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Abstract

Background: Alternative splicing is an efficient mechanism for increasing the variety of functions
fulfilled by proteins in a living cell. It has been previously demonstrated that alternatively spliced
regions often comprise functionally important and conserved sequence motifs. The objective of this
work was to test the hypothesis that alternative splicing is correlated with contact regions of
protein-protein interactions.

Results: Protein sequence spans involved in contacts with an interaction partner were delineated
from atomic structures of transient interaction complexes and juxtaposed with the location of
alternatively spliced regions detected by comparative genome analysis and spliced alignment. The
total of 42 alternatively spliced isoforms were identified in 21 amino acid chains involved in
biomolecular interactions. Using this limited dataset and a variety of sophisticated counting
procedures we were not able to establish a statistically significant correlation between the
positions of protein interaction sites and alternatively spliced regions.

Conclusions: This finding contradicts a naive hypothesis that alternatively spliced regions would
correlate with points of contact. One possible explanation for that could be that all alternative
splicing events change the spatial structure of the interacting domain to a sufficient degree to
preclude interaction. This is indirectly supported by the observed lack of difference in the
behaviour of relatively short regions affected by alternative splicing and cases when large portions
of proteins are removed. More structural data on complexes of interacting proteins, including
structures of alternative isoforms, are needed to test this conjecture.

Background Genome Project was the realization that the enormous
One of the main surprises resulting from the Human  complexity of the human metabolism and regulation is
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encoded by a relatively small number of genes. While the
estimates of this number still vary significantly in the
range of 25000 to 35000 [1] it is clear that we have fewer
genes than maize [2], and only approximately five times
more than the unicellular eukaryote S. cerevisiae |3]. Ear-
lier predictions postulated that the human genome
should contain between 50.000 and 100.000 genes [4].
These recent findings helped to realize the importance of
post-transcriptional gene regulation in generating the pro-
teomic complexity of the human cell.

One of the mechanisms for generating the protein diver-
sity in eukaryotes is alternative splicing (AS). Current esti-
mates of the prevalence of AS in the human genome range
from one third of genes [5,6] to about 60% [7]. In fact,
analysis of EST data showed that almost all human genes
have possible alternatively spliced forms, although many
of them seem to be non-functional [8]. AS is also widely
observed in genomes of other multicellular eukaryotes
[9]. There are two aspects of the AS phenomenon. Firstly,
recent results demonstrate that alternative isoforms, espe-
cially tissue-specific ones, are often evolutionary young
[10-12]. One possible interpretation for that is that AS
provides a convenient evolutionary mechanism for gener-
ating new proteins without sacrificing existing ones [10].
Secondly, AS leads to generation of proteins identical in
some domains and different in others. This is a powerful
regulatory mechanism [13,14]. Indeed, it has been shown
that AS, compared to a random expectation, tends to
avoid disrupting protein domains, to shuffle entire
domains, and to target functional sites in proteins [15]. AS
is frequent in genes involved in signal transduction and
regulatory interactions [16].

To summarize, AS is a powerful mechanism for modulat-
ing the protein mode of action. Perhaps the most impor-
tant type of functional context in which proteins execute
their function is constituted by protein-protein interac-
tions (PPI). It is thus tempting to speculate that AS could
influence the structure of protein-protein interaction net-
works by selectively blocking or activating individual
interactions dependent on cellular conditions.

Occasional evidence of the interplay between AS and PPI
is scattered in the biomedical literature. For example, the
domain composition of the Shank postsynaptic density
protein is regulated by AS, defining the spectrum of its
interaction partners [17]. The interaction of Annexin XI
with calcyclin was shown to be isoform specific, owing to
partial deletion of the calcyclin-binding site in one of the
splice forms [18]. In Drosophila melanogaster the regulation
of dynein targeting to various cellular organelles via bind-
ing to dynactin is modulated by structural variations in
the N-terminal portion caused by AS [19]. At the same
time, other studies show no interdependence between
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protein interaction patterns and AS. For example, Liu et al.
[20] reported that specific protein-protein interactions of
cytoplasmic serine hydroxymethyltransferase are not reg-
ulated by AS.

To test the hypothesis that protein-protein interactions
can be modulated in an alternative splicing dependent
manner we have undertaken a study of AS events occur-
ring in proteins known to be involved in transient interac-
tions (see Figure 1). We were able to identify the total of
42 alternatively spliced isoforms in the amino acid chains
participating in structurally characterized interaction
complexes, as surveyed recently by Thornton and Nooren
[21]. In addition to statistics based on the entire dataset
we also considered separately AS events changing more
than a half of the protein length, where complete domain
disruption is a likely result of AS [15], as well AS influenc-
ing less than 25% that could be expected to have less dras-
tic effect. In all cases, no statistically significant
relationship between AS and PPI could be established.

Results

We begin with presenting several examples illustrating the
interplay between PPI and AS. In the first case, shown in
Figure 2, two alternatively spliced regions were identified
in the cyclin-dependent kinase 2 (cdk2). The first (N-ter-
minal) splice event eliminates nearly completely the
PSTAIRE region of cdk2 which plays a central role in its
interaction with cyclin [22]. The second (C-terminal)
sequence span deleted by splicing overlaps partially with
the T-loop region of cdk, also involved in cdk2-cyclin
interface. In the second example, presented in Figure 3, AS
eliminates a large portion of the phosducin N-terminal
domain, including one of the regions that contact the By-
subunits of the retinal G-protein transducin [23]. The cor-
responding isoform, called phosducin-like orphan pro-
tein 1, was reported to be less abundant than phosducin
and not to be able to bind transducin, although the func-
tional significance of this and other phosducin orphans
remains unclear [24]. Finally, in our third positive exam-
ple (Figure 4) a significant portion of the interface
between the human importin-f and the Ran protein [25]
is spliced out, including the entire tandem repeat 7 as well
as parts of repeats 6 and 8. This region also includes the so
called "stalk region" with unknown function.

In all three examples above there is a clear overlap
between the location of alternatively spliced regions and
protein interaction sites. In many other cases, though, no
such correlation could be established. For example, as
seen in Figure 5, AS does not seem to affect the regions of
the RhoA protein with which it binds the effector domain
of serine-threonine kinases [26]. Based on an extensive
manual analysis of our PPI/AS dataset we were not able to
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A schematic representation of the study. The positions of sequence regions involved in protein-protein interactions were
delineated from structurally characterized protein complexes and juxtaposed with the location of putative alternatively spliced

regions.

formulate a definitive opinion as to the degree to which
the location of AS regions correlates with PPI interfaces.

We subsequently attempted to investigate the strength of
the correlation between the positions of AS and PPI
regions using statistical analysis. Tables 1 and 2 present
the entire body of structural PPI evidence and AS informa-
tion used for this purpose. Our analysis resulted in delin-
eation of 30 alternatively spliced isoforms for 16 proteins
involved in heterodimer interactions and 12 isoforms for
5 proteins involved in homodimer interactions. These
data were used as input to different counting procedures
described in the Methods section. The overall summary for
all types of dimers (with smoothing) is given in Table 3
(for individual positions; [see Additional file 1]) and
Table 4 (for entire segments; [see Additional file 2]).

As shown in Table 3, in 15 out of 42 cases, the majority of
random windows show less correlation with the contact
positions than the real AS segments, in 3 cases the random
windows show the same correlation, and in 24 cases the
majority of random windows show more correlation with
the contact positions than the real AS segment(s). Simi-
larly, for contact segments (Table 4) in 13 cases the major-
ity of windows show less correlation with the contact
segments than the real AS segments, in 4 cases the correla-
tion is the same, and in 25 cases most random windows
show more correlation. Thus, compared to random con-
trol, AS shows a weak tendency to avoid contact regions;
however, the chi-squared test shows that in both cases the
difference is insignificant. The results of our study are thus
negative: the hypothesis that AS might serve as a regula-
tion mechanism for PPI networks could not be confirmed.
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MENFQKVEKIGEGTYGVVYKARNKLTGEVVALKKIRLDT (B ECUBSTANRENSHNRSMNMBINGYE ) L.1.DVIHTENKLYLVFEFLHODLKKFM
DASALTGIPLPLIKSYLFQLLOGLAFCHSHRVLHRDLKPQNLLINTEGAIKLADFGLARAFGVPVRTYTHE (
) VTIRRALFPGDSEIDQLFRIFRTLGTPDEVVWPGVTSMPDYKPSFPKWARQDFSKVVPPLDEDGRSLLSOMLHYDPNKRI

SAKAALAHPFFQDVTKPVPHLRL
a

Figure 2

Alternative splicing in the cyclin-dependent kinase 2 (cdk2). a. Amino acid sequence of the protein. Spliced regions are colored
red. The first (N-terminal) region was identified based on the homology with the deletion type cdk2 variant in human breast
cancer (protein id BAA32794.1). The second (C-terminal) region was identified based on the homology with the human cDNA
sequence associated with leiomyosarcoma (GenBank accession number BQ225275). b. Graphical representation of spliced
regions (red) and sequence spans involved in protein-protein interactions (blue). The full amino acid sequence is shown as
black bar. c. Ribbon representation of the three-dimensional structure of cdkl (PDB code Ifin, chain a). Regions involved in
protein-protein interactions are shown in blue colour, spliced regions are red. Violet colour indicates regions where PPl and

AS regions overlap.

Discussion

This study represents the first attempt to investigate the
relationship between two complicated biological phe-
nomena - protein-protein interactions and alternative
splicing - based on the scarce experimental evidence cur-
rently available in the public databases. It was prompted
by results of Kriventseva et al. [15] that could be inter-
preted as evidence that AS tends to target functionally
important regions in proteins. However, we were not able
to obtain convincing evidence of correlation between con-
tact regions in protein-protein interactions and protein
segments corresponding to alternatively spliced regions in
mRNA. One possible explanation for that could be that
our database of AS events was corrupted by aberrant
splicing that abounds in EST databases [8]. To guard
against this possibility we considered only AS events
expected to be reliable by multiple criteria, including pres-
ence in multiple ESTs from several clone libraries and con-
servation in the mouse genome. Another explanation
could be that removal by AS of more than a half of the
protein sequence would lead to complete disruption of
the 3D protein structure, and thus any analysis relying on
contact regions in the intact protein becomes
meaningless.

However, we obtained essentially the same results on a
subset of cases where the influence of AS was relatively
modest (less than 25% of the protein sequence removed
or substituted by AS; data not shown). Such shorter alter-
natively spliced regions are still much longer that a typical
functionally important sequence motif of the type consid-
ered in [15]. On the other hand, as described above, com-
plete removal or substitution of the interaction domain is
a well-established mechanism of regulating PPI by AS.

Given more data, it would be interesting to repeat the
analysis of the type presented here on the domain level.
For instance, one of the remaining open questions is
whether AS tends to target (completely remove or partially
destroy) interacting domains or other domains of pro-
teins involved in PPI. Partially, this issue was addressed in
a recent study [27] where it was shown that domains of
types involved in protein-protein interactions frequently
are removed or inserted by alternative splicing, although
there was no observed increase in the rate of alternative
splicing of such domains compared to other types of
domains.
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]MSSPQSRDDKDSKERXSRKXSIQEYELIHODKEDEGCLRKYRROQCXQODXHQKLSF
GPRYGFVYELETGEQFLETIEKEQKVITIVVNIYEDGVRGCDALNSSLECLAAEYPXVKFCKIRASNTGAGDRFSSDVLPTLLVYKGGELISNFI

SVAEQFAEDFFAADVESFLNEYGLLPER
a

Figure 3

Alternative splicing in phosducin. a. Amino acid sequence of the protein. The spliced region was identified based on the homol-
ogy with the human phosducin isoform b, also called phosducin-like orphan protein | (GenBank accession number
NP_072098). b. Graphical representation of the spliced and interacting regions. c. Ribbon representation of the three-dimen-
cional structure (PDB code 2TRC, chain p). Colouring as in Figure 2.

Conclusions

In this study we were not able to establish a statistically
significant correlation between the positions of protein
interaction sites and alternatively spliced regions. This
finding implies that alternative splicing is not a preferred
mechanism for controlling protein interaction networks,
although many individual protein interactions are known
to be isoform-dependent.

Methods

Protein interaction data

A comprehensive survey of structurally characterized tran-
sient protein interaction complexes has been recently
published [21]. We used tables 3 and 4 from this study

which list the PDB [28] codes and chain identifiers of
interacting proteins pairs in 24 weak homodimers and 25
heterodimers, respectively. Protein sequence spans
involved in physical interactions were identified with the
help of the Protein-Protein Interaction Server http://
www.biochem.ucl.ac.uk/bsm/PP/server[29]. Contacts
between amino acid residues were defined based on the
distance threshold of 6 A between any pair of non-hydro-
gen atoms. PDB sequences were saved and the positions
of residues participating in contacts recorded for each
sequence separately.
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>1IBR CHAIN B ; IMPORTIN BETA SUBUNIT
MELITILEKTVSPDRLELEAAQKFLERAAVENLPT FLVELSRVLANPGNSQVARVAAGLQIKNSLTSKDPDIKAQYQORWLAIDANARREVENYVLQTLGTE
TYRPSSASQCVAGIACAEIPVNQWPELIPOLVANVTNPNSTEHMKESTLEAIGY ICQDIDPEQLODKSNEILTAI IQGMRKEEPSNNVKLAATNALLNSLEF

TKANFDKESERHF IMQVVCEATQCPDTR (

) DENDDDDDWNPCKAAGVCLMLLATCCEDDIVPHVLPF IKEHIKNPDWRYRDAAVMAFGCILEGPEPSQLKPLY
IQAMPTLIELMKDPSVVVRDTAAWTVGRICELLPEAAINDVYLAPLLQCLIEGLSA

a

Figure 4
Alternative splicing in importin-f3. a. Amino acid sequence of the protein. The spliced region was identified based on the homol-
ogy with the human cDNA sequence with the GenBank accession number BE744080. b. Graphical representation of the

spliced and interacting regions. c. Ribbon representation of the three-dimencional structure (PDB code |1BR, chain b). Colour-
ing as in Figure 2.

Detection of AS events

Amino acid chains with known positions of interaction
regions were further analysed to detect putative AS events.
Initial mapping of the protein sequences to the human
genome was conducted using TBLASTN [30] searches.
Each hit that coincided both with a human gene anno-
tated in LocusLink [31] and the UniGene [31] cluster
linked to the latter was used to obtain a complete set of
mRNA and EST sequences corresponding to the gene.
mRNAs with annotated protein-coding regions were used
to derive the corresponding protein sequences. The exon-
intron structure of each gene with all known alternatives
was established by spliced alignment of ESTs and mRNAs
to the genomic DNA sequence using Pro-EST [5]; proteins
were spliced-aligned to DNA using Pro-Frame [32]. For

further analysis only alternatives changing the coding
region covered by the known three-dimensional structure
were considered.

An alternative region (that is, a region present in a fraction
of isoforms) was assumed to be reliable if it was sup-
ported by a full-length mRNA or a protein, or by several
ESTs from different clone libraries. An alternative region
was discarded if it was observed in less than three ESTs or
ESTs from only one clone library. Further, only conserved
AS events, defined by comparison with the mouse
genome, were retained. The procedure for establishing the
conservation of the alternative splicing events is described
in detail in [11]. Briefly, for each human gene the orthol-
ogous mouse gene was obtained from HomoloGene [31],
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>1CXZ Chain A ; HIS-TAGGED TRANSFORMING PROTEIN RHOA
MAAIRKKLVIVGDVACGKTCLLIVFSKDQFPEVYVPTVFENYVADIEVDGKOQ (
) EPVKPEEGRDMANRIGAFGYMECSAKTKDGVREVFEMATRAALQA

a .

Figure 5

Alternative splicing in the human rhoa protein. a. Amino acid sequence of the protein. The splicing region was identified based
on the homology with the human cDNA sequence associated with large cell carcinoma (GenBank accession number
BQ231766) as well as several other cDNAs. b. Graphical representation of the spliced and interacting regions. c. Ribbon rep-
resentation of the three-dimensional structure (PDB code |CXZ, chain a). Colouring as in Figure 2.

Table I: The dataset of heterodimers.

Interacting protein? Contact Datab Alternative Splicing Data
Chain Length Contact area (I:\Z) Interacting residues Typec Startd End? Lengthe
1AM4-A 199 856.04 84-88, |19, 122, 123, 126, 127, 185, 189—194, 196202, del., subst. 103 234 28

205,211-213,215-218, 220
1AM4-D 174 958.07 511-513, 532-539, 556, 560-564, 566, 567, 570, 571,  del., subst. 536 674 6
586, 588, 592, 596
del., subst. 663 674 29
del., subst. 663 674 |
IBKD-R 166 1655.36 5, 12-18, 20, 21, 25, 30-35, 37, 40, 41, 54-71, 73, 95,98,  del., subst. 151 166 16
99, 102, 103, 105

ICIY-A 167 695.37 3,21, 24, 25, 27, 29, 33, 34, 37, 38-42, 52, 54, 56, 63, 7| del., subst. 20 167 15
del., subst. 62 167 33

1CIY-B 77 616.01 55,57, 59, 62, 64-71, 73, 84, 85, 87-91 del. 70 131 0
ICXZ-A 182 892.09 0-3, 5, 25-29, 32, 43-48, 50, 52-54, 163-169, 172 del., subst. 52 181 38
del. 52 136 0

del., subst. 139 181 48

del., subst. 52 181 |

1E96-A 178 579.01 21, 22, 24-33, 36, 40, 41, 159-162 Ins. 75 76 19
del., subst. 13 178 18

del., subst. 76 178 40

IFIN-A 289 1609.88 37-50, 52-58, 69, 71-74, 76, 1 15, 116, 1 19—124, 150— del. 163 196 0

159, 162, 179183, 271-279

del. 40 65 0

163 196 0

IFIN-B 260 1794.40 173-178, 181, 182, 185, 186, 189, 228, 230, 262, 263,  del., subst. 266 432 4

265-272, 274, 275, 288, 289, 292, 295-300, 302-309,
312-317
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Table I: The dataset of heterodimers. (Continued)

112M-A 165 1438.50 17-21, 23, 67-77,91-103, 106108, 110, 133, 134, 137, del., subst. 84 173 6
138, 140

Ins. 83 84 17

del. 9 12 0

del,, ins. 9 12 0

83 84 17

112M-B 388 1341.05 42, 44, 45, 55, 56, 75-77, 93-96, 106, 109, 128, 129, del., subst. 182 41| 5

147-152, 181, 200, 201, 249, 250, 266, 268-271, 278,
279, 303, 304, 320, 322, 323, 325, 334, 354, 355, 371,
373, 374, 382, 384, 407409

Ins. 43 44 17
Ins. 43 44 31
ins., del., 43 44 17
subst.
182 41| 5
11BR-B 458 1646.59 7, 10-15, 18, 19, 21, 22, 25, 26, 51, 52, 55-60, 62, 63, del. 233 334 101
66—69, 72,76, 104-108, 110, 111, 114, 155-157, 159,
160, 189, 199, 200, 232, 235, 239, 246, 273-275, 277,
278, 281, 284, 285, 288, 335, 336, 339-343, 350, 354
del. 263 334 71
ILFD-A 87 583.07 18, 20, 27-35, 51-54, 56 del., subst. 37 100 17
IWQI-G 320 1391.63 745, 746, 749, 750, 782-793, 795, 796, 799, 802, 803,  del., subst. 897 1037 15
831, 833, 894-898, 901-904, 906, 907,910, 911, 914,
927, 928, 931, 934, 935, 938, 939, 942, 944, 947-952
2TRC-P 212 2251.56 14-26, 28-30, 32, 33, 62-71, 77, 80, 85, 90, 93-95, 97, del 14 52 0
99, 102, 105, 132, 135, 193, 194, 196-201, 207, 219, 220,
222-230
2TRC-B 340 2175.25 8, 12, 42, 44-48, 55-57, 59, 75-77, 96—101, 116-119, del 20 33 0

143148, 161164, 184186, 188, 203206, 226-230,
246, 266, 268, 270-274, 288-292, 295, 304, 306317,
332, 333, 335, 337, 339

2aNooren & Thornton, 2003 b http://www.biochem.ucl.ac.uk/bsm/PP/serverc del. = deletion of residues, subst. = substitution of residues. 9 residue
numbers according to PDB file numbering ¢ Length of the substituted part.

Table 2: The dataset of homodimers.

Interacting protein? Contact datab Alternative splicing data
Chain Length Contact area (Al) Interacting residues Typec Startd Endd Lengthe
1IKN-A 285 698.19 195, 197201, 211, 213-218, 242, 243, 245, 246, 248— subst. 19 24 7

251
del. 85 112 0
del. subst. 85 290 18
del. 113 290 0
del. subst. 186 291 |
del. 186 219 0
1A15-A 67 752.65 20-31, 35, 36, 61, 62, 64-67 del. 16 39 0
del. subst. 63 67 10
del. 40 49 0
IDOM-A 76 849.23 3-18, 20, 29, 31, 33-38, 4043, 49-53 del. subst. 42 76 |
ICNT-I 177 954.74 11,19, 81, 84,91, 92, 95, 96, 100-103, 106—111, 13—  del. subst. 49 187 24
115, 117, 118, 120-122, 124, 125, 128, 129, 133-137,
140
ITRZ-A 21 74.10 21 | 15

aNooren & Thornton, 2003 b http://www.biochem.ucl.ac.uk/bsm/PP/serverc del. = deletion of residues, subst. = substitution of residues. 9 residue
numbers according to PDB file numbering ¢ Length of the substituted part
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and human protein isoforms were spliced-aligned to the
mouse gene DNA using Pro-Frame. An alternative region
was considered as conserved if it could be aligned with the
same similarity level as the rest of the protein, and the cor-
responding mouse exons were bounded by canonical
splicing sites.

Counting coincidences of AS and PPI regions

Positions of contact regions in protein sequences were
compared with positions of AS regions to determine
whether there was a significant correlation between them.
For each protein sequence considered, two bit strings were
generated representing the involvement of each amino
acid position in AS and PPI, as depicted in Figure 6. One
technical difficulty is that many contact regions are very

http://www.biomedcentral.com/1471-2105/5/41

short (often comprised by just one amino acid residue)
and/or may be interrupted by individual residues or
groups of residues that do not take part in interactions. We
thus used two smoothing parameters - N and M - to
group interacting residues in a given amino acid chain
into contiguous contact segments. N was defined as the
minimal allowed length of a spacer between two residues
involved in interactions, and M represents the minimal
allowed length of a contact segment. Contact segments
separated by spacers shorter than N were merged, and
then the segments shorter than M were deleted. We tested
different combinations of N and M, and found that the
obtained results were robust as regards these parameters
(data not shown). The results for N = 5 and M = 1 are
reported below.

Sequence: 7 LEKTVSPDRLELEAAQKFLERAAVENLPTFLVELSRVLANPGNSQVARVAAGLQIKNSLTSKDPDIKAQYQ 77

Contacts before smoothing:
Contacts after smoothing:

Before smoothing

Figure 6

10011111100110110011000000000000000000000000110011111101100111100100010
111111111111111111110000000000000000000000001111112111111111131111111110

After smoothing

Smoothing positions of PPl regions. Amino acid sequence is represented as a bit string in which | indicates those residue posi-
tions that are involved in PPI, and 0 — those that are not. Subsequently smoothing is conducted such that contact segments sep-
arated by spacers shorter than N residues are merged, and then the segments shorter than M are deleted. In this example a
sequence fragment of the human importin 3-chain (PDB code libr; residue positions from 7 to 77) is shown which interacts
with the GTP-binding nuclear protein RAN. The interaction involves residues situated on one side of two o-helices. After
smoothing with N = 5 and M = | entire helices are considered interacting regions.
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PPI 1111111111111011101100000000000000000111110000001111111

AS 11111111111111131311313131313131313131313111111111110000000000000000
a

PPI 1111111111111011101100000000000000000111110000001111111

AS 1111111111111111111111111111111111111110000000000000000
b

Figure 7

Counting coinciding PPl and AS regions. For clarity, no smoothing was made. a. By individual residues. In this example, there
are 20 amino acid positions involved both in PPl and AS (PPI/AS, red colour), 19 non-PPI/AS positions (blue colour), 10 PPI/
non-AS positions (green colour), and 6 non-PPI/non-AS positions (black colour). b. By entire sequence segments. In this exam-
ple there are three PPl regions entirely covered by AS regions (red), one PPl region partially overlapping with an AS region

(blue), and one PPI region not overlapping with AS.

Several different approaches to calculate the correlation
between AS and PPI bit strings with and without smooth-
ing were tested. The first, residue-by-residue approach
involved considering each amino acid position separately
and counting the number of positions in which the values
of AS and PPI bit strings are equal or differ (Figure 7a).
Each position can thus be classified as belonging to one of
the four classes: AS/PPI, AS/non-PPI, non-AS/PPI, or non-
AS/non-PPI. In a second, area-based approach (Figure
7b), we first grouped the adjacent positions of bit strings
possessing identical values and then calculated the corre-
lation between occurrences of such groups as a whole.
Entire PPI segments were classified into three classes:
entirely overlapping with AS, partially overlapping with
AS, and non-overlapping with AS.

To estimate the degree of correlation, two types of statisti-
cal analysis were employed. Initially we applied the stand-
ard 2 test to the contingency tables formed by two
parameters describing each position (PPI/non-PPI, AS/
non-AS). However, as the results of this analysis were
inconclusive (data not shown), we compared the

observed correlation with that assuming fixed contacts
and random placement of AS segments (cf. the procedure
in [15]). Formally, for each AS isoform we considered a
window of the same length as the length of the alterna-
tively spliced segment. For each position of the window
the correlation between the contact positions (or entire
segments) and the current position of the window was
computed as described in the previous paragraph. Then
for the current position of the window the computed cor-
relation and the correlation of the real AS segment were
compared. The current window was subsequently classi-
fied into one of three classes: higher correlation, same cor-
relation, and lower correlation. The same procedure was
generalized for the case of two (or more) AS segments in
an isoform. In this case, all non-overlapping pairs of win-
dows were considered and the same procedure was
applied. Again, the window sizes were set to the sizes of
the real AS segments.
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