sources.

Results and discussion

Noise boundary model

The noise boundary model was created to evaluate the
reliability of calculated fold changes. Data from normal
tissue biopsies obtained from public data sets were used
to infer the noise boundary to be used when comparing
the normal tissue to their corresponding cancer biopsies.
The cancer biopsies were not used in designing the noise
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This figure represents the 80t percentile for each of the five
normal tissues plotted against the inverse of the average bin
intensity. Bins with an average intensity below the cutoff of
100 (above 0.0l in the figure) were not displayed as they are
below the minimum intensity cutoff.

model as they are likely to be more variable than normal
tissue. Three different signal extraction methods, MAS5
[9,10], dChip [11,12] and RMA [13] were compared and
MASS was chosen as it showed stable results and is widely
used. A complete analysis of the three methods is
included in the supplemental data [see Additional file 2].

A fold-change threshold boundary was drawn for each
comparison between normal tissues for each of the can-
cers studied to model the noise inherent to the method.
The data was first sorted according to the average intensity
of the values of the probe-sets for two replicate chips. If
there is no noise in the technique or the biology, one
should expect to have all the fold changes be 1. However
when plotting the fold changes against the average inten-
sity for the probe-sets we observed that the data formed a
volcano plot with considerable scattering for low intensity
and a progressive tapering of the fold changes at high
intensities. As there is a lot of noise in estimating the low
end expression a cut-off is needed to eliminate part of that
noise. Then, as the samples were biological replicates, we
assumed that most of the genes were not differentially
expressed; a certain percent of the genes should not
change and a percentile cut off was set up to eliminate
spurious variations. The data was then binned into fixed
width bins including 200 expression values. For modeling
purposes, the percentile was plotted against the inverse of
the average bin intensity to reveal a linear relationship
that can be characterized with a slope and intercept. A sen-
sitivity analysis to optimize the noise boundary percentile
and low intensity cut off parameters was performed and is
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Table I: Average slopes and intercepts for the different tissue
type. This table displays the average slope and intercept of the
regression of the 80t percentile of the bins by the inverse of the
average expression per bin. The bin size was 200 and the
minimum intensity cutoff was 100.

Average Stdev Average Stdev

Slope Intercept
lung normal 96 29 1.42 0.15
Breast Normal 139 33 1.24 0.06
Ovarian Normal 154 45 1.48 0.12
Prostate Normal 6l 26 1.61 0.26
Oral Normal 89 12 1.55 0.22

presented in the supplemental data [see Additional file 2].
The low intensity cutoff was set to 100 and bins with a
mean expression value lower than 100 were excluded. The
80th percentile of the fold-change, chosen as the noise
boundary, was calculated for each bin. Figure 1 shows the
80th percentile error boundaries for the five different tis-
sues as a function of the inverse of the average bin inten-
sity. To decrease the effect of saturation on the regression,
the gene expression values in the top 8% were eliminated
(this correspond to the 5 highest bins intensities in figure
1). The noise boundary was found to be tissue dependant
and the slope and intercept were calculated for each tissue
(Table 1). For a fold change to be considered reliable, it
has to be greater than the noise boundary threshold for
the same average intensity:

Noise _ Boundary = Slope x + Intercept

Average _ Intensity

Nonparametric microarray data analysis: Er Algorithm

In microarray experiments, the number of replicates is
often small and the distributions of gene expression are
not normal for all genes. For the same difference in mean,
depending on the distribution of the data, the overlap of
two distributions can be dramatically different. Ideal
markers would be genes with no overlap in their distribu-
tion; the consistency of change is therefore more signifi-
cant than the amplitude. To address the problem of low
numbers of replicates and multiple testing on 12,000
genes, the noise boundary model was incorporated with
non-parametric data mining. The noise boundary elimi-
nates noise that is proportional to the probe intensity
measured. The combination of the non-parametric voting
scheme with the noise model will be referred to as the
directional change assessment algorithm. For each tran-
script, the ratio of expression intensities (fold change) of
each cancer biopsy to each normal biopsy was deter-
mined. Those ratios were recorded and evaluated against
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Comparison of the Er score of the 500 top ranked probe sets for breast cancer versus normal breast biopsies. Er score for the
real breast cancer vs. normal biopsies (red line), Average Er score of the 500 top ranked probe sets of the 100 shuffling sets
(blue line), one standard deviation away form the average shuffled sets (orange line).

the noise boundary model. If a ratio was above the ratio
given by the noise boundary, the direction of the fold-
change as increased (+) or decreased (-) expression was
recorded. If the ratio was below the value given by the
noise boundary for the average of the intensities, then the
fold-change was considered insignificant and assigned a
no change (0) direction.

For each probe-set

For each sample ¢; in the cancer class

For each sample n; in the normal class

If ¢,.n; then r = ¢;/njelse r = ny/c;
If >noise_boundary ((¢;+n;)/2) And If ¢;.n;
Pos_score = Pos_score + 1

If >noise_boundary ((¢;+n;)/2) And If ;< n;

Neg_score = Neg_score + 1

Else NoChange_score = NoChange_score + 1

We designed an index, called event ratio to summarize the
overlap in distribution between the cancer and normal
samples. This Er index is described by:

Er— max(Pos _ score, Neg _ score)

# comparisons

Where the #comparisons is equal to the number of cancer
samples multiplied by the number of normal samples.
This method counts direction and evaluate the overlap of
the distributions normalized to the number of compari-
sons. The Er index ranges from 0 to 1. As the direction of
change for a gene becomes more consistent, Er
approaches 1. Conversely, if the Er score is close to 0.5,
then the gene is inconsistent with regard to its
directionality and thus cannot be considered a reliable
marker for disease classification. As the score approaches
0, the transcript direction and fold change cannot be reli-
ably estimated as it is within the noise level of the tech-
nique. The software is available at http://cag.icph.org/.

To test the validity of this approach, the samples were
shuffled 100 times between the categories (cancer and
normal) and the Er computation was repeated. Each time
the data was shuffled, the probe sets were sorted by
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Average Er scores for the breast shuffled sets depending on the number of shuffling. The average Er score and a standard devi-
ation above and below are represented for 10, 30, 50, 80, 100, 150 and 200 shuffling of the dataset. We can see that the aver-

age Er score converges rapidly after 50 shuffling of the data set.

descending Er score and the probe set information was
discarded and replaced by its rank. The average and
standard deviation of the ranks was then computed and
compared to the results obtained for the cancer versus
normal biopsies. For all the comparisons performed,
higher Er scores were obtained in the case of cancer versus
normal classifications than with randomly shuffled sets.
An illustration of the results obtained with the breast can-
cer versus normal biopsies can be seen in figure 2. The
average Er score per rank converged rapidly, and was con-
sistent after shuffling the dataset 50 times (figure 3).

Comparison of the Noise Boundary-Er Algorithm to
standard analysis techniques

To compare the Er algorithm including the noise model to
other commonly used analysis methods, the replicate set

from the Latin square dataset was used [ 14]. In this dataset
fourteen specific RNAs were exogenously added to the
hybridization mixture in two fold increasing concentra-
tions. The T-test performed on this data identified all four-
teen genes as well as 161 presumed false positives with a
significant p-value (below 0.01). Therefore, the percent-
age of true positives is only 8% of the genes found signif-
icant in the result. This reflects the multiple-testing
problem when using the t-test in this way. If twelve thou-
sand tests are performed simultaneously on 12,000 genes
with a type I error of 0.01 (the test is falsely considered
significant one time every 100 tests), we can expect 120 (=
12,000*0.01) probe sets to be below the p-value 0.01 sim-
ply by chance. The Hochberg/Simes [15] method
addresses this issue. They both found 16 genes to have a
significant fold change with 11 of the 14 true positives
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(approx 69% true positives in the result). Another correc-
tion technique for multi-testing is the Bonferroni [15,16]
method which found seven genes to be significant includ-
ing six out of the fourteen true positives (approx. 86% true
positives in the result). The SAM [17] method found 21
significant genes including 12 out of the 14 true positive
(57% true positives in the result) for a delta of 1.54, and a
PiOHat of 0.96. Although they were able to identify 85%
of the exogenously added transcripts, their false positive
rate was underestimated. SAM estimated a median false
positive rate of 4.58%, but found 9 out of 21 probe-sets to
be significant while they were not exogenously added
(false positive rate of 43%). The Er model described above
with a cut-off of 0.9 identified 12 genes with 8 of them
being true positives (66% true positives in the result).
These data suggest that the Er model is well within the sep-
aration levels of those standards techniques. However the
results and performance of the different techniques might
be dataset dependant. The replicate set from the Latin
square dataset has little inherent noise. Even the chips at
different control concentrations can be considered as
technical replicates as only 14 out of 12,000 genes were
supplemented. Using the noise model to remove noise
from a noisier dataset might prove even more useful. It
would be interesting to compare those methods on multi-
ple datasets, but at the time of this study, this is the only
dataset with an absolute knowledge of true and false pos-
itives. It is worth noting that the supplemented RNAs were
added at a fold variance in concentration but that the
actual intensity found averaged only 1.53 fold. All those
methods greatly decrease the number of false positives
compared to the t-test alone but some true positives were
also missed. This is partly due to the fact that the control
RNAs were added at concentrations testing the limits of
detection.

Cancer-specific biomarkers

The Er model was used to compare each cancer biopsy to
its corresponding normal tissue. In the absence of error
modeling, the directional change algorithm identified
1,910 probe-sets that had an Er score above 0.9 in ovarian
cancer, 1,355 in breast cancer, 1,730 in oral cancer and
322 in prostate cancer. Incorporation of error modeling
dramatically reduced the number of probe-sets with Er
scores above 0.9 to 272 for ovarian, 177 for breast, 129 for
oral cancer and 2 for prostate cancer [see Additional file
3]. For lung cancer biopsies, the distinct sub-classes were
compared against normal tissues and 15 probe-sets with
an Er value above 0.9 in all comparisons were uncovered.

The advantage of determining Er scores for differentially
expressed cancer transcripts is that it provides a statistical
metric that can be used to underscore markers that are
unique to a particular cancer. Although the Er is not a sta-
tistical test and an Er score can vary in its significance
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depending on the number of samples studied, we selected
genes with a high Er index in one cancer type (Er> = 0.9)
and low in the others (Er<0.6). As Affymetrix HG-U95A
and Hu133A contain different probe-set numbers for the
same gene, the SOURCE software [18] from Stanford Uni-
versity was used to match the probe set to their cluster ID
using the UniGene Build 167. Cluster IDs were then
matched between chip types using Microsoft Access. No
universal marker encompassing all the cancer vs. their
normal tissue was found. This result is consistent with the
result from Ramaswamy et al. [7] using 14 common
tumor types including breast, prostate, ovarian and lung
cancer. Nonetheless, caveolin-1 (CAV1) was found down
regulated in 90% of breast, ovarian, and lung tumors, and
in 80% of the prostate cancers. This gene is also down-reg-
ulated in large diffuse B-cell lymphoma [19], is associated
with a region of the chromosome 7 q31 frequently deleted
in tumors [20], and has been shown to have a tumor sup-
pressing activity when restored [21,22].

The number of genes found to be reliable markers varied
greatly between cancer types [see Additional File 1]. Pros-
tate and lung cancer had the smallest number of such
markers and were the 2 datasets with the most samples.
The only prostate marker identified, SIM2, is a transcrip-
tion factor involved in regulation of transcription during
development [23]. This gene has also been found differen-
tially expressed in colon and pancreatic cancer [24], and
an antisense inhibition of SIM2-s expression in a colon
cancer cell line restored growth inhibition and apoptotic
cell death [24].

Two genes, AGER and MARCO, were found to be under
expressed in all the lung cancer types compared to other
cancer types. The advanced glycosylation end product-
specific receptor (AGER or RAGE) has been previously
reported down-regulated in non small cell lung carci-
noma [25]. AGER is a receptor for amphoterin which
mediates cell differentiation [26], and is highly expressed
in lungs. Down-regulation of AGER may be a critical step
in lung tumor formation as it is down regulated in all the
different subtypes of lung cancer studied here. On the
other hand, AGER seems to be up-regulated in pancreatic
cancer and its level correlates to the metastatic potential of
the cancer cell line [27]. The second gene specific to lung
cancer is MARCO which is expressed by alveolar macro-
phages in the lung and is involved in inflammation and
pathogen clearance [28,29]. A decrease of MARCO RNA in
the sample may be due to a decrease in the number of
macrophages inside the tumor compared to the normal
tissue.

Thirty nine probe sets were found to have an Er score
above 0.9 in ovarian cancer and lower than 0.6 for the
other cancers. Two of these genes, Janus kinase 1 (JAK1)
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and a zinc finger homeobox (ZFHX1B), which are
involved in the TGF B signaling pathway regulating cell
growth, were down regulated. PAX8, a gene important in
development which had been identified in an earlier
study [30], was found to have consistently increased
expression. Three genes involved in cell growth or main-
tenance, MLLT2, PRSS11, FOXO3A, were down regulated.

Breast cancer profiles have several interesting features.
First, 16 ribosomal protein genes have decreased expres-
sion: L34 is involved in translational control [31], S27 in
signal transduction, and RPS4X in development and cell
cycle control. As the genes coding for those ribosomal
proteins are located on different chromosomes the down
regulation of these ribosomal proteins could be due to
methylation of the ribosomal DNA [32,33]. All of the
markers for breast cancer are down regulated except for
inosine monophosphate dehydrogenase 1 (IMPDH1),
increased by two fold, which is involved in the biosynthe-
sis of purine nucleotides. Breast cancer has distinct sub-
groups which some are hormone dependant for growth,
others being very aggressive with an Her-2 amplification.
The cancer samples in this study [8] are likely to be a mix
of these subtypes. This might explain why the well known
markers for a particular sub group do not appear in those
results. However, the particular sub-classification of those
16 breast cancer samples is not known [8].

In oral cancer [see Additional File 1], many genes involved
in differentiation of epithelial cells are found to be specific
markers for this cancer. Keratin 4 and 13 (KRT4 and 13),
and the small proline-rich protein 1B (SPPR1B) involved
in epidermal differentiation, are all down regulated, as
well as cellular adhesion genes desmoglein 1 and 3 (DSG1
and 3). The matrix metalloproteinase 13 (MMP13) gene
encoding collagenase was specifically up regulated in this
cancer. In the original study the up regulation of MMP1
and down regulation of KRT4 was confirmed by RT-PCR
[34].

Conclusions

The method described here provides improved non-para-
metric approaches to microarray data analysis. After
applying the noise boundary model, markers were
selected according to their consistency for up-regulation
or down-regulation using a voting scheme comparing
normal versus cancer biopsies. Tissue-specific expression
differences were eliminated by comparing the cancer sam-
ples to the normal biopsies from the same tissue. The
genes with the greatest differential expression between
cancer and normal biopsies were then compared between
cancer types. This differs from previous studies [7,8,35]
which directly compare results among different cancers.
Groups of markers with consistent differential expression
among ovarian, breast, prostate and lung cancer were
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found. Many of these markers are related to de-differenti-
ation of the tissue and were highly specific to their tissue
of origin. Also, tumors arising from cells with the same
embryogenic origin tend to have the same genes required
for cancer progression. This confirms a previously
described oncodevelopmental connection [36].

Methods

All of the microarray data used in this analysis was derived
from RNA isolated from biopsies and hybridized on
Affymetrix GeneChips HG-U95A, HG-U95Av2 or HG-
U133A. All the research groups used the same standard
procedure for labeling the cRNA, hybridization and scan-
ning the GeneChips [37]. The datasets were obtained
from several different sources: Data from 24 breast cancer
biopsies were from Su et al.[8], and the three correspond-
ing normal breast tissue biopsies were provided by Garret
Hampton from the Genomics Institute of the Novartis
Research Foundation. For prostate cancer, the dataset was
derived from 21 tumors and 8 normal biopsies [38]
whereas the ovarian cancer dataset originated from 14
tumor and four normal biopsies [39]. Finally, the lung
cancer dataset consisted of biopsies from 61 samples of
lung adenocarcinoma, 20 lung carcinoids, six small cell
lung cancer, 21 squamous lung cancers, and 17 normal
lung tissues [40]. Out of the 61 adenocarcinoma samples,
19 were replicates and 52 were sub-divided into five cate-
gories according to Bhattacharjee et al.(2001) [40]: seven
in cluster 1, nine in cluster 2, 15 in cluster 3, 13 in cluster
4, and eight samples of colon metastasis. The Oral cancer
dataset consisted in 4 normal and 16 oral cancer biopsies
[34]. The directional change assessment and the noise
model algorithms were programmed using Python, and
the comparison for markers was performed with Excel.
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Additional material

Additional File 2

Assessing the noise level and trust threshold for differential expression on
Affymetrix GeneChips. This document compares the noise from MAS5,
RMA and dChip and presents the sensitivity analysis for the noise model
parameters using the Latin square replicate data set.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-5-185-52.doc]
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Additional File 3

Gene markers for prostate, breast, ovarian, oral, and lung cancer. This file
presents the Top Er scores for each cancer studied when compared to its
normal tissue. There is a result table with gene information for each can-
cer on separate tabs.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-5-185-S3.xls]

Additional File 1

Gene markers that distinguish between prostate, breast, ovarian, oral, and
lung cancer. This file presents the Er scores of genes expression levels that
are consistently up or down in a given cancer compared to its normal tissue
(Er>0.9) but not in any of the other four cancers (Er<0.6).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-5-185-S1 xls]
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