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Abstract
Background: G- Protein coupled receptors (GPCRs) comprise the largest group of eukaryotic
cell surface receptors with great pharmacological interest. A broad range of native ligands interact
and activate GPCRs, leading to signal transduction within cells. Most of these responses are
mediated through the interaction of GPCRs with heterotrimeric GTP-binding proteins (G-
proteins). Due to the information explosion in biological sequence databases, the development of
software algorithms that could predict properties of GPCRs is important. Experimental data
reported in the literature suggest that heterotrimeric G-proteins interact with parts of the
activated receptor at the transmembrane helix-intracellular loop interface. Utilizing this
information and membrane topology information, we have developed an intensive exploratory
approach to generate a refined library of statistical models (Hidden Markov Models) that predict
the coupling preference of GPCRs to heterotrimeric G-proteins. The method predicts the coupling
preferences of GPCRs to Gs, Gi/o and Gq/11, but not G12/13 subfamilies.

Results: Using a dataset of 282 GPCR sequences of known coupling preference to G-proteins and
adopting a five-fold cross-validation procedure, the method yielded an 89.7% correct classification
rate. In a validation set comprised of all receptor sequences that are species homologues to GPCRs
with known coupling preferences, excluding the sequences used to train the models, our method
yields a correct classification rate of 91.0%. Furthermore, promiscuous coupling properties were
correctly predicted for 6 of the 24 GPCRs that are known to interact with more than one subfamily
of G-proteins.

Conclusion: Our method demonstrates high correct classification rate. Unlike previously
published methods performing the same task, it does not require any transmembrane topology
prediction in a preceding step. A web-server for the prediction of GPCRs coupling specificity to G-
proteins available for non-commercial users is located at http://bioinformatics.biol.uoa.gr/PRED-
COUPLE.
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Background
G-protein coupled receptors are important receivers of
information input to eukaryotic cells. They share a com-
mon fold of seven transmembrane helices arranged as a
seven α-helix bundle, as confirmed by analysis of the crys-
tal structure of Rhodopsin [1] that has been extensively
used as template for homology-based modeling of GPCRs
[2-4]. A collection of messages of extreme diversity includ-
ing photons and native agonists, such as ions, odorants
and pheromones, amino acids, nucleotides, peptides, bio-
genic amines, prostaglandines and glycoprotein hor-
mones [5] interact with different extracellular and/or
transmembrane domains of GPCRs, in order to convey
their messages to the interior of the cell [2,6]. Based pri-
marily on shared sequence motifs, six distinct families of
GPCRs are traditionally defined: A, B, C, D, E and the friz-
zled/smoothened family, as summarized in the GPCRDB
classification scheme [7]. Various methods have been
deployed for higher-level classification of GPCRs includ-
ing profile Hidden Markov Models [8,9], support vector
machines [10] and Position Specific Scoring Matrices
[11].

The physiological response of the interaction between a
GPCR and one of its ligands is judged by the subset of the
inactive heterotrimeric (αβγ) G-proteins within the cell
that interact with the activated receptor complex,
although many receptors mediate their actions through G-
protein independent signaling pathways [2]. Different
agonists may stabilize complexes of GPCRs with G-pro-
teins belonging to different subfamilies (Gs, Gi/o, Gq/11 or
G12/13) resulting in the activation of different signaling
pathways [12].

G-proteins are heterotrimeric complexes, named after
their α subunits. On a basis of sequence identity, at least
16 discrete α subunits have been identified and classified
into four subfamilies: Gs and Gi/o, which stimulate and
inhibit respectively adenylate cyclase, Gq/11 which stimu-
late phospholipase C, and the less characterized G12/13
subfamily that activate the Na+/H+ exchanger pathway
[13-17]. We should mention at this point, that in the
gpDB classification [18], the term "families" has been
reserved for this level of hierarchy of G proteins, however
hereinafter we will use the term "subfamilies" instead.

Agonist binding to GPCRs leads to association of the het-
erotrimeric G-protein with the receptor, which triggers the
exchange of the guanosine diphosphate (GDP) bound on
the α-subunit of the G-protein with guanosine triphos-
phate (GTP). These events promote the dissociation of the
α subunit of the G-protein from the receptor and the βγ
complex. The dissociated subunits can activate or inhibit
several effector proteins, such as adenylyl cyclase 1–9,
PLCβ 1–4, tyrosine kinases, ion channels and molecules

of the mitogen-activated protein kinase pathway, result-
ing in a variety of cellular functions that depend on the
biological specificity of the dissociated subunits [17,19].
G-protein α subunits possess an intrinsic GTPase activity,
which enables them to act as time switches: Hydrolysis of
the bound GTP to GDP promotes the re-association of the
α subunit with the βγ dimer and renders the G-protein in
an inactive form.

Due to the lack of structural data for activated GPCR com-
plexes, several complementary approaches have been
used to decipher the molecular events leading to G-pro-
tein activation, and to identify the regions that determine
the coupling specificity of a GPCR to a subset of the pool
of intracellular G-proteins. These biochemical
approaches, that were focused mainly on A GPCRs,
include site-directed mutagenesis studies [20], chimeric
receptor engineering [21,22], the use of synthetic peptides
to mimic the GPCR regions that activate G-proteins [23]
and antibodies to neutralize GPCR binding sites on the G-
proteins [24,25]. These studies revealed the major role of
GPCR intracellular loops, especially the second and third,
and the C-terminal region, as the main determinants of
GPCR coupling specificity. Furthermore, structural data
from high resolution X-ray diffraction of the light-sensing
GPCR rhodopsin, as well as complementary methods
(Nuclear Magnetic Resonance Spectroscopy, Electron Spin
Resonance Spectroscopy, protein engineering, amino acid
fluorescent replacement) [26-28] have indicated that lig-
and binding induces large conformational changes. These
conformational changes reveal GPCR regions buried
within the membrane which could interact with the G-
protein [5]. Through a combination of entropy variability
plots and correlated mutation analysis, key residues for a
variety of GPCR functions, including coupling to G-pro-
teins, can be identified and a mechanism of GPCR activa-
tion has been proposed [29-31].

Due to their role as information receivers of eukaryotic
cells, GPCRs are involved in many pathophysiological
responses. They comprise attractive drug targets for a vari-
ety of diseases, including cancer [32], Alzheimer's syn-
drome [33] and AIDS [34]. Indeed, over 50% of all
prescribed drugs target on GPCRs [35]. Furthermore, the
information explosion in biological sequence databases
has resulted in many GPCR entries of unknown ligand
binding properties, known as orphan receptors. In order
to screen these orphan receptors with libraries of potential
ligands, researchers must be able to assay the GPCR-lig-
and interaction through a downstream event. Such events
are transcription of a reporter gene or rise in second mes-
senger concentration, which is dependent on the interac-
tion of the GPCR under study with members of a specific
G-protein subfamily. Thus, knowing or being able to pre-
dict, the coupling specificity of orphan GPCRs to G-pro-
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tein subfamilies, is essential for choosing the appropriate
cell lines for heterologous expression and any further in
vitro and in vivo studies of potential drug targets [36].
Meanwhile, a dataset of GPCRs of known coupling specif-
icity exists [37], large enough to guide an in silico data-
base mining approach that could aid further in vivo GPCR
research. Furthermore, in a work published recently,
many GPCRs and their interactions with G-proteins have
been summarized in the gpDB system [18].

As in every biological interaction, the specificity of GPCR
coupling to specific G-proteins is determined by structural
components located on contact regions of the molecules.
Since the three-dimensional architecture of a protein is
encoded in protein sequence, GPCR coupling specificity
could be defined by sequence alone. However, GPCRs
with low sequence similarity may couple to members of
the same subfamily of G-proteins, while members of the
same GPCR subfamilies often couple to members of dis-
tinct G-protein subfamilies [38]. In addition, GPCR cou-
pling is not a one-by-one function since many GPCRs,
known as promiscuous GPCRs, have been proven to cou-
ple to members of more than one G-protein subfamilies.
Due to these limitations, GPCR coupling specificity pre-
diction in one step using sequence comparison methods
such as the BLAST [39] or CLUSTALW [40] algorithms is
insufficient [36]. However a weak sequence signal can be

detected among receptor subfamilies where G- protein
selectivity was a recent evolutionary process, such as the
biogenic amines receptors [41].

Previous computational methods of GPCR coupling spe-
cificity to G-protein subfamilies have been applied on a
priori selected intracellular regions of GPCR sequences. A
Naive Bayes model [42] yields a 72% correct classification
rate, while a data-mining approach that combined pattern
discovery with membrane topology prediction [43] has
also been applied in an effort to model GPCR regions that
determine coupling specificity. However, previous
approaches are either context-dependent on the a priori
knowledge that GPCR coupling specificity is governed by
the entire intracellular regions sequence or limited by the
non-probabilistic nature and limited descriptive power of
patterns as regular expressions, that cannot implement
weights to different sequence variation. The approach of
this study is exploratory regarding the length and localiza-
tion of the coupling determining regions among the intra-
cellular regions sequences and recruits profile Hidden
Markov Models (pHMMs) as highly discriminative mod-
els of biological sequences that have a formal probabilis-
tic basis [44]. The results obtained by this method,
presented below, justify the chosen approach.

Table 1: Results of the cross-validation and independent set tests. A. Correct classification rate results obtained from the three main 
G-protein coupling groups, in a five-fold cross-validation procedure. The training set was randomly divided to five equally balanced 
sets. Afterwards, we trained a model using the sequences in the four sets whereas the last set was used for testing. This procedure was 
repeated five times. B. The library of refined profile Hidden Markov models (pHMMs) derived from the primary dataset of 282 GPCRs 
(see text) was tested against a validation set comprised of all GPCR sequences of subtypes with known coupling preference 
summarized in [37], excluding the sequences used to train the models (479 GPCRs in total). This independent test yielded 91% correct 
classification rate. Numbers in the diagonal of the charts represent true positive predictions. The total number of predictions for each 
group (row) is not equal to the total number of observations, since several GPCRs were not classified in any group.

A predicted

Five-fold cross-validation 
test

Gi/o Gq/11 Gs total

observed Gi/o 109(90.8%) 1 1 120
Gq/11 2 78(82.9%) 2 94
Gs 0 0 66(97.1%) 68

111 79 69 253(89.7%)

B predicted

Validation test (479 
GPCRs)

Gi/o Gq/11 Gs total

observed Gi/o 233(91.4%) 16 4 256
Gq/11 9 90(88.2%) 2 102
Gs 6 2 113(93.4%) 121

248 108 119 436(91.0%)
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Results and discussion
Our primary aim was to develop a wide-range predictive
system that can be applied with the same discriminative
power globally, for all three main GPCR coupling groups,
being also able to model promiscuous receptor coupling.
Our method proved to be self-consistent: Using a set of
282 GPCR sequences of experimentally identified cou-
pling properties, according to the Trends in Pharmacolog-
ical Sciences nomenclature supplement of receptors and
ion channels (TiPS) [37], that were used to train the mod-
els and adopting a five-fold cross-validation procedure,
the methods yielded a 89.7% correct classification rate.
When tested in 479 sequences of GPCRs (retrieved also
from the UniProt database [45]) that are homologous to
the sequences used to train the models and whose cou-
pling properties are also summarized in [37], at a subtype
level, our method yields a 91.0% correct classification rate
(Table 1). Finally, the method predicts correctly the cou-
pling specificity of 25 out of 30 GPCRs derived from the

gpDB database [18] that were not included in [37] (Table
2).

In order to assess the efficiency of the same method
trained on a smaller and non-redundant dataset, the same
procedure was applied to a dataset containing only the
human GPCRs in the original training set. Alternative
pHMMs were generated and integrated into a second pre-
dictive system that proved to be also self-consistent. On
this human-only dataset, correct classification rate in a
five-fold cross-validation, is 86% (data not shown). When
these models were applied to the 479 sequences of the val-
idation set, the correct classification rate was 88.9%,
showing an insignificant decrease, as one would expect for
a non-overfitted method. Additionally, when the model
that was trained on human sequences, was applied to the
remaining 178 non-human sequences derived from [37],
yields also a high correct classification rate of 88.8%.

Table 2: Prediction results for 30 different GPCR subtypes with known coupling properties extracted from the gpDB database [18] 
that are not included in the training set [37]. The annotation of GPCR coupling properties in gpDB is based on data from the scientific 
literature. According to the gpDB classification scheme, Ggust and Gt G-proteins belong to the Gi/o subfamily and Golf to the Gs 

subfamily. The GPCR sequences were extracted from gpDB and parsed into our prediction server http://bioinformatics.biol.uoa.gr/
PRED-COUPLE.

GPCR Subtype Uniprot AC observed predicted

5-OXO-ETE receptor TG1019 Q8TDS5 Gi/o Gq/11
Allatostatin receptor Q9W4R0 Gi/o Gi/o Gq/11
Apelin receptor P35414 Gi/o Gi/o
Gonadotropin releasing hormone I receptor Q92644 Gq/11 Gi/o
Gonadotropin releasing hormone II receptor Q8TCX8 Gq/11 Gq/11
Gustatory receptor 43 Q9JHE2 Ggust Gi/o
Gustatory receptor GUST27 P34987 Gi/o Gi/o
Neuromedin U1 receptor Q9JIB2 Gq/11 Gq/11 Gi/o
Neuromedin U2 receptor Q9NRA6 Gq/11 Gq/11 Gi/o
Nicotinic Acid receptor Q8TDS4 Gi/o Gi/o
Olfactory receptor 10A7 Q96R19 Golf Gs
Blue opsin Q13877 Gt Gi/o
Orexin 1 receptor O43613 Gq/11 Gi/o Gq/11
Orexin 2 receptor O43614 Gq/11 Gi/o Gq/11
Platelet activating factor receptor P25105 Gi/o Gq/11 Gi/o
Prolactin-releasing peptide receptor O75194 Gq/11 Gi/o
Trace amine receptor TAR Q9P1P4 Gs Gs
Trace amine receptor TAR-1 Q96RJ0 Gs Gq/11 Gs Gi/o
Trace amine receptor TAR-2 Q923Y7 Gs Gs Gi/o
Trace amine receptor TAR-3 Q96RI9 Gs Gi/o Gs
Urotensin II receptor Q9UKP6 Gq/11 Gi/o
Gastric inhibitory peptide receptor Q9UPI1 Gs Gs
Glucagon Receptor P47871 Gs Gs
Glucagon like peptide receptor 2 O95838 Gs Gs
Ghrelin receptor Q96RJ7 Gq/11 Gq/11
Parathyroid hormone receptor 1 P49190 Gs Gs
Parathyroid hormone receptor 2 Q03431 Gs Gs
Secretin receptor Q13213 Gs Gs
Calcium-sensing receptor P41180 Gi/o Gq/11 Gi/o
Taste receptor TASTE_TB334 Q62942 Ggust Gi/o
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Due to insufficient experimental data, resulting in uncer-
tainty about whether or not most receptors that are
known to couple with a specific G-protein group can cou-
ple with G-proteins of another subfamily under different
physiological conditions, we cannot estimate whether all
of the promiscuous predictions are correct or not. For
instance, a GPCR that is reported to couple only to G-pro-
teins members of Gi/o subfamily, may proved that couples
also to members of Gs subfamily. It is also well-known
that the same GPCR may also couple to different G-pro-
tein subfamilies in different heterogenous expression sys-
tems. Promiscuous coupling was correctly predicted for 6
out of 24 GPCRs of known promiscuous coupling proper-
ties according to information in [37], as one can observe
in Table 3. We did not attempt to train any pHMMs from
sequences that have been proven to be promiscuous, in
order to avoid unnecessary complexity and unequal distri-
bution of the training set to the three major coupling
groups of GPCRs.

The main reason that no pHMMs have been constructed
that indicate coupling to G12/13 proteins is the limited
amount of data available for the coupling properties of
this subfamily of G-proteins. For this reason, this feature
is not provided by any of the already published methods

that perform the same task. Furthermore, to the knowl-
edge of the authors no promiscuous GPCRs are included
in the training set (i.e. GPCRs that couple to members
from multiple subfamilies of G-proteins), and no recep-
tors that preferentially couple only to members of the G12/

13 subfamily have been identified [2]. Therefore, con-
structing pHMMs that classify G12/13 coupled GPCRs with
high discriminative power, at this moment, is practically
impossible. Once larger datasets have been established in
the future, promiscuous receptors could be included in
the training set, allowing predictions for G12/13 coupled
receptors.

Our exploratory approach resulted in the discovery of sub-
regions within the intracellular GPCR domains that play a
key role in determining GPCR coupling specificity to G-
proteins. The contribution of these regions to the overall
coupling scheme of GPCRs could arise through short-
range protein-protein interactions with their structural
counterparts in G-proteins, that is, through intermolecu-
lar stabilizing interactions that enable several regions of
the GPCR molecule to interact with G-proteins. The con-
formation of the intracellular regions of GPCRs is regu-
lated by intramolecular interactions between the
intracellular segments [38]. Furthermore, each query

Table 3: Promiscuous validation test. All 24 sequences of promiscuous coupled GPCR subtypes (as summarized in [37] and other 
sources [38]) were parsed in an hmmpfam query against our refined library of profile Hidden Markov models (pHMMs). The query 
sequences were not included in the training set. Promiscuous coupling was correctly predicted for 6 queries.

GPCR Subtype Uniprot AC observed predicted

Alpha-2A adrenergic receptor P08913 Gq/11 Gi/o Gs Gq/11 Gi/o Gs
AT1 angiotensin receptor P30556 Gq/11 Gi/o Gq/11 Gi/o
Beta-3 adrenenergic receptor P25962 Gi/o Gs Gq/11 Gio Gs
C3A anaphylatoxin chemotactic receptor Q16581 Gq/11 Gi/o Gi/o
Calcitonin receptor P30988 Gq/11 Gs Gs
Cholecystokinin type 1 receptor P32238 Gq/11 Gs Gq/11 Gi/o
Sphingosine 1-phosphate receptor 3 (EDG3) Q99500 Gq/11 Gi/o Gi/o
Lysophosphatidic acid receptor 2 (EDG4) Q9HBW0 Gq/11 Gi/o Gi/o
Endothelin B receptor O60883 Gq/11 Gi/o Gi/o
Endothelin A receptor P25101 Gq/11 Gs Gq/11
Follicle-stimulating hormone receptor Q95179 Gi/o Gs Gs
Galanin receptor type 2 O43603 Gq/11 Gi/o Gq/11 Gi/o
Leukotriene B4 receptor Q15722 Gq/11 Gi/o Gq/11 Gi/o
Lutropin-choriogonadotropic hormone receptor P22888 Gq/11 Gi/o Gs Gs
Neuromedin K receptor (NK-3) P29371 Gq/11 Gs Gq/11 Gi/o
Neuropeptide Y receptor type 1 O02813 Gq/11 Gi/o Gi/o
Oxytocin receptor P30559 Gq/11 Gi/o Gq/11 Gi/o
P2Y purinoceptor 11 Q96G91 Gq/11 Gs Gi/o
Platelet-activating factor receptor Q62035 Gq/11 Gi/o Gq/11 Gi/o
Prostaglandin E2 receptor EP3 P43115 Gq/11 Gi/o Gs Gi/o
Substance-K receptor (NK-2) P21452 Gq/11 Gs Gq/11 Gi/o
Substance-P receptor (NK-1) P25103 Gq/11 Gs Gq/11 Gi/o
Proteinase activated receptor 1 (thrombin receptor) P25116 Gq/11 Gi/o Gi/o
Thyrotropin receptor P47750 Gq/11 Gi/o Gs Gi/o Gs
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against the refined library of pHMMs reveals regions of
high identity to the profiles, if such exist in the target
sequence. Residues in these identified intracellular
regions could be targeted for site-directed mutagenesis
approaches in order to elucidate the structural features of
GPCR – G-protein coupling.

Our method can only predict the potential of interaction
between a GPCR and a G-protein subfamily, since its only
input is the GPCR sequence. Thus, common in vivo regu-
lators of GPCR coupling specificity including mechanisms
such as selective targeting of GPCRs to specific cell-mem-
brane regions, post-translational modifications [46,47] or
effects of accessory/scaffolding proteins interacting with
GPCRs (reviewed in [2]) cannot be modeled by our pre-
diction system. Also, GPCR homo- or hetero-dimeriza-
tion, that appears to be a common feature of many
GPCRs, necessary for G-protein activation [48-50] cannot
be directly included in our prediction system.

pHMMs derived from this study have been trained to
model sub-regions within GPCR intracellular domains
rather than entire GPCR sequences. The a priori knowl-
edge that a query sequence belongs to a GPCR would be
valuable in enhancing the predictive power of the
method. When the method is applied to the non-GPCR
receptor and the globular protein non-redundant test sets,
it produces false positives with a rate 19.2% and 6.4%
respectively. However filtering the query sequences, by
using 7-transmembrane domain pHMMs derived from
the Pfam database Version 14.0 [51] in a preceding step,
diminishes completely the above false positive results
without affecting the overall sensitivity of the method. All
six pHMMs for 7-transmembrane receptors contained in
the Pfam database Version 14.0 have been integrated into
our publicly available method. In conclusion, the method
could effectively be used in combination with existing 7-
transmembrane receptor predictive systems for genome-
wide applications.

Compared to other previously published methods, per-
forming the same task, our method does not only perform
significantly better in terms of overall accuracy, but also
employs additional superior features. Firstly, it does not
rely on the identification of intracellular loops as does the
Naive Bayes method in [42]. Our method was trained
using the annotations for the transmembrane regions
(which in most cases come from prediction methods) but
in the testing phase no such information is required, thus
it operates using as input solely the sequence. Compared
to the pattern discovery method of [43], our method uses
a more sophisticated scheme for whole-sequence scoring
that has a formal probabilistic interpretation. We should
note, however, that most of the patterns discovered by
[43] were captured by our pHMMs (Figure 1), but in a

more mathematically sound and exploitable manner. In
addition, in [43] no overall measures of accuracy were
reported in order to assess a fair comparison. Finally, our
method is the only method reported until now, that is
publicly available through a web-server. At the URL: http:/
/bioinformatics.biol.uoa.gr/PRED-COUPLE, the user may
submit a sequence in Fasta format, and receive the predic-
tion. The method is rather fast, producing a self-explana-
tory output, and, thus it may be used by both molecular
biologists requesting information for a single GPCR, and
by bioinformaticians performing large-scale computa-
tional analyses.

At the final stages of preparation of this manuscript,
another method developed independently by Sreekumar
and coworkers, was published [52], which uses also
pHMMs. However, the method of Sreekumar and cowork-
ers, does not treat the multiple intracellular loops of a
given GPCR independently, but instead it concatenates
them into a single sequence. These concatenated
sequences are then used to build pHMMs with the
HMMER package. Although, the method performs very
well as reported by the authors (they claim a 99% correct
classification rate in a cross validation test), there are
some severe disadvantages arising from the aforemen-
tioned strategy: With this method, to test a newly found
protein, one has to perform predictions on the GPCR
regarding its transmembrane topology, extract the intrac-
ellular loops and concatenate them into a single sequence.
This adds another source of error, originating from the
prediction errors of the transmembrane topology predic-
tion algorithm. Having in mind, that to date, even the best
topology prediction algorithms, predict correctly the full
topology of a protein with an accuracy of no more than
75% [53,54], this will further reduce the performance of
the method. We should also note that regarding GPCRs,
the most accurate predictors fail to even predict seven
transmembrane segments for more than 15% of the pre-
sented examples [54]. Furthermore, the method does not
control appropriately the level of false positives, since it
was not tested on non-GPCR sequences. On the contrary,
the method proposed in this work, although it uses essen-
tially the same principles in extracting the loop regions, it
treats them independently using the Qfast algorithm, and
thus, in the prediction phase, no a-priori knowledge of
loops and transmembrane topology is needed. In addi-
tion to that, the rate of false positive predictions is con-
trolled, providing us a confidence about the validity of the
results. Last, and perhaps more important, our method is
the only one until now that is fully automated and pub-
licly available via a web-server.

Conclusion
We applied here, a data-mining exploratory approach
combined with the high discriminative power of profile
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Hidden Markov Models (pHMMs), to generate a system
that predicts GPCR coupling specificity to the three main
subfamilies of G-proteins (Gi/o, Gq/11 and Gs), based solely
on the information included in the protein sequence. We
report superior correct classification rate compared to
other previously published methods, and we have created
a web-server, running the application, freely available for
academic users (Commercial users should contact Profes-
sor S. J. Hamodrakas to obtain a licence). At present, this
is the only web-based server for prediction of GPCRs cou-

pling to G-proteins. Expanding this information to char-
acterize the coupling properties for thousands of orphan
GPCRs in large-scale proteome annotation studies, our
understanding of receptor signaling pathways might
improve and new targets for drug research may be uncov-
ered. Future studies, utilizing larger representative train-
ing sets of GPCRs with known coupling specificity to G-
proteins, and more advanced algorithmic techniques are
needed in order to increase the accuracy of the prediction
method, as also as to handle more efficiently the promis-

Comparison of the methodsFigure 1
Comparison of the methods. Coupling determining patterns discovered by Moller et al. [43], show redundancy in their targets, 
since different patterns may apply to the same sequences in an overlapping manner. In addition, there are loop sequences of 
major GPCR subfamilies not characterized by any pattern, possibly due to low sequence identity. In comparison to patterns, 
profile Hidden Markov models (pHMMs) provide a whole sequence scoring scheme. Sequence information contained in multi-
ple patterns can be integrated in a single pHMM derived from a low entropy region of a multiple sequence alignment. Thus, 
every query sequence can be given a score that has a formal probabilistic interpretation.
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cuity in preferential coupling of GPCRs to G-proteins.
This way, we may also be capable of predicting the cou-
pling of GPCRs to G-proteins members of the G12/13 sub-
family, a feature neither addressed in this study, nor in
previously published methods.

Methods
Datasets
Our primary training dataset consists of 282 sequences of
GPCRs of known coupling properties to G-proteins (120
Gi/o, 94 Gq/11 and 68 Gs) according to the Trends in Phar-
macological Sciences 2000 Receptor and Ion Channel
nomenclature supplemement [37]. All sequences in the
training dataset were of GPCRs with non-promiscuous
coupling according to [36] and were retrieved from the
Uni Prot 1.10 database [45], excluding fragments. Based
on their coupling preference, they were grouped into Gi/
o, Gq/11 or Gs coupled receptors. The Uniprot Accession
numbers of the proteins in the training set can be found
in our web-page http://bioinformatics.biol.uoa.gr/PRED-
COUPLE/training.txt. Moreover, an alternative non-
redundant dataset comprised only of the 104 human
counterparts of GPCRs in the original dataset was used to

train the method. This was done in order to investigate the
effect of redundancy posed by homologous sequences. A
validation set was also generated, including 479 GPCR
species homologues of the receptor subtypes with known
coupling specificity according to [37] (256 Gi/o, 102 Gq/11
and 121 Gs). Finally, the method was also validated on an
independent set, composed of GPCRs, belonging to dif-
ferent subtypes with known coupling properties extracted
from the gpDB database [18] that are not included in the
training set [37].

As mentioned above, a sufficient amount of experimental
data signifies the role of GPCR intracellular regions (the
three intracellular loops and the carboxyl terminal region)
and the membrane proximal intracellular extensions of
transmembrane α-helices (approximately 1.5 turns) as
the main regions of interaction between the G-proteins
and the activated receptor complex [5]. Based on this
experimentally derived information as well as membrane
topology information derived from the UniProt annota-
tion of each entry (in the "FT TRANSMEM" lines), we
adapted our primary dataset, extracting sequence regions
that corresponded to intracellular regions or

Table 4: Fingerprint discovery results. Coverage values of profile Hidden Markov models (pHMMs) given after each alignment of entire 
loop sequence regions in comparison to maximized Coverage values of highly discriminative pHMMs derived from selected sub-
alignments within low-entropy regions. pHMMs derived from sub-alignments showed up to 12-fold increase in their discriminative 
power, as measured by Coverage, in comparison to pHMMs that characterize the entire loop sequence alignments. Alternative 
alignment regions with the same discriminative power are separated by commas, double dots separate beginning and ending of sub-
alignments used to generate HMMs. In the case of discovery of non-overlapping sequence fragments with high discriminative power 
(e.g. Gs loop1), separate pHMMs were generated and appended in the refined library of that group.

Coupling preference Gi/o Gq/11 Gs

Intracellular regions loop1 loop1 loop1
Whole sequence region 1..39/2.65 1..28/16.05 1..59/58.01
Non-overlapping most discriminative regions 3..24/19.86 13..25/30.53 7..19/63.35,43..51/48.09

loop2 loop2 loop2
1..50/19.20 1..42/0.70 1..39/12.21
10..18/32.78 14..34/19.85 18..25/54.19

loop3a loop3a loop3a
1..29/19.54 1..17/16.79 1..15/27.48
2..18/27.15 5..17/19.08 6..15/42.74

loop3b loop3b loop3b
1..26/6.63 1..21/3.82 1..15/20.61
14..21/23.51 8..19,9..20/12.21 1..15/20.61

loop3c loop3c loop3c
1..29/8.28 1..17/3.81 1..22/0.76
8..21/36.09 2..12/48.85 8..21,13..21/10.68

C-terminal C-terminal C-terminal
1..29/8.28 1..24/12.97 1..29/29.77
8..21/36.09 5..19/35.87 8..16/57.25
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transmembrane regions with intracellular proximity,
spanning for approximately 7 residues within the cell
membrane.

In order to investigate the performance of the method
when applied to non-GPCR sequences, we used two alter-
native datasets. The first dataset includes a total of 1361
non-GPCR transmembrane receptors, whereas the second
includes 1239 non-homologous globular proteins with
structures known at atomic resolution [8].

Data mining: Generation and evaluation of HMMs
A multiple alignment was generated for each group of
intracellular sequence regions derived from GPCRs with
same coupling preference using the ClustalX package [55].
Pairwise alignment scoring parameters were set as: BLO-
SUM 30 substitution matrix, Gap-opening penalty of
10.00 and gap extension penalty of 0.10. Multiple align-
ment parameters were set as BLOSUM 30 series substitu-
tion matrix, gap-opening penalty of 10.00 and gap
extension penalty of 0.20. Multiple sequence alignments
were then scanned for low entropy regions of high scoring
alignment rows. Thus, the training dataset was further
diminished to low-entropy sequence regions with a
sequence identity criterion. The resulting multiple align-
ment rows were then used to generate a library of HMMs
in an explorative way: for a given multiple alignment low
entropy block starting from every offset and with any win-
dow of seven or more alignment rows a HMM was con-
structed. Thus, a low entropy block of n alignment rows
generates

potential alignments, where w is the window length. This
analysis yielded a total of 6149 HMMs that were tested on
the fly with the hmmsearch program against the training
set, in order to compare the discriminative power among
alternative HMMs. As an estimator of the discriminative
power of HMMs we calculated the Coverage of the results,
i.e. the percentage of positives scoring an e-value lower
than the lowest e-value of the negatives. This critical e-
value corresponds to the noise cutoff of Pfam entries [51].
In order to compare Coverage values between HMMs
derived from different coupling groups, we calculated the
p-value of Coverage as a random variable (probability of
a model derived from alignment rows of random
sequences scoring a Coverage greater or equal to a specific
observed Coverage), as follows:

In a set of n sequences containing κ positives, the proba-
bility of choosing x positives before the first negative,
without reset, equals to:

where f(x) is the probability function of the negative
hypergeometric distribution. The cumulative probability
function, i.e. the probability of choosing x or less positives
before the first negative without reset is:

Thus, the probability of choosing × or more positives
before the first negative (i.e. the p-value of the test) equals
to 1 - F(x).

Based mainly on Coverage measurements and their p-val-
ues, we discovered HMMs from several sub-regions within
the loops that show up to 12-fold increase of Coverage, in
comparison to models derived from the entire loop
sequences. Our exploratory approach resulted in 5 to 7
refined pHMMs for each one of the three groups of GPCRs
in the dataset, as summarized in Table 4. The overall flow
chart of the method, is presented in Figure 2.

Cutoff optimisation
Due to sequence similarity among intracellular regions of
GPCRs of different coupling preferences, an hmmpfam
query of the training set against the refined HMM library
under a default e-value cutoff threshold, yielded artifact
promiscuity in the predictions. HMMs derived from dif-
ferent intracellular regions show extensive variation in
their discriminative power, as a consequence of different
participation of different regions among the three groups
of GPCRs in the overall coupling preference of the mole-
cule. Our aim was not to exclude promiscuity from the
predictive power of the method, so each HMM in the
refined library was given a discrete cut off threshold result-
ing from ROC curve analysis after evaluation of the distri-
bution of scores that corresponded to positive and
negative targets of the training set. For each refined HMM
of our library, we estimated and applied cutoff values that

maximize the value: , where TP and FP are the

percentages of positives and negatives respectively that
score an e-value equal or less than a defined threshold at
an hmmpfam query against the training set. This value is
represented by the distance from the diagonal f(x) = x of a
ROC curve, as presented in Figure 3. Once we had
estimated the optimized cutoff thresholds for each HMM
fingerprint, we combined the e-values of queries against
HMMs that characterize the same GPCR coupling group

using the QFAST algorithm [56]: ,
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where p is the maximum product of n independent, uni-
form random variables and F(p) the combined p-value. In
order to maximize the discriminative power of the com-
bined predictions, a cutoff threshold was set for each one

of the three e-value combinations, based mainly on the
shape of the distribution of e-values scored by positives
and negatives of the test set. A threshold was also set for
the difference of combined e-values scored by the first and

Flow chart of the methodFigure 2
Flow chart of the method. GPCR entries in UniProt of known, non-promiscuous coupling specificity to G-proteins summarized 
in [37] were used to extract intracellular regions sequences, based on membrane topology information of the UniProt annota-
tion. ClustalX was used to generate multiple sequence alignments of intracellular regions from which low-entropy blocks were 
selected based on ClustalX row scores. For every begin and end row, within low-entropy regions, sub-alignments were 
extracted and profile Hidden Markov models (pHMMs) were built. The discriminative power of each pHMM was assayed, after 
an hmmsearch run against the training set. The most discriminative HMMs for each intracellular region were selected for each 
one of the three main coupling groups and appended in the refined library. E-value thresholds were then set for each pHMM 
included in the refined library. The reverse course is followed during a query against the library of refined pHMMs.
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second match, expressed in logarithmic units, based on
the combined e-values scored by HMMs characterizing
different coupling groups in a hmmpfam search against a
set of all 24 coupling-promiscuous GPCR sequences sum-
marized in [37]. This estimation was based on the obser-
vation that the distributions of combined e-value
differences, between the first two coupling predictions,
from queries against promiscuous and non-promiscuous
GPRCs are distinguishable when expressed in a logarith-
mic scale. Thus, alternative coupling groups are predicted
as multiple combined e-value hits when querying the
library against GPCR sequences of promiscuous coupling
properties.

In order not to over-estimate the correct classification rate,
a five-fold cross-validation procedure was adopted. Ini-
tially, the training set was randomly divided to five
equally balanced sets. Afterwards, we trained a model,
according to the above-mentioned procedure, using as
training set the sequences in the four sub-sets, whereas the

last sub-set was used for testing. This procedure was
repeated five times, and the final results are the overall
results obtained from the five sets.
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