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Abstract

Background: The main goal in analyzing microarray data is to determine the genes that are
differentially expressed across two types of tissue samples or samples obtained under two
experimental conditions. Mixture model method (MMM hereafter) is a nonparametric statistical
method often used for microarray processing applications, but is known to over-fit the data if the
number of replicates is small. In addition, the results of the MMM may not be repeatable when
dealing with a small number of replicates. In this paper, we propose a new version of MMM to
ensure the repeatability of the results in different runs, and reduce the sensitivity of the results on
the parameters.

Results: The proposed technique is applied to the two different data sets: Leukaemia data set and
a data set that examines the effects of low phosphate diet on regular and Hyp mice. In each study,
the proposed algorithm successfully selects genes closely related to the disease state that are
verified by biological information.

Conclusion: The results indicate 100% repeatability in all runs, and exhibit very little sensitivity on
the choice of parameters. In addition, the evaluation of the applied method on the Leukaemia data
set shows 12% improvement compared to the MMM in detecting the biologically-identified 50
expressed genes by Thomas et al. The results witness to the successful performance of the
proposed algorithm in quantitative pathogenesis of diseases and comparative evaluation of
treatment methods.

Background

Recently, microarray technology has provided the means
for simultaneous screening and analysis of thousands of
genes. Although an enormous volume of data is being
produced by microarray technologies, the full potential of
such technologies cannot be accessed without the ability

to sift through the noisy signals to obtain useful informa-
tion. The large data sets produced by microarray technol-
ogy have resulted in the need for reliable, accurate, and
robust methods for microarray data analysis. A major
challenge is to detect genes with differentially expression
profile across two experimental conditions. In many
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studies, the two sample sets are drawn from two types of
tissues, tumours or cell lines, or at two time points during
the course of a biological processes.

The computationally simple methods used for such anal-
ysis, including the methods of identifying genes with fold
changes (such as the popular Log-ratio graphs) [1], are
known to be unreliable due to the fact that in such meth-
ods the statistical variability of the data is not properly
addressed. While various parametric methods and tests
such as two-sample t-test [2] have been applied for micro-
array data analysis, strong parametric assumptions made
in these methods as well as their strong dependency on
large sample sets restrict the reliability of such techniques
in microarray problems. The nonparametric statistical
methods, including the Empirical Bayes (EB) method [3],
the significance analysis specialized for microarray data
(such as SAM [4]) and the mixture model method (MMM)
[5] have been specialized and applied for microarray data
analysis. It is claimed and argued that the new extensions
of the MMM are among the best methods producing bio-
logically-meaningful results [5,6]. In this paper, without
ignoring the potential applicability of non-parametric
methods in microarray processing applications, due to the
claims made in [6], we have restricted the comparison of
our methods only to the MMM based methods.

The major disadvantages of the above-mentioned meth-
ods, especially the MMM, include the lack of repeatability
of the results under different runs of the algorithm, and
the sensitivity of the algorithm on parameter initializa-
tion. A reliable microarray analysis method must be
reproducible and applicable to different data sets under
different experimental conditions. More specifically, an
accurate microarray processing method is expected to pin-
point, with a relatively high degree of accuracy and robust-
ness, genes with elevated expression levels that are related
to the experimental condition in all runs. The main objec-
tive of this paper is to design and test an extension of the
MMM whose results are reproducible, more biologically
meaningful, and significantly less sensitive to the models'
parameters.

The paper is organized as follows. In Algorithms section,
a review of the MMM and its recent extensions,
Mod2MMM, together with the detailed description of the
proposed method are given. In Results and Discussion
section, the K5M algorithm is first applied to the well-
studied Leukaemia data set [7] that is often treated as a
benchmark problem to compare different algorithms with
each other. Once the desirable performance of the pro-
posed algorithm is verified against the Leukaemia data set,
the algorithm is applied to a new data set [[8-14] and
[15]] that deals with the pathogenesis of Hypophos-
phatemia, which is a common X-linked metabolic bone
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disorder in human and mouse. Finally, the Conclusion
section is in the end.

Algorithms

MMM & its recent extensions

We start this section with a brief review of the existing
MMM based techniques. Consider Y;; as the expression
level of geneinarrayi (i=1, ... mj=1, .. j,j;+1, ... j;
+j,), where the first j, and last j, arrays are obtained under
two conditions. A general statistical model for the result-
ing data is:

Y

j=ai+bxi+¢g (1)

ij
Where x;=1for 1 <j<j;and x;= 0 forj; + 1 <j<j; +j,. In
addition, ¢&; is a random error with mean 0. From the
above formulation, it can be seen that g; + b; is the mean
expression level of the first condition, and g; is the mean
expression level of gene i in the second condition. The
method requires that both j; and j,, the number of data
sets for each experiment condition, be even.

The t-test statistic type scores (2) and (3) are calculated on
the pre-processed data. Here, g;is a random permutation
of a column vector that contains j,/2 1's and j;/2 -1's and
b; contains j,/2 1's and j,/2 -1's.

.= (Yiyai /1) + Yiaybi / j2)
Jriy /i i) /12

(2)

Y-V (3)
1 i n
Jviy /i i)y /2

Since the data are not assumed to be normally distributed,
the distribution functions f, and f are estimated as in (4)
and (5), respectively. The null distributions, f, and f, are
estimated directly in a nonparametric model for gene
expression data.

80
folz:®g0) = Y, 7i0(2: 17, V;) (4)
i=1
3 3
f=(2,®)=0-Y 7)fo(Z; Do)+ D 7:0(Z; 11, V;) (5)
r=1 i=1

Where ¢(z; 1, V;) symbolizes the normal density function
with mean g, variance V;, and the mixing proportions 7z;
define the linear combination of the normal basis func-
tion. We use @, to represent all unknown parameters
{(m  V}): i =1, .., § } in a g,-component mixture
model. The number of normal basis functions, i.e. g, can
be estimated by the EM algorithm, which maximizes the
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log-likelihood function of (6) to obtain the maximum

likelihood estimation of ® 0

N
logL(®g0)=Zlong(zj;®go) (6)

j=1
Within K iterations, the EM algorithm is expected to find
the local maxima for all unknown parameters. It is recom-
mended to run the EM algorithm several times with vari-
ous random starting parameters and choose the final
estimate as the one resulting the largest log-likelihood [6].
As mentioned above, using random starting points causes
the result of the MMM instable and avoids reproducibility
of the results. More specifically, in each run the MMM
algorithm may give different number of expressed genes,
which is not desirable in biological studies. This issue will
be addressed in our proposed method.

After finding the optimized (i)gO for different g, 's, the

algorithm selects the sub-optimal g, corresponding to the
first local minimum of BIC or AIC [16].

AIC = -2log L(®40) + 2v0,

(8a)

BIC = -2log L(® 40 ) + vg40 log(N)

(8.b)

where v, is the number of independent parameters in @,
Then, the algorithm uses the resulting g, as the number of
normal functions to fit f,. The same procedure is per-
formed to estimate the sub-optimal number of normal
functions to estimate f. As mentioned above, with the
fixed number of normal functions, the parameters of
functions f and f, are iteratively updated for a number of
iterations. When the iterations are terminated, the likeli-

hood ratio is estimated based on the final estimations of

foand f:
LR(Z) = fo(2) [ (2)  (9)

A bisection method [17] with a Bonferroni adjustment is
used to determine the cut-off points [18] for decision-
making. This means that for a threshold value s, if LR(Z)
<s, then the gene is identified to have significantly altered
expression in two experiments. It is possible to determine
the rejection region numerically, i.e. for any false positive
rate ¢, the threshold value s = s(@) can be calculated from
the following integral:

&= ) paes fo(=)dz (10)

In literature of microarray processing, « = 0.01 is often
used as the genome wide significant level, so the gene-spe-
cific significance level is: * = /(2n) Recently a new mod-
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ification of the MMM algorithm, Mod2MMM hereafter,
was introduced [6]. This method points out a problem in
constructing the test and null statistics and indicates that
the true distribution of z may be different from the null
distribution of Z, which can lead to invalid inference. The
modified algorithm starts with the assumption that j; > 2
j, [6], and constructs the new z and Z as you can follow in
appendixl1.

For the cases where j, > j, but j; < 2 j,, j, observations
drawn under condition one are split into two equally-

sized parts to calculate Z(la), Vi(1q)and Yi(lb) » Vi(1p) Tespec-

tively. To calculate 171(2) and v;(,) about j;/2 observations

are drawn under condition two. While this modification
can address the differences in the distributions of f and f,),
the stability of the parameter estimation step still remains
a major problem.

The main difference between the conventional MMM and
its recent extensions are that the conventional MMM dis-
regards the fact that the true distribution of z (the statisti-
cal variable under study) may be different from the null
distribution of the statistics Z (as defined below). This
assumption can potentially lead to invalid inference. A
modified version of the MMM (Mod2MMM hereafter),
introduced in [6], assumes that the denominator and the
numerator of one of t-statistic-type score ,; may not be
independent. This method addresses the issue by con-
structing new z; and Z; variables as will be discussed later.

A concern over all existing MMM based methods (includ-
ing Mod2MMM) that greatly affects the results is associ-
ated with the way mixed distributions are estimated. In
the MMM, Expectation Maximization (EM) algorithm
[19] is often used to optimize the parameters of fitted mix-
ture distribution functions of two t-statistic-type scores
related with genes expression level. Starting the EM algo-
rithm with random values as the parameters of the normal
basis functions to estimate distributions makes the results
depend highly on the exact initialization, and always
makes variations in the results. On the other hand, if all
parameters of the normal functions in the mixture model
distributions are set without iterative optimization, the set
values may never result to an accurate model of the data
set in hand. We propose a modified version of MMM to
address this problem. Our modified MMM (K5M hereaf-
ter) combines K-mean clustering and the EM estimation
to not only optimize most of the parameters with the EM
iteratively but also apply K-means to optimize other sen-
sitive parameters to ensure complete reproducibility of
the algorithm. The experimental results indicate superior
robustness of the proposed algorithm compared to the
conventional MMM and other recently introduced exten-
sions of the MMM [6].
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Proposed method (K5M)

In order to address the stability and reproducibility of the
MMM, we propose a new modified approach for the
MMM that estimates the distribution function of z by
using mixture of normal distributions in a stable and reli-
able way. The following observations made in the experi-
mental study of the MMM for gene expression analysis
were the main motivations for the proposed changes to
the MMM:

1 The observed variations in the parameter estimation
process in some versions of the MMM can be attributed to
the algorithm's attempt to iteratively update the means
and variances of the normal distributions using often
noisy data. In experimental studies, often the direct obser-
vation of the data reveals specific points where centers
(means) can be positioned and the scattering patterns that
can give reliable estimates on the variance of each cluster.
However, the iterative updating of model parameters with
noisy data and based on some random starting points
often misses the true optimal points and even creates var-
iations and fluctuations in parameter estimation in many
runs.

2 Even when variations do not occur, two runs of the algo-
rithm can result to significantly different estimations of f
and f,. This in turns results to lists of differentially
expressed genes in different runs. More specifically, a set
of two typical runs of the algorithm on the same data set
can result to two lists that are very different both in
number of the genes as well as the exact genes picked up
by the algorithm. In our study of the conventional MMM
and Mod2MMM, two runs with the same algorithm (on
the same data) resulted to lists whose size vary between 50
and 200.

3 The literature of other areas of research utilizing normal
basis function for estimation including neural networks
indicates that in order to have more robustness in differ-
ent runs and have reproducible results, the means and var-
iances of the basis functions must be estimated and fixed
during the iteration on the coefficients [20]. This is due to
the fact that updating means and variances makes the esti-
mation process a nonlinear one that is highly sensitive
and very likely to become unstable. However, when
updating the values of coefficients only, the problem is
reduced to a reliable linear estimation that is much more
robust and stable.

4 Based on the observations mentioned above, in our pro-
posed method, finding the distribution of z is regarded
partially as a clustering problem, i.e. the means and vari-
ances of the normal distributions are estimated as the pro-
totypes of a clustering step. Specifically, if z is distributed
in a one-dimensional space, wherever there is a mass of z,
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there is a cluster with mean g and variance V;, which are
identified by the members of that cluster.

Hence applying a clustering method is capable of estimat-
ing the means and variances of each normal distribution.
The key is to use a simple clustering technique such as K-
mean to estimate the mixture distributions f, and f based
on K normal distributions. While the algorithm can use K-
means to find the optimal values of means and variances,
the coefficients 7;'s need to be optimized using an optimi-
zation process such as the EM.

Based on the above discussion, the proposed algorithm
can be described in the following two steps:

Step 1: Using BIC, find the sub-optimal number of nor-
mal distributions for both f and f, (as described above).
These optimal numbers are then used as the number of
clusters in K-means technique.

Step 2: Using K-means clustering technique, for both f
and f, find the best mean g and variance V;for all clusters.

Step 3: With the obtained values of y;, V;and using the EM
algorithm, iteratively update the values of the optimized
7 for all clusters (both f and f), i.e.

oz v
folz; @)

A reasonable number of clusters is expected to be
obtained from the first step of the algorithm, and the esti-
mation results of the two bellow data sets in Tables 1 and
4 show that the used K (calculated based on AIC) is satis-
factory. Table 3 shows the results of the MMM and K5M
methods for the run with an unequal variance and four
normal distributions for both f and f,. The MMM creates
the likelihood ratio (LR) statistics plotted in Figure 1, the
K5M with K = 4 forms the LR statistics plotted in Figure 2,
and the K5M with K = 2 results to the LR plot of Figure 3.

N
2D -3 Ti(jk) IN, Tl(jk) _
j=1

(14.2) (14.b)

It is worth mentioning that due to the random initializa-
tion in K-means and the random initialization of the coef-
ficients 7;'s, in each run, it is expected that the number of
identified differentially expressed genes fluctuate slightly.
However, as indicated above, since the K- means cluster-
ing algorithm is known to a robust method, and consider-
ing the fact that in the EM estimation process, only a
linear estimation is performed, it is expected that the
robustness of the proposed algorithm be much more than
the other version of the MMM based algorithms. This
observation, as have been shown before, is supported by
our experimental results. In addition, our experimental
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Table I: Comparison of the result of the K5M with the MMM and the Mod2MMM based on the Leukaemia data.

Method Total detected genes ALL AML Total accepted genes out of 50 genes [22]
MMM 187 21 18 39
Mod2MMM 58 14 16 30
K5M,K=3 185 25 20 45
K5M, K =4 58 19 8 27

Table 3: Estimation of fitted and by MMM (in the optimum run) and K5M.

fo f
MMM . .
L =(0.1859, -0.2231, 0.0322, 0.0638) [l = (-0.0387, 0.4381, 0.1600, -0.1933)
7 =(0.3215, 0.3522, 0.7692, 0.337) U = (3.2288, 3.397, 2.6393, 4.6982)
7T =(0.1672, 0.2353, 0.4048, 0.1925) 7T = (0.0687, 0.0509, 0.0263, 0.0725)
K5M

U = (0.4589, 0.4640, 0.1879, 0.1807)
7 =(0.1914, 0.1963, 0.3120, 0.3001)

L = (11111, 1.1264,03115, -0.3329)

[ =(1.7867, -0.6817, -2.354, 0.3324)

U = (2.9432, 0.5583, 4.24, 0.5027)
7 =(0.0583, 0.1018, 0.0294, 0.0442)

Table 4: The top ten most significant genes provided by K5M and MMM.

GenBank Accession IDs Gene/ Protein Description

Rank based on MMM Rank based on K5M

D00073 Kidney/ carrier activity | |
AA815845 Unknown 2 2
AF085696 ion transportation/ K+ channel, inward rectifier/renal salt flow 3 3
AWO047688 Brain/Hypothalamus 4 4
M12660 Kidney/ Complement protein H gene 5 5
Al847513 Brain/ Hypothalamus 7 6
AA919924 Phosphate metabolism/inositol-1 (or4)-monophospha te Activity 6 7
X69966 Dilation of the proximal renal tubules and extensive 8 8
vacuolization of tubule epithelium
AF103809 Elevated kidney levels of lysosomal enzymes 9 9
AA711516 Barstead mouse myotubes MPLRB5 10 10

indicate that the most expressed genes are identified in all
runs or the algorithm and in each run one or two new
genes with less expression ratio are added to this set.

Results and discussion

In this section, first the two applications and their corre-
sponding data sets are described and then the results pro-
duced by the proposed method (i.e. K5M) is compared
with the other MMM based methods on two data sets. The

detailed description of the methods is given in MMM & its
recent extensions Section.

Leukaemia dataset

In this section, we apply the nonparametric MMM
method with and without the proposed modifications to
the Leukaemia data presented in [7]. The objective of this
application is to identify the most important genes
involved in development of different types of Leukaemia.
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Likelihood ratio statistics as a function of z based on the K5M
with K = 4.

The dataset used for this analysis includes 27 acute lym-
phoblastic leukaemia (ALL) samples and 11 acute
myeloid leukaemia (AML) samples for 7129 genes. The
main goal is to find genes with differential expression
between ALL and AML cases. A second goal is to compare
the result of MMM and Mod2MMM (as introduced in
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Figure 3
Likelihood ratio statistics as a function of z based on the K5M

with K = 2.

MMM & its recent extensions Section) with K5M and test
the robustness of K5M. The genome-wide significance
level is chosen « = 0.01 (according to Benferroni adjust-
ment used in the MMM based methods). Each sample in
the dataset is pre-processed as in [21], by subtracting its
median and dividing the resulting variable by its quartile
range (i.e. the difference between the first and the third
quartile).

Results of Leukaemia study

Thomas et al [22] used known biological information to
identify the most important genes in Leukaemia and pro-
vided biological justifications for these identified genes.
They introduced 50 genes out of the identified genes as
the most expressed and related genes to the disease,
including 25 most expressed genes for AML and 25 for
ALL. We treat Thomas et al's list as the biology knowledge
base and compare the capabilities of the computational
techniques to correctly identify the genes discussed in [22]
by processing the dataset.

The comparison of the result obtained by the K5M with
those of the MMM and the Mod2MMM is summarized in
Table 1. As can be seen in Table 1, The MMM has identi-
fied 187 differentially expressed genes [21], among which
the total of 39 genes are in the list of genes obtained by
Thomas et al [22]. The Mod2MMM method found 30
genes of the Thomas's list. The K5M algorithm,
determines 45 genes that are identified in the Thomas's
list, i.e. the proposed algorithm successfully identifies
90% of biological result. This means that K5M improved
the detection of expressed genes 12% compare to the
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MMM and 30% compare to the Mod2MMM for the Leu-
kaemia data, i.e. our method identified more genes from
the list of the 50 truly expressed genes identified by Tho-
mas et al [22].

As the BIC suggested the optimum number of clusters K =
4 for the MMM, the K5M is applied with K = 4 also. Run-
ning K5M with different number of clusters leads to the
different but reasonably similar results. As the number of
the clusters increase, the number of expressed genes
decreases. Table 1 shows that the K5M with K = 3 identi-
fies the total of 185 differentially expressed genes, while
with K = 4 the total of 58 genes are identified, however;
the 58 genes found with K = 3 are the most expressed
genes among 185 genes found by K = 4. This result shows
the consistency of the K5M method.

In order to further compare the performance of the MMM
and K5M on the leukaemia data, The ROC curve is plotted
based on False Positive rate and True Positive rate of the
data set calculated as in [5]. The area under each curve is
the measure of test accuracy. As can be seen in Figure 5,
the area under the K5M curve is more than the area under
the MMM curve, therefore the K5M is providing a more
accurate classification than the MMM.

Hypophosphatemia dataset

The following study is the main application for which the
proposed method was specialized and therefore is
described in more details. Hypophosphatemia is a
common X-linked metabolic bone disorder in human.
Hypophosphatemia results from phosphate wasting in
the renal tubules. Phosphate that is normally reabsorbed
from the urine is excreted. It appears that elevated levels of
FGF-23 activate the excretion of phosphorous by the kid-
neys. Previous studies have demonstrated an impairment
of the high- affinity, low capacity Na+ dependent phos-
phate co-transport system [23,24]. The main animal
model used to study this disease is the Hyp mouse. Hyp
mice have a mutation of the Phex gene [25,9]. The disease
is characterized by low reabsorption of phosphate, bone
disease, and bone abnormalities in the lower extremities.
The genes active in the regulation of phosphate re-absorp-
tion in the kidney are not well understood. It is also not
clear whether mutations of the Phex gene block renal
adaptation to low phosphate diet. Hyp mice have a pri-
mary osteoblast defect and defects in vitamin D metabo-
lism. Parabiosis experiments on normal and Hyp mice
have revealed that there is an intrinsic osteoblast defect in
Hyp mice rather than an intrinsic renal abnormality. Hyp
kidneys transplanted into normal mice reabsorbed phos-
phorus at normal levels. Kidneys transplanted from nor-
mal mice into Hyp mice began phosphate wasting in the
Hyp mice.

http://www.biomedcentral.com/1471-2105/5/201

Table 2: Four experimental groups in the Hyp mice data sets. In
this paper, The comparisons are done between group | and
group2, and between group 3 and group 4.

Diet
Control Low Phosphate
Genotype Normal Groupl Group2
Hyp Group3 Group4

The mechanism that leads to the excessive excretion of
phosphorous is unknown. On a low phosphate diet a
normal mouse will activate systems to conserve phos-
phate by increasing re-absorption. The genes activated in
the normal mouse on the low phosphate diet, and the
genes with differential expression between normal and
Hyp mice should indicate the systems involved in the
phosphorus homeostasis. In an attempt to identify these
genes, nutritional experiments were performed on normal
and Hyp mice [[9-11,8,12-14] and [15]]. Normal and Hyp
mice were placed on low phosphate diets for 3 - 5 days.
Tissue samples from the kidneys of test and control mice
were collected. 16 samples were analyzed using Affyme-
trix GeneChip mouse U74A arrays- 4 samples for each
experiment state. The mRNA of 12,488 genes was ana-
lyzed. Two GeneChip microarrays were done for each diet
for normal mice and three microarrays for each diet for
the Hyp mice for a total of 10 arrays.

To investigate this, 5-week-old normal and Hyp were fed a
control (1.0% P) or low phosphate (0.03% P) diet for five
days. The four group experiments are shown in Table 2.

In this study, we consider the gene expression signal less
than 100 as noise caused by the microarray machine, and
in the pre-processing step we ignored the genes whose
expression signals in both conditions are less than 100.
The following two specific goals are considered in this
study:

1. To identify the genes in whose mRNA expressions are
altered by low phosphate diet in normal mice.

2. To determine the effect of Hyp mutation on this
response, i.e. identifying the genes in Hyp condition that
are differentially expressed across the normal and low
phosphate diet experiments.

Results of Hypophosphatemia study

The Hyp dataset includes five samples for each group. In
order to make the number of data samples even, we used
four samples of each group. For this data set, since j1 =j2,
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Histogram of the number of genes expressed in each run by
the MMM method which shows the strong variability (x-axis
shows number of runs).

the Mod2MMM cannot be applied. In MMM method, five
mixture models are used to estimate f;and f (distributions
under two experimental different conditions) with
number of normal basis functions ranging from 1 to 5, i.e.
The MMM algorithm was run several times and the run
with maximum log-likelihood was chosen as the final
model. Bayesian Information Criterion (BIC) [26] was
used to determine the number of components. To find the
rejection region for a given model, the bisection method
is used. In this paper we assume « = 0.01, and therefore
the gene-specific significance level used here is calculated
as:

a* =0.01/(95.44 * 2) =5 * 107

Using bisection method [17], as discussed in Section 4,
the value of s is obtained as s = 3 x 10... Both the MMM
and K5M were run 100 times. Figure 4 presents the
number of genes expressed in each run of the MMM. The
difference between the number of identified differentially
expressed genes in two runs with the minimum and the
maximum number of genes amounts to 150 genes. This
clearly indicates the high degree of inconsistency and irre-
producibility of the results obtained by the MMM. The
number of genes expressed in each run of the K5M indi-
cates that all genes are the same in all runs and therefore
indicates 100% repeatability and robustness of the pro-
posed method.

http://www.biomedcentral.com/1471-2105/5/201
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Figure 5

ROC curves for the MMM and K5M based on the leukaemia
data set. The area under the K5M curve is more than the
area under the MMM which shows the K5M method is more
accurate than the MMM.

The ten most significant genes expressed by the low phos-
phate diet in the normal mouse identified by the MMM,
and the ten most significant genes provided by K5M are
represented in Table 4. As can be seen in Table 5, the most
differentially expressed genes are same for the MMM and
K5M. Out of these 10 genes, six are directly related to the
kidney's functions. For this data set, the main advantage
of the K5M is its consistency and robustness as discussed
above. A similar procedure is conducted to accomplish
the second goal of this study, i.e. identifying the role of
Hyp condition on the most definitely expressed gene in
normal and low phosphate diet microarrays. The ten most
significant genes that are differentially expressed across
the two experimental conditions, i.e. Normal Low Phos-
phate and Hyp Low Phosphate, are listed in table 6. As
shown in the table 6, again eight genes are related directly
to the kidney's function. These further witnesses to the
capability of the proposed technique to discover the genes
that are truly involved in the biological study.

Conclusions

In this paper, we proposed a technique to improve the
repeatability, and robustness of the mixture model
method by using the K-mean clustering method in esti-
mating the distributions. Our proposed method finds the
distribution of the variables partially based on a clustering
procedure and an EM optimization process. The method
is applied to analyze two microarray data sets, Leukaemia
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Table 5: The top ten significant genes, by comparing group 3 and group 4 in table 2, provided by K5M and MMM.

Accession IDs Gene/ Protein Description

Rank based on MMM Rank based on K5M

AF02807 | Kidney/ apical plasma membrane,
Basolateral plasma membrane
Kidney/calcium ion binding
Unknown

Kidney/ carrier activity
Monooxygenase activity,
oxidoreductase activity

GTP binding, protein binding,
phosphate binding

Detected in Kidney

Kidney/ growth factor activity,
hormone activity
Kidney/carrier activity, sodium,
excitatory glutamate symporter
activity

Protein phosphate 2

D26352
AA815845
D00073
AB00603
u97079

Al315650
X71922

D43797

X81059

o N -
v wN

6 7
I 8

Identified as a non expressed gene 9

Identified as a non expressed gene 10

data set and a data set reflecting the effect of the low phos-
phate diet on regular and Hyp mice [8] data. The experi-
mental results indicate 100% robustness and repeatability
of the results in different runs and provide 12% improve-
ment (compared to the mixture model method) in detect-
ing the relevant genes in both studies.
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Appendix |
The Mod2MMM makes a new z and Z based on the fol-

lowing formula:

171'(1“) + 57i(1b)

z: = 1l.a
l \/Vi(la) /Gy = J2) + viaw) / J2 (11a)

o 57i(1a) + 17i(z)
Y Jrige /G- i) vy [T

(11.b)

Where:

i i
Y

=

v _ j= v J=h—jtl
oo =i T =B

(122 & 12b)

=iz _ )
Y. (Y = Yiag)
-1

o
ita) h—ja-1

(12c&12.d)

And:

Jitis _

Yjj z (Y~ Vi)
=2y =T (13a&13b)

J2 ja—1
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