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Abstract
Background: Integral membrane proteins constitute about 20–30% of all proteins in the fully
sequenced genomes. They come in two structural classes, the α-helical and the β-barrel membrane
proteins, demonstrating different physicochemical characteristics, structure and localization. While
transmembrane segment prediction for the α-helical integral membrane proteins appears to be an
easy task nowadays, the same is much more difficult for the β-barrel membrane proteins. We
developed a method, based on a Hidden Markov Model, capable of predicting the transmembrane
β-strands of the outer membrane proteins of gram-negative bacteria, and discriminating those from
water-soluble proteins in large datasets. The model is trained in a discriminative manner, aiming at
maximizing the probability of correct predictions rather than the likelihood of the sequences.

Results: The training has been performed on a non-redundant database of 14 outer membrane
proteins with structures known at atomic resolution; it has been tested with a jacknife procedure,
yielding a per residue accuracy of 84.2% and a correlation coefficient of 0.72, whereas for the self-
consistency test the per residue accuracy was 88.1% and the correlation coefficient 0.824. The total
number of correctly predicted topologies is 10 out of 14 in the self-consistency test, and 9 out of
14 in the jacknife. Furthermore, the model is capable of discriminating outer membrane from
water-soluble proteins in large-scale applications, with a success rate of 88.8% and 89.2% for the
correct classification of outer membrane and water-soluble proteins respectively, the highest rates
obtained in the literature. That test has been performed independently on a set of known outer
membrane proteins with low sequence identity with each other and also with the proteins of the
training set.

Conclusion: Based on the above, we developed a strategy, that enabled us to screen the entire
proteome of E. coli for outer membrane proteins. The results were satisfactory, thus the method
presented here appears to be suitable for screening entire proteomes for the discovery of novel
outer membrane proteins. A web interface available for non-commercial users is located at: http:/
/bioinformatics.biol.uoa.gr/PRED-TMBB, and it is the only freely available HMM-based predictor for
β-barrel outer membrane protein topology.
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Background
Integral membrane proteins are divided into two distinct
structural classes, the α-helical membrane proteins and
the β-barrel membrane proteins. The former class is the
more abundant and well studied, since proteins of that
type are located mostly in the cell membranes of both
prokaryotic and eukaryotic organisms, performing a vari-
ety of biologically important functions. Proteins of that
class have their membrane spanning regions forming α-
helices, which consist mainly of hydrophobic residues [1].
A variety of algorithms and computational techniques
have been proposed for the prediction of the transmem-
brane segments of α-helical membrane proteins, with
high accuracy and precision. The members of the latter
class (β-barrel membrane proteins) are located in the
outer membrane of gram-negative bacteria, and presuma-
bly in the outer membrane of chloroplasts and mitochon-
dria. The members of that class are having their
membrane spanning segments formed by antiparallel β-
strands, creating a channel in a form of a barrel that spans
the outer membrane [2]. The first known members of that
class were found to be the bacterial trimeric porins, form-
ing water-filled channels that mediate the passive trans-
port of ions and small molecules through the outer
membrane [2]. During the last few years, more β-barrel
proteins were found in the bacterial outer membrane, and
a number of structures have been solved in atomic resolu-
tion [2]. These proteins perform a wide variety of func-
tions such as active ion transport, passive nutrient uptake,
membrane anchoring, adhesion, and catalytic activity. A
large number of pathogens are actually bacteria belonging
to the gram negative bacteria class. Considering addition-
ally the important biological functions in which outer
membrane proteins are involved in, it is not a surprise
that those proteins attract an increased medical interest.
This is confirmed by the continuously increasing number
of completely sequenced genomes of gram-negative bac-
teria deposited in the public databases. On the other
hand, the extensive study of the structure of transmem-
brane β-barrel proteins, could reveal special aspects of the
process of protein folding, and give us useful insights on
protein structure and function. For the reasons mentioned
above, there is clearly a need to develop computational
tools for predicting the membrane spanning strands of
those proteins, and also discriminating them from water-
soluble proteins when searching entire genomes.

In contrast to the α-helical membrane proteins, whose
membrane spanning segments can be identified by statis-
tical methods, neural networks, or Hidden Markov Mod-
els with high accuracy, this task is more difficult in the
case of the β-barrel membrane proteins of the outer mem-
brane. This is due to the lack of a clear pattern in their
membrane spanning strands, such as the stretch of 15–30
consecutive hydrophobic residues or the Positive Inside

rule, which occur in the α-helical proteins. Furthermore,
discrimination of transmembrane strands from other β-
strands, forming β-barrel structures in water-soluble pro-
teins, is even more difficult. The reason for that is the fact
that water-soluble proteins that form β-barrel structures,
share (up to a certain degree) common features with the
transmembrane strands of the bacterial outer membrane
proteins, such as amphipathicity.

A few approaches have been made, in the direction of pre-
dicting the transmembrane strands of outer membrane
proteins and/or identifying those proteins when searching
large data sets; they are based on study of the physico-
chemical properties of the β-strands, such as hydropho-
bicity and amphipathicity [3], statistical analyses based on
the amino acid composition of the known structures [4],
or machine learning techniques like neural network pre-
dictors [5,6], and Hidden Markov Models [4,7,8].
Recently, a method based on a sequence profile-based
HMM [8], requiring as input evolutionary information
derived from multiple alignments, achieved the highest
accuracy.

In this work we developed a Hidden Markov Model
method based solely on the amino acid sequence, without
the requirement of evolutionary information. The model
is cyclic, and captures the structural characteristics of the
transmembrane β-strands of the outer membrane pro-
teins. For training and evaluating the model, we compiled
a non-redundant dataset of 14 outer membrane proteins
with structure known at atomic resolution (Table 1, see
Materials and methods section), and tested it with a jack-
nife procedure. The model is also used for discriminating
outer membrane proteins, in large-scale genome analyses.

Results and discussion
The results obtained from the model are presented in
additional file 1 and Table 2 (for a definition of the trans-
membrane, TM, segments, see the Materials and methods
section). Table 2 shows the results obtained comparing
the predicted strands and topologies with the PDB anno-
tation and also those comparing with the manual annota-
tion used for training (see Materials and methods). The
model correctly predicts the location of 96.3% of the
transmembrane strands (206 out of 214). Two (2) addi-
tional strands were predicted correctly but slightly mis-
placed from their observed positions. These misplaced
strands, which belong to the proteins with PDB codes
1PRN and 2POR, were the only strands that have been
falsely predicted (false positives). The total number of cor-
rectly predicted topologies (correct prediction of β-strands
and orientation of the loops) is 10 and, when counting
the misplaced strands, 11 out of 14 proteins in the train-
ing set. When the comparison against the manual annota-
tion used for training was performed, it was noted that
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there is one additional strand (the second TM strand of
1I78), which is predicted slightly misplaced. The model
has also been tested with the well-known jacknife proce-
dure. The jacknife procedure consists of removing a pro-
tein from the training set, training the model with the
remaining proteins and performing the test on the protein
removed. This process is tandemly repeated for all pro-
teins in the training set, and the final prediction accuracy
summarizes the outcome of all independent tests. Thus,
this procedure is regarded as most appropriate for the
assessment of a prediction method based on independent
training and test data.

The result of the jacknife test concerning the correctly pre-
dicted TM strands was 204 out of 214 (95.3%), with 12
over-predicted strands. The overall number of correctly
predicted topologies was 9 out of 14. When counting the
predicted misplaced strands, the number of correctly pre-
dicted topologies raises to 10 out of 14. Once again when

comparing against the manual annotation, the second TM
strand of 1I78, is predicted slightly misplaced.

The per-residue accuracies and correlation coefficients
(see Materials and methods) for both the self-consistency
and jacknife tests are listed also in Table 2, with respect to
either the PDB annotation or the manual annotation used
for training. Apparently, the significantly lower percent-
ages reported in the case of comparison with the PDB
annotation, is a clear consequence of the fact that the
strands extend in some cases far beyond the lipid bilayer.
These strands could not have been predicted as transmem-
brane along their entire length, and our model predicts
only the part of the strand that it is inserted into the mem-
brane. 1I78 is a perfect example of such a case since all of
its strands are clearly extending far beyond the membrane
by 8 or more residues. In addition to the self-consistency
and jacknife test, we performed another independent test.
We divided the training set in two datasets of seven pro-
teins each and used the one for training and the other for

Table 1: The non-redundant data set of outer membrane proteins used in this study.

Protein name Number of β-strands PDB code[29] Organism

OmpA 8 1QJP Escherichia coli
OmpX 8 1QJ8 Escherichia coli
OmpT 10 1I78 Escherichia coli
OpcA 10 1K24 Neisseria Meningitidis
OmpLA 12 1QD5 Escherichia coli
Omp32 16 1E54 Comamonas Acidovorans
OmpF 16 2OMF Escherichia coli
Porin 16 2POR Rhodobacter capsulatus
Porin 16 1PRN Rhodobacter blasticus
Sucrose porin 18 1A0S Salmonella typhimurium
Maltoporin 18 2MPR Salmonella typhimurium
FepA 22 1FEP Escherichia coli
FhuA 22 2FCP Escherichia coli
FecA 22 1KMO Escherichia coli

Table 2: Overall measures of accuracy, obtained in the Self-consistency and in the Jacknife testing.

Type of test TP FP FN TOP1 TOP2 Qβ Cβ

(A) Self-
consistency

205 3 9 9 11 88.1% 0.824

Jacknife 203 13 11 8 10 84.2% 0.720
(B) Self-

consistency
206 2 8 10 11 66.9% 0.604

Jacknife 204 12 10 9 10 65.7% 0.532

(A): Comparison against the manual annotation of the TM-segments. (B): comparison against the observed strands of PDB [29]. TP: True Positives. 
FP: False Positives. FN: False Negatives. TOP1: Proteins with correctly predicted topologies (strand localization and orientation of the loops). 
TOP2: Proteins with correctly predicted topologies, with the inclusion of shifted strand predictions. Qβ: Percentage of correctly predicted residues 
[36]. Cβ: Matthews Correlation Coefficient [36].
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testing. This procedure was repeated 5 times, choosing
randomly 7 different proteins each time, and the results
concerning the per-residue accuracy and the correlation
coefficient were in the range 0.78 – 0.80 and 0.57 – 0.71
respectively. We also tested the performance of the model
on the Neisserial Surface Protein A (Nspa) [9], the Outer
Membrane Enzyme Pagp from E. coli [10], and the Outer
Membrane Cobalamin Transporter (Btub) from E. coli
[11] The structures of these proteins have been very
recently solved, they have not been included in the train-
ing set, and they do not show any significant homology
with any protein of the training set. For NspA, and BtuB
the model correctly locates all the transmembrane strands
and the proteins' full topologies, whereas for Pagp we get

two over-predicted strands. For the three proteins the per-
residue accuracy is 90.9% and the correlation coefficient is
0.78.

When we tested the ability of the model to discriminate
between outer membrane and globular proteins, the per-
centage of the correctly classified outer membrane pro-
teins (at a fixed threshold) was 88.8% whereas the
percentage of correctly classified globular proteins was
89.2%, (Figure 1). The absolute value of the score thresh-
old obtained this way was 2.995, with values lower than
that indicating the possibility of the protein being an
outer membrane protein.

Evaluation of the discrimination scoreFigure 1
Evaluation of the discrimination score. The percentage of correctly predicted outer membrane proteins (filled boxes) and glob-
ular ones (open circles) as a function of different score thresholds in the validation of the discrimination procedure. The opti-
mal proportion of correctly classified proteins was obtained using the value of 2.995 as a threshold (determined from, 
approximately, the intersection of the two curves).
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Furthermore, we developed a protocol that allowed us to
apply the newly developed method to search the complete
proteome of E. coli [12] for β-barrel membrane proteins.
The protocol consists of three steps: In the first step we
perform a search using the PRED-CLASS algorithm [13],
with the aim of identifying and removing α-helical mem-
brane proteins. According to the PRED-CLASS prediction,
1157 proteins out of 5361 were classified as transmem-
brane and hence they were removed. In the second step,
the remaining proteins were filtered with the SignalP pro-
gram, for finding the secreted proteins, since it is apparent
that the majority, if not all, of the outer membrane pro-
teins posses a signal peptide sequence necessary for the
translocation to the outer membrane. In order not to dis-
card potential candidates for being identified as outer
membrane proteins, we applied both versions of SignalP,
the Neural Network [14] and the Hidden Markov Model
[15], and if at least one of them indicated the presence of
a signal peptide, the protein was not discarded. Then, the
signal peptide predicted by the Neural Network algorithm
of SignalP was removed, since this algorithm is more accu-
rate than the Hidden Markov algorithm in locating the
correct splicing site from all the candidate proteins. This
procedure resulted to 978 proteins. In the third and final
step, the remaining 978 protein sequences were submit-
ted to our HMM predictor having set the discrimination
score at the pre-specified threshold mentioned above. In
total, 236 proteins scored below the threshold for the
outer membrane proteins (after excluding fragments and
sequences shorter than 60 residues) accounting for 4.4%
of the complete proteome. Among the top scoring pro-
teins, 42 are well known outer membrane proteins
according to the existing annotation, including many fim-
brial proteins, usher proteins and transporters, and 87
were proteins whose annotation was "putative" but sug-
gested that their localization was to the outer membrane.
The number of proteins whose annotation suggested that
they were misclassified, including a lot of periplasmic pro-
teins and enzymes, was 34, whereas the "putative" mis-
classified proteins were 23. Finally, the remaining 50
proteins were hypothetical proteins or proteins with com-
pletely unknown function. Apparently, the 57 over-pre-
dictions probably are resulting from the fact that outer
membrane proteins are only a small fraction compared to
the whole proteome. Since it is believed that outer mem-
brane proteins constitute around 2–4% of the complete
proteomes, it is natural that even a method with 99% of
correct predictions, will result in a large number of false
positives. Nevertheless, given the constrains mentioned
above, this method clearly offers a useful tool for the auto-
matic annotation of entire proteomes, since the false pos-
itives could be easily removed considering other sequence
characteristics.

Comparing our method with the best method proposed
so far for the prediction of transmembrane β-barrel pro-
teins by Martelli et al. [8], as well as with the HMM
method proposed by Liu et al. [7], the following points
should be mentioned. The HMM-profile based method by
Martelli et al. [8], uses as input the evolutionary informa-
tion included in multiple alignments. The method pro-
posed here, uses as input only the amino acid sequence of
the protein, hence it is computationally simpler. Even
though our method does not outperform the profile
based HMM method by Martelli et al. [8] in the per resi-
due accuracy, when it comes to the number of correctly
predicted transmembrane strands and overall topologies,
the two methods are practically equivalent. The same
argument holds for the case of the discriminative power of
the two methods, since the percentage of correctly classi-
fied β-barrel proteins was 84%, and percentage of cor-
rectly classified water soluble proteins was 90% as
reported in [8], showing that better results can be
obtained even without the use of evolutionary informa-
tion. Concerning the method proposed by Liu et al, which
uses as input single sequences, the results about strand
localization and overall topology assignment are also
comparable with our method, but no discrimination
could be performed between outer membrane proteins
and soluble ones in their method, thus requiring a sepa-
rate method for the discrimination purposes. Furthermore
in Liu et al [7], no overall measures of accuracy were
reported.

Both methods mentioned above use HMMs with architec-
tures quite similar to the model shown here, with minor
differences, and this is not a surprise. For the sake of argu-
ment, the two most successful methods for the prediction
of transmembrane segments of α-helical membrane pro-
teins use a similar architecture; that architecture reflects
the most obvious way to map the biological features of
transmembrane proteins to the mathematical formalism
of the Hidden Markov Model. Finally, the methodology
that we used for the training and the decoding is com-
pletely different from those used by Martelli et al. [8], and
Liu et al. [7]. Our model was trained according to the Con-
ditional Maximum Likelihood criterion, which differs sig-
nificantly from the Maximum Likelihood training
scheme, performed with the Baum-Welch algorithm, by
the two methods mentioned. For the decoding, Martelli et
al use the so-called posterior decoding method, with the
aid of a dynamic programming algorithm, whereas Liu et
al, rely on the traditional Viterbi algorithm. Even when in
our tests the N-best decoding does not outperform signif-
icantly the Viterbi decoding (data not shown), when it
comes to newly discovered proteins, the option to
perform decoding with the best method available is a clear
advantage.
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When our method is compared against the methods
developed by Zhai and Saier [3] and Wimley [4], we
observe that none of the above methods controlled for the
number of false positives and false negatives, since they
were not validated statistically. They both report the find-
ing of a number of predicted outer membrane proteins,
for which the genome annotation suggested localization
to the outer membrane. The fact that we report 236 pre-
dicted outer membrane proteins in E. coli proteome, com-
pared to 118 in [3] and 200 in [4], reflects the fact that we
chose to retain the threshold obtained from cross-valida-
tion. Clearly, in real life applications using our method we
could lower the threshold and obtain fewer predictions
(<200), with the cost of loosing 5–10 outer membrane
proteins.

Conclusions
We present here a novel method, based on a Hidden
Markov Model, for the prediction of the transmembrane
β-strands of the outer membrane proteins of Gram-nega-
tive bacteria, and for the discrimination of these proteins
from globular proteins. To our knowledge, a Hidden
Markov Model trained with a discriminative method is
applied for the first time in molecular biology for such a
task. We show here that we can achieve predictions at least
equally successful to other existing methods, without the
use of evolutionary information. We also showed that the
method is powerful when used for discrimination pur-
poses, as it can discriminate outer membrane proteins
from water soluble proteins in large datasets with a high
accuracy, suggesting that it is a very reliable solution for
screening entire genomes of Gram negative bacteria, for
the discovery of novel β-barrel proteins as possible drug
targets. Compared to other single sequence methods (for
both discrimination and strand prediction) our method is
unambiguously the best currently available. Compared to
multiple sequence methods (requiring evolutionary infor-
mation) our method achieves comparable results. Clearly,
our method combines equally, higher rates for both
strand localization and sequence discrimination, from
any existing method. A web server running the application
is located in our laboratory and it is the only HMM-based
application currently freely available, making our method
accessible to scientists around the world. The user may
submit a sequence in FASTA format, and has the option to
choose between decoding by either the N-best algorithm,
the standard Viterbi algorithm or posterior decoding with
a dynamic programming algorithm (Figure 2). The output
consists of the prediction for the transmembrane strands
(Figure 3). Optionally the user may obtain a graphical
plot showing the posterior probabilities in a 3-state mode
(extracellular, periplasmic and transmembrane), which
may be useful in the case of ambiguously defined topolo-
gies. The application also returns the score used for dis-

crimination purposes thus, helping the user to identify
possible β-barrel outer membrane proteins.

Materials and methods
The Hidden Markov Model
Hidden Markov Models have been extensively used for
pattern recognition problems, with the most known
example found in the speech recognition methodology
[16]. Hidden Markov Models have been used in bioinfor-
matics during the last few years for generating probabilis-
tic profiles for protein families [17], the prediction of
transmembrane helices in proteins [18,19], the prediction
of signal peptides and their cleavage sites [15], the
prediction of genes [20] and recently for the prediction of
the transmembrane β-strands [7,8]. An excellent introduc-
tion of those applications in molecular biology is the
book of Durbin et al [21] whose notation will follow
hereafter.

The Hidden Markov Model is a probabilistic model con-
sisting of several states, connected by means of the transi-
tion probabilities, thus forming a markov process. If we
consider an aminoacid sequence of a protein with length
L, denoted by:

x = x1, x2,..., xL,

with a labeling (corresponding to transmembrane, intrac-
ellular and extracellular regions):

y = y1, y2,..., yL

then, the transition probability for jumping from a state k
to a state l is defined as:

αkl = P(πi = l|πi-1 = k)

Where π is the "path" in the particular position of the
amino acid sequence (i.e. the sequence of states, as
opposed to the sequence of symbols). Each state k is asso-
ciated with a distribution of emission probabilities, mean-
ing the probabilities that any particular symbol could be
emitted by the current state. Assuming an alphabet Σ, con-
sisting of the symbols corresponding to the 20 amino
acids, the probability that a particular amino-acid b is
emitted from state k is defined as:

ek(b) = P(xi = b|πi = k)

The term 'hidden' is justified by the fact that when one
observes the emitted symbols he cannot see the underly-
ing states, thus the true state process is hidden from the
observer. The total probability of the observation
sequence given the model, P(x|θ), is computed using the
efficient Forward algorithm [16], whereas the joint
Page 6 of 13
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probability of the sequence and the labeling denoted by
P(x,y|θ), by its trivial modification proposed by Krogh
[22].

Training and decoding algorithms
Traditionally, the parameters of a Hidden Markov Model
are optimized according to the Maximum Likelihood cri-
terion [16],

A widely used algorithm for this task is the efficient Baum-
Welch algorithm (also known as Forward-Backward)
[16,23], which is a special case of the Expectation-Maxi-
mization (EM) algorithm, proposed for Maximum Likeli-

hood (ML) estimation for incomplete data [24]. The
algorithm, updates iteratively the model parameters
(emission and transition probabilities), with the use of
their expectations, computed with the use of the Forward
and Backward algorithms. Convergence to at least a local
maximum of the likelihood is guaranteed. The main dis-
advantage of ML training is that it is not discriminative. In
this work, we used Conditional Maximum Likelihood
(CML) training for labeled data, as proposed by Krogh
[25]. The Conditional Maximum Likelihood criterion is:

The submission form of the web-based applicationFigure 2
The submission form of the web-based application.
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This kind of training, often referred to as discriminating
training, seeks to maximize the probability of the correct
prediction, i.e. the probability of the labeling y for a given
sequence x and a model θ. The parameters of the model
(transition and emission probabilities) are updated
simultaneously, using the gradients of the likelihood
function as described in [26], and the training process ter-
minates when the likelihood does not increase beyond a
pre-specified threshold. To reduce the number of the free
parameters of the model, and thus improve the generali-
zation capability, states expecting to have the same emis-
sion probabilities, were tied together (Figure 4).
Furthermore, to avoid overfitting, the iterations started
from emission probabilities corresponding to the initial
amino-acid frequencies observed in the known protein

structures and small pseudocounts were added in each
step.
The decoding was performed using the N-best algorithm
[27] (Figure 5), as formulated in [25]. This algorithm is a
heuristic that attempts to find the most probable labeling
of a given sequence, as opposed to the well-known Viterbi
algorithm [16], which guarantees to find the most proba-
ble path of states. Since there are several states contribut-
ing to the same labeling of a given sequence (as in our
case), the N-best algorithm will always produce a labeling
with a probability at least as high as that computed by the
Viterbi algorithm, in other words it always returns equal if
not better results. Its main drawback is the memory
requirements and computational complexity, resulting in
a slowdown of the decoding process. For the purpose of
discrimination, the information included in the

Output of the prediction obtained from the web predictor for the OmpF of E. coli (PDB code: 2OMF [29])Figure 3
Output of the prediction obtained from the web predictor for the OmpF of E. coli (PDB code: 2OMF [29]).
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prediction of the putative TM segments is not sufficient,
since a prediction for a transmembrane strand could occur
even in globular proteins. Thus, there is need for a global
predictor reflecting the overall fit of the query sequence to
the model. This predictor is the negative log-likelihood of
the sequence given the model, as computed by the For-
ward algorithm and normalized for the length of the
sequence. Thus, the statistical score used for discrimina-
tion is:

where L is the length of the sequence. We studied the pro-
portion of correctly classified proteins as a function of the

discrimination score used as the threshold. We defined
the optimal threshold as the value that maximizes that
function. Proteins with score values below the threshold
should be declared as beta-barrel membrane proteins. All
algorithms and tools used throughout this work have
been implemented by the authors, using the Java pro-
gramming language by Sun Microsystems.

The model architecture
The model that we used is cyclic, consisting of 61 states,
(Figure 4). The architecture has been chosen so that it
could fit as much as possible to the limitations imposed
by the known structures. The model consists of three "sub-
models" corresponding to the three desired labels to pre-
dict, the TM (transmembrane) strand sub-model and the
inner and outer loops sub-models respectively. The TM

The architecture of the model used in this workFigure 4
The architecture of the model used in this work. The 3 "sub-models" corresponding to the 3 labels are shown separately. In 
the transmembrane sub-model different colors correspond to the tied states. Black circles correspond to the aromatic belt, 
gray to exterior of the strand's core, and white to the interior side. In the inner and outer loop sub-models, the states forming 
the ladder are tied together respectively, whereas the N-terminal tail is tied with the C-terminal and the globular outer loop 
state is not tied with another state. The allowed transitions are shown with arrows.
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Posterior probabilities plotFigure 5
Posterior probabilities plot. Graphs showing posterior probabilities along the sequence, for residues to be in a transmembrane 
β-strand, for the proteins with PDB codes 2OMF and 1QD5 [29]. The observed strands taken from PDB [29] and the pre-
dicted transmembrane strands obtained by the N-best algorithm are also plotted.
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strand model incorporates states to model the special
architecture of the transmembrane strands. Thus, there are
states that correspond to the core of the strand and the
aromatic belt located at the lipid bilayer interface. Further-
more, other states correspond to the amino acid residues
facing the bilayer (the external side of the barrel) and the
residues facing the barrel interior. All states are connected
with the appropriate transition probabilities in order to be
consistent with the known structures (i.e. to ensure appro-
priate length distributions and to model the alternating
pattern of hydrophobic-non hydrophobic residues, corre-
sponding to the external-internal residues of the barrel).
The minimum allowed length for a transmembrane
strand is 7 residues, whereas the maximum is 17.

The inner and outer loops are modeled with a "ladder"
architecture, whereas at the top of the outer loop there is
a self transitioning state corresponding to residues too dis-
tant from the membrane; these cannot be modeled as
loops, hence that state is named "globular". The "inner"
loop sub-model has no corresponding "globular" state,
reflecting the fact that inner loops are significantly shorter
than the outer ones, since none of the known structures
possesses an inner loop longer than twelve residues. In
order to capture the fact that all known structures are hav-
ing their N-terminal tail falling into the periplasmic space
(the "inside" with respect to the outer membrane) we
allowed the begin state of the model to be followed only
by states belonging to the inner loop or to TM strands
directing to the external side of the outer membrane.
Finally, we allowed a self-transitioning absorbing state to
follow the inner loop states, in order to correctly model
sequences that have a long C-terminus falling in the
periplasmic space. States expected to have the same emis-
sion probabilities are tied together.

Training and testing sets
The training set that we used has been compiled with con-
sideration of the SCOP classification [28]. In particular,
we selected all PDB codes from SCOP that belong to the
fold "Transmembrane beta-barrels", and obtained the cor-
responding structures from the Protein Data Bank (PDB)
[29]. For variants of the same protein, we kept the struc-
ture solved at the highest resolution, and we removed
multiple chains, keeping only one chain for each struc-
ture. The sequences of the remaining structures have been
submitted to a redundancy check, removing chains with a
sequence identity above some threshold. We considered
two sequences as being homologues, if they demonstrated
an identity above 30% in a pairwise alignment, in a length
longer than 80 residues. For the pairwise local alignment
we used BlastP [30] with default parameters, and the
homologous sequences were removed implementing
Algorithm 2 from Hobom et al [31]. The remaining 14
outer membrane proteins constitute our training set

(Table 1). The structures of TolC [32] and alpha-hemo-
lysin [33], were not included in the training set for the fol-
lowing reasons: TolC is a mixed beta-barrel and alpha-
helical protein which spans both the outer membrane and
the periplasmic space of gram negative bacteria. Three
TolC protomers assemble to form a continuous, solvent
accessible conduit, a "channel-tunnel" over 140 Å long.
Each monomer of the trimer contributes 4 β-strands to the
12 strand β-barrel. Alpha-hemolysin secreted from S.
aureus is active as a transmembrane heptamer, where the
transmembrane domain is a 14-strand antiparallel β-bar-
rel, in which two strands are contributed by each mono-
mer. Both structures are not included in the fold
"transmembrane beta-barrel" of the SCOP database. In
summary, the set includes proteins being monomeric,
dimeric or trimeric, with a number of TM β-strands rang-
ing from 8 to 22, and is representative of the known func-
tions of outer membrane proteins. As an independent test
set of outer membrane proteins, we chose the dataset used
in the validation of the PSORT-B algorithm [34], consist-
ing of 377 proteins. This set was also checked for redun-
dancy with the same criteria mentioned above, and the
closest homologues were removed along with the proteins
showing similarity to at least one protein from the train-
ing set, leaving us with 119 outer membrane proteins. To
test the discriminative power of the model we used an
additional dataset of globular proteins, with 3-dimen-
sional structures deposited in PDB [29]. This set was com-
piled using the PAPIA [35] server, with the sequence
similarity threshold set to 25%, and excluding membrane
proteins, proteins with a length lower than 80 residues,
and proteins with at least one unidentifiable residue in
the sequence; finally we came up with 1100 sequences of
such globular proteins.

It is noteworthy that even in structures known at atomic
resolution, the exact boundaries of the TM strands are not
obvious, and in some situations the PDB annotations for
the strands are clearly extending far beyond the
membrane. Since our primary objective was to predict the
TM segments of the strands rather than the entire β-
strands, the model was trained to identify these particular
segments. It is well known that discriminative training
algorithms are very sensitive to data mislabeling, thus the
training could not have been performed with labels based
on the PDB annotation for the TM-strands. In [18], an
automated method for re-labeling the data was proposed,
but in our case since the training data set was limited we
chose a manual approach. For the training purposes, the
labels for the TM segments were set manually, by identify-
ing the aromatic belts of the barrel [2] after inspection of
the 3-dimensional structures of the proteins of the train-
ing set using molecular graphics. All residues contained
between the two aromatic belts of each β-strand of the β-
barrel were set to define a TM segment, including the res-
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idues of the belts. In cases where the aromatic belt resi-
dues of a β-strand are not clearly defined, neighbouring β-
strands of the β-barrel helped in the "belt" identification.
The resulting dataset used for training is shown in addi-
tional file 1 (second column, TM).

Measures of accuracy
To assess the accuracy of the predictions, we used several
measures. For the transmembrane strand predictions we
calculated the number of correctly predicted strands (True
Positives, TP), the number of missed strands (False Nega-
tives, FN) and the number of the over-predicted strands
(False Positives, FP). We also calculated the total number
of correctly predicted topologies, i.e. when both the
strand localization and the loops topology have been pre-
dicted correctly. As measures of the accuracy per residue,
we report here both the total fraction of the correctly pre-
dicted residues (Qβ) in a two-state model (transmem-
brane versus non-transmembrane), and the well known
Matthews Correlation Coefficient (Cβ) [36]. The compar-
isons have been performed against our manual annota-
tion of the TM segments to show the efficiency of the
model as well as against the PDB annotation for the trans-
membrane strands, for demonstration purposes. We feel
that this had to be done in order to allow a fair compari-
son with other published methods [6-8], since in each one
of the published methods the comparisons were per-
formed against the PDB annotation.
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