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Abstract

Background: Annotation of sequences that share little similarity to sequences of known function
remains a major obstacle in genome annotation. Some of the best methods of detecting remote
relationships between protein sequences are based on matching sequence profiles. We analyse the
superfamily specific performance of sequence profile-profile matching. Our benchmark consists of
a set of 16 protein superfamilies that are highly diverse at the sequence level. We relate the
performance to the number of sequences in the profiles, the profile diversity and the extent of
structural conservation in the superfamily.

Results: The performance varies greatly between superfamilies with the truncated receiver
operating characteristic, ROC,, varying from 0.95 down to 0.01. These large differences persist
even when the profiles are trimmed to approximately the same level of diversity.

Conclusions: Although the number of sequences in the profile (profile width) and degree of
sequence variation within positions in the profile (profile diversity) contribute to accurate
detection there are other superfamily specific factors.

Background

Currently some of the best methods for detecting relation-
ships between protein sequences below the so-called twi-
light zone of sequence similarity are offered by iterative
search algorithms such as PSI-BLAST [1] which, in effect,
compare sequences to a profile. More recently profile-pro-
file matching protocols [2-5] have been shown to offer
considerable benefits over sequence-profile matching.

Here, we examine how the performance of remote
homolog detection by profile-profile methods varies
between particular superfamilies. Since superfamilies are
believed to constitute sets of remote homologs, detection
of same-superfamily relationships is an important task for
bioinformatics, and with the increasing number of struc-

tures becoming available, improvement in this area will
help build a complete structural map of sequence space.
In this paper, we use a set of superfamilies that are very
sequence diverse to benchmark profile-profile methods.
By sequence diverse, we mean that the superfamily has
many domains that show no detectable sequence similar-
ity to each other; this lack of detectable sequence similar-
ity means this set is a difficult benchmark for remote
homolog detection methods.

Previous work has shown that the performance of profile-
profile methods is chiefly determined by the width and
diversity of the profiles. By profile width, we mean the
number of sequences in the profile, defined in contrast to
profile length and by diversity we mean the degree of
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Table I: Profile width and Neff for dataset
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Profile Width Neff

Superfamily Full Trimmed Full Trimmed
(Trans)glycosidases 4104 23.93 13.11 3.21
4-helical cytokines 85.71 43.57 4.3 2.86
alpha/beta-Hydrolases 509.43 22.32 16.32 3.65
Cytochrome ¢ 413.62 18.86 12.64 37
E Set domains 182.73 33.27 7.99 3.16
FAD/NAD(P)-binding 616.52 20.57 15.33 3.68
Fibronectin type 1661.67 24.83 11.44 3.55
Homeodomain-like 255.21 39.33 7 3.34
Immunoglobulin 1614.7 69.04 11.33 3.65
NAD(P)-binding 463.14 29.55 12.32 3.27
Nucleic acid-binding 224.09 23.57 821 3.1
P-loop 483.03 26.44 I1.64 2.92
S-adenosyl 472.42 22.08 14.88 3.22
Thioredoxin-like 471.72 25.28 12.61 3.58
Viral coat 265.28 35.93 6.11 2.96
Winged helix 206.94 24.81 8.11 3.13

sequence variation within positions in the profile. In par-
ticular, Panchenko suggested that there may be an opti-
mum level of profile diversity [6], whilst Grishin
suggested that the inclusion of as many related sequences
as possible gives maximum performance [7].

We examine the performance of profile-profile matching
with regard to specific superfamilies with both the full
profiles generated from a PSI-BLAST search, and with pro-
files that are trimmed to similar width and diversity. Sig-
nificant differences in recognition performance exist
between superfamilies for both the full and trimmed pro-
files. This suggests that performance of profile-profile
matching is not simply a function of profile width and
diversity. We examine how the performance relates to the
structural diversity of superfamilies and find that structur-
ally conserved superfamilies are recognised more success-
fully than structurally diverse superfamilies.

Results

Width and diversity of profiles

Table 1 shows the width and diversity for the full and
trimmed profiles. The table shows average profile width in
for each superfamily in the dataset before and after trim-
ming (as detailed in the Methods section). The table also
shows average Neff (defined as the total number of differ-
ent amino acids in a given column of a profile [1,6,7])
across all non-gapped columns for each profile in the
superfamily. The full profiles show considerable variation
in both size and diversity of the profiles. The trimmed
profiles, however, are much more similar in both width
and diversity, with values of Neff consistently around
three.

Superfamily specific performance of remote homolog
detection

Figure 1 shows the value of the performance measure
ROC,, (see Methods for definition) for each superfamily.
The figure shows that there is a large variation in perform-
ance with respect to superfamily for both the full profiles
and the trimmed profiles.

For the full profiles, the alpha/beta-Hydrolases, Cyto-
chrome c and S-adenosyl superfamilies perform well, all
having with ROC,, values > 0.7, the fibronectin, thiore-
doxin-like, (trans)glycosidases, immunoglobulin and
FAD/NAD(P)-binding have ROC,, > 0.2 and the remain-
ing 8 superfamilies all perform poorly, having a perform-
ance less than 0.1.

After trimming, although performance is reduced, the
overall pattern of performance still remains. All the well
recognised superfamilies (with the exception of the
(trans)glycosidases and thioredoxin-like) still show
ROC, , values greater than 0.2, while the rest are still less
than 0.1.

The fact that the performance varies greatly between
superfamilies despite the trimming of the profiles indi-
cates that the profile generation is not the only limiting
step in the performance of profile-profile methods. One
might have thought that, for instance, the bad recognition
of 4-helical cytokines is due to the small number of
homologs drawn from the profile-building stage. Whilst
this still may be true, it is not necessarily true: the Cyto-
chrome c superfamily still shows a ROC,, of 0.7 when
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ROC,, values for each superfamily in the dataset for full and trimmed profiles.

using trimmed profiles despite having, on average, less
than 20 sequences in the profile.

Structural diversity

Figure 2 shows the average root mean square deviation
(RMSD) across each superfamily in our dataset. As can be
seen, there is a large range in the degree of structural diver-
sity across the dataset: some superfamilies are highly
structurally conserved showing a narrow range of small
RMSDs whilst other show large mean RMSDs with large
deviations from the mean. For example, the FAD-
NAD(P)-binding SCOP super-family contains 21
domains in the astral_10 data set, and despite the low
sequence identity there is high structural conservation
with an average RMSd of 1.47A. Furthermore, the range of
RMSDs within this super-family is very small, generally

within 0.5-2A. By comparison, super-families such as the
P-loop containing nucleotide triphosphate hydrolases,
the (Trans)Glycosidases and the Viral-coat and capsid
proteins are very structurally diverse, having high average
RMSds with the distribution of RMSds generally higher
than 1.5A, and with a long tail.

Relation between structural diversity, sequence
conservation and recognition performance

Figure 3 shows a scatter of mean RMSD against ROC,, for
each superfamily. The figure shows a correlation between
the mean RMSD of each super-family and its ROC,, value.
The figure shows that superfamilies with a mean RMSD of
less than 2 A tend to be well recognised by profile-profile
methods, whilst the structurally diverse superfamilies are
not.
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Figure 2

Mean RMSD values for superfamilies in the dataset. Error bars show one standard deviation.

It may be the case that despite the absence of any discern-
ible global sequence similarity within our dataset some
local patterns of conservation do exist. These patterns may
be present more strongly in some superfamilies than in
others. In order to examine this possibility we constructed
multiple structure based sequence alignments for each of
the 16 superfamilies and then looked down the columns
of the multiple sequence alignments to examine the
extent of conservation at each position (see Methods
section).

Figure 4 shows a plot of performance (ROC, ) versus con-
servation. Apart from the cytochrome c superfamily (an
outlier with a high ROC,, of 0.7 despite a conservation
score of 0.2 because the superfamily has a conserved
CxxCH motif that facilitates detection), the well perform-

ing superfamilies (the alpha beta hydrolases, immu-
noglobulins, FAD/NAD(P)-binding and fibronectin with
ROC,, values for the trimmed profiles of at least 0.25)
have conservation measures of greater than 0.25. This
suggests that some superfamilies although highly
sequence diverse, may retain some patterns of conserva-
tion that facilitate recognition. Further investigation of the
functional implications of this variation would be a next
step.

Figure 5 shows a plot of mean RMSD versus performance
(ROC,,). The P-loop and Viral coat superfamilies have
low conservation scores and and large structural diversity
reflected by high RMSD wvalues. In contrast, the
fibronectin and immunoglobulin superfamilies have
higher conservation values (both around 0.28) and lower
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ROC, of the trimmed profiles versus average pairwise RMSD. Error bars show one standard deviation.

RMSDs (around 1.5A). However the figure does not show
any clear correlation between conservation and RMSD.

Discussion

Our results suggest that profile profile methods can detect
remotely related sequences for some superfamilies signif-
icantly better than for others. In our dataset the sequence
identity between domains in all the superfamilies is low
(not greater than 10% as defined by the ASTRAL).
Although the mean width and diversity of the profiles var-
ies across the superfamilies this does not appear to be the
only factor contributing to the differences in detection.

The effect of the trimming varied depending on super-
family. For the best performing profile (alpha/beta hydro-

lases) the trimming reduced the performance by about
50% (from 0.95 to 0.43) but the effect on the rank was
small dropping from first place to second. Similarly the
trimming impacted significantly on the performance of
the S-adenosyl methyl transferases with ROC,, dropping
from 0.70 to 0.22. However trimming had no effect on
performance for the FAD/NAD(P)-binding superfamily,
and only resulted in a small reduction in performance for
the immunoglobulins and the cytochrome ¢
superfamilies. Importantly the membership of the top
ranking superfamilies in terms of performance did not
change after trimming.

Although the overall level of sequence similarity within

our dataset is low (not more than 10% identity) the differ-
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ROC,, of the trimmed profiles versus conservation for superfamilies in our dataset.

ent superfamilies exhibit different levels of conservation
at positions within the multiple structure based align-
ments. These conserved positions may facilitate recogni-
tion. The extent to which they constrain the structures
leading to less diverse alignments is unclear. We recognise
also that our measure of conservation and also the use of
RMSD as a measure of structural diversity both have their
shortcomings. It would be interesting to identify and
extract a conserved core and represent structural profiles
as combination of core profiles separated by regions of
variable length.

Conclusions

There exist large superfamily specific differences in the
performance of profile profile matching for the detection
of remote sequence relationships. Some superfamilies can
be detected far more successfully than others. The width

and diversity of the profiles are important factors in suc-
cessful recognition. However these are not the only factors
that contribute to these superfamily specific differences.

Methods

Dataset

We took release 1.63 of ASTRAL [8] which provides a fil-
tered version of the SCOP database [9] where no two
sequences have a pairwise sequence identity of over 10%.
From this, we chose the sequence diverse superfamilies by
selecting all superfamilies with more than 20 domains.
This resulted in a dataset of 543 domains which only
show a random (not greater than 10%) level of sequence
similarity. The particular superfamilies used and a sum-
mary of their properties is shown in Table 2. Superfamily
is a readable description of the superfamily, sunid is the
SCOP unique identifier, families is the number of families
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Mean RMSD of the trimmed profiles versus conservation for superfamilies in our dataset.

in superfamily, domains is the number of domains in
superfamily, length shows the average length of the
domains in the superfamily and RMSD shows average
RMSD between members of superfamily.

Profile generation

For each domain of each of the 16 superfamilies we exe-
cuted a five round PSI-BLAST [1] run against the protein
non redundant protein database nr (dated 5/2/04). We
used the "-m6" option to output a multiple alignment and
the "e 0.05" to only include hits with e-values less than
0.05 in the alignment. Positions in the multiple align-
ment that correspond to gaps in the query are removed.

We use the resulting multiple alignment as the profile for
the query domain.

To produce trimmed profiles, we take the full profile and
remove the bottom sequence (corresponding to the most
remote homolog) until a stopping criterion is reached.
The stopping criterion is based on Neff, a statistic previ-
ously used for this task [1,6,7]. Neff is defined as the total
number of different amino acids in a given column of a
profile. Our stopping criterion was that Neff must be less
than 8 in all non-gapped positions in profile, where non-
gapped positions are defined as those with a gap content
of less than half.
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Superfamily sunid Families Domains Length RMSD
(Trans)glycosidases 51445 9 30 385.2 2.64
4-helical cytokines 47266 3 21 146.76 3.12

alpha/beta-Hydrolases 53474 22 29 302.28 1.87
Cytochrome ¢ 46626 8 21 116.14 1.6

E Set domains 81296 17 33 120.21 2.49
FAD/NAD(P)-binding 51905 5 21 244.1 1.47
Fibronectin type 49265 | 24 103.42 1.52
Homeodomain-like 46689 10 24 72.17 243
Immunoglobulin 48726 4 47 103.23 1.63
NAD(P)-binding 51735 10 49 202.67 1.89
Nucleic acid-binding 50249 10 44 120.86 2.05
P-loop 52540 18 70 257.64 3.99
S-adenosyl 53335 20 24 255.92 1.92
Thioredoxin-like 52833 12 29 121.72 1.88
Viral coat 49611 4 29 271.07 343
Winged helix 46785 35 48 92.65 233

Profile-profile matching

We use the program COMPASS [2] to perform the profile
profile matching. COMPASS performs a local alignment
of a query profile to each member of a database of pro-
files. COMPASS uses a generalisation of PSI-BLAST pro-
file-sequence scoring to score similarities between profiles
and estimate the statistical significance of the score of the
local alignment.

Assessing performance

To assess the performance of profile-profile matching,
each domain of each of the 16 superfamilies was used as
a query and its sequence profile was matched against a
library of sequence profiles representing the dataset. A
profile database was then created using the 543 profiles.
When matching the profile of domain i of superfamily j,

(d; ), the sequence profile corresponding to d;- was not

included in the sequence profile library. This procedure
was carried out twice: firstly with the full profiles, and the
again with the trimmed profiles.

We use ROC,, as a statistic that describes the performance
of the profiles for a particular super-family. ROC, is

defined as 2?:1 t; /nT, where T is the total number of

true hits possible and ¢; is the number of true positives
with a score better than the ith false hit. Variance in the
ROC,, statistic was calculated using the method given in
[10].

Structural diversity of superfamilies
To evaluate the structural diversity within each super-
family, each member of a superfamily was structurally

compared to every other member. For all the domains in
a superfamily we perform pairwise structural alignments
using the program SAP [11] to all other domains. Since
these domains do not share more than about 10%
sequence identity, we would expect that they effectively
capture the extent of structural variation within the super-
family. We obtain an average measure of structural simi-
larity (root mean square deviation, RMSD) for each of the
16 superfamilies.

Structure based multiple alignments

To create a structure based multiple alignment of a super-
family, we first made all pairwise structural comparisons
between all pairs within a superfamily using SAP [11,12].
We then created a T-Coffee [13] library for each pairwise
comparison, where the score between two equivalenced
residues is i and j at positions x;, x;in the superposition, is
defined to be ((1 + RMSD)(1 + [x;-x;[)) 1. A detailed expla-
nation and analysis of this method is given in [14].

Conservation measure

We used the Taylor Venn diagram [15] to assign residues
in a column of the multiple alignment to a given set. The
sets are overlapping and they group together amino acids
at differing levels of detail (eg the hydrophobic set
includes aromatic [FYWH] as a subset). However, we
adopted a fairly general measure of conservation and
marked a position (column) as conserved if 80% of the
residues at that position could be assigned to any one set.
The conservation measure for a superfamily was the
number of conserved positions divided by the average
length of domains in our dataset belonging to that super-
family. Only those columns that contained at least 80% of
positions ungapped were considered.
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