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Abstract

Background: Understanding transcriptional regulation of gene expression is one of the greatest
challenges of modern molecular biology. A central role in this mechanism is played by transcription
factors, which typically bind to specific, short DNA sequence motifs usually located in the upstream
region of the regulated genes. We discuss here a simple and powerful approach for the ab initio
identification of these cis-regulatory motifs. The method we present integrates several elements:
human-mouse comparison, statistical analysis of genomic sequences and the concept of
coregulation. We apply it to a complete scan of the human genome.

Results: By using the catalogue of conserved upstream sequences collected in the CORG database
we construct sets of genes sharing the same overrepresented motif (short DNA sequence) in their
upstream regions both in human and in mouse. We perform this construction for all possible motifs
from 5 to 8 nucleotides in length and then filter the resulting sets looking for two types of evidence
of coregulation: first, we analyze the Gene Ontology annotation of the genes in the set, searching
for statistically significant common annotations; second, we analyze the expression profiles of the
genes in the set as measured by microarray experiments, searching for evidence of coexpression.
The sets which pass one or both filters are conjectured to contain a significant fraction of
coregulated genes, and the upstream motifs characterizing the sets are thus good candidates to be
the binding sites of the TF's involved in such regulation.

In this way we find various known motifs and also some new candidate binding sites.

Conclusion: We have discussed a new integrated algorithm for the "ab initio" identification of
transcription factor binding sites in the human genome. The method is based on three ingredients:
comparative genomics, overrepresentation, different types of coregulation. The method is applied
to a full-scan of the human genome, giving satisfactory results.
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Background

Understanding transcriptional regulation of gene expres-
sion is one of the greatest challenges of modern molecular
biology. A central role in this mechanism is played by
transcription factors (TF), which typically bind to specific,
short DNA sequence motifs. These motifs are usually
located in the upstream region of the regulated genes,
although it is possible to find them also in the introns and
in the 3' downstream region. They are often overrepre-
sented, and appear in multiple copies inside the regula-
tory regions to form modules of cooperating items.

In these last years, the study of gene regulation has under-
gone a deep change of perspective [1,2]. While past stud-
ies usually dealt with individual regulatory interactions, it
has become by now clear that the only way to understand
the regulatory activity of the genome is to directly address
the complex, combinatorial nature of the whole ensemble
of TFs.

The identification of the cis-binding sequences and of the
related TF's is a mandatory preliminary step toward this
goal.

To this end it is becoming more and more important to
construct tools able to

- address the problem on a genome wide scale

- keep under control the number of false positives to avoid
an excessive increase of the noise to signal ratio

- use as input the statistical properties of the DNA
sequences, thus avoiding, as far as possible, any other a
priori assumption on the binding motifs.

However, the study cannot be based exclusively on the sta-
tistical features of the DNA regions presumably involved
in transcriptional regulation, but must be complemented
with independent information about gene regulation. In
this respect three important sources of information may
be used: the functional annotations collected in public
databases, gene expression data on a global scale, and the
so called 'phylogenetic footprinting' [3].

In fact large functional annotation databases and large-
scale expression data provide a wealth of information
about coregulation. This is a crucial point, since coregu-
lated genes are likely to share similar transcriptional regu-
latory mechanisms. At the same time in these last years a
growing interest has been attracted by the 'phylogenetic
footprinting', i.e. the idea that functional sequences are
preferentially conserved over the course of evolution by
selective pressure. Comparison of orthologous gene
sequences has been for a long time a standard tool in
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genomic analysis. Recently this comparative approach has
been extended also to non coding regions, thanks to the
progress of the sequencing programs. It is by now
accepted that these non-coding conserved regions have an
important regulatory role [4-9].

Several computational method have been proposed in the
last few years to identify TF binding sites. These can be
classified into two separate groups: enumerative methods,
including the one we will present in this paper, explore all
possible motifs up to a certain length (see for example
[10-17]). The other large group consists of local search
algorithms, including expectation maximization and var-
ious flavours of Gibbs sampling (see e.g. [18-21]).

We discuss here a simple and powerful approach for the
identification of cis-regulatory motifs which fulfils the
above requirements. It can be tuned to keep the number
of false positives under control, and it allows us to study
the transcriptional regulation of more than 10,000 genes
of the human genome (which is a good approximation of
a genome wide scale). The method is based on an "ab ini-
tio" study of the statistical properties of the regulatory
sequences of the genes of interest. Together with the dis-
cussion of the method itself, we apply it to a full-genome
analysis of the human case.

In particular in this paper, as a first step, we concentrated
on the upstream sequences of the human genome (to be
defined more precisely below), while we plan to extend
these same tools to the downstream and intron regions in
the future.

Results and Discussion
Our proposed approach
ingredients:

is based on three main

(1) human-mouse genomic comparison

(2) statistical analysis of "motifs" (short DNA sequences)
that are overrepresented in evolutionarily conserved
regions upstream of orthologous genes

(3) two complementary "filters" to infer coregulation: the
distribution of Gene Ontology annotation terms and the
results of a set of microarray experiments

The approach based on steps (2) and (3) above was suc-
cessfully applied to the search for regulatory binding sites
in yeast [14,15]. The human-mouse genetic comparison is
crucial in extending the method to higher eukaryotes,
since it is expected to greatly improve the signal/noise
ratio by selecting for analysis those portions of the
upstream regions that are more likely to be functionally
relevant. Other algorithms taking advantage of
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Figure |
Flow-chart of the algorithm

phylogenetic footprinting to detect transcription factor
binding sites have been published in [22,23].

As a final result of our analysis we obtain a set of motifs
which survive one or both of the above filters, which we
consider as our candidate binding sequences. The final
step is then to cluster together these words to obtain con-
sensus binding site sequences. This step allows, at the end
of the whole process, to recover the intrinsic variability or
regulatory motifs, that we know to be one of the most
important features of binding sequences in higher
eukaryotes.

Table I: Number of significant motifs found with the four scoring
matrix/filter combinations and their intersection. The third line

contains the number of motif identified using both the PAMI and
PAMI0 scoring system. The third column shows the number of

motif identified by both the Gene Ontology and the microarray

filter.

GO MA GO & MA
PAMI 139 6l 29
PAMIO 93 181 55
PAMI & Zy) 38 17
PAMI0
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Table 2: Consensus binding sites corresponding to GO terms in the biological process branch of the Gene Ontology. For each GO term
we display either the consensus sequence obtained from wconsensus, or the longest motif associated to the term if the consensus
sequence was not significant enough as defined in the text. The third column is the logarithm of the expected frequency of the
alignment as given by wconsensus, if exists. The fourth column contains the number A of motifs which were used in the alignment and
the total number B of motifs associated to the term in the format A/B. For this table the data obtained with PAMI and PAMI0 are

considered together.

actin filament-based process

ATP metabolism

biosynthesis

cell growth and/or maintenance
cell motility

defense response

development

DNA metabolism

DNA replication and chromosome cycle
DNA replication initiation

enzyme linked receptor protein signaling pathway
epidermal differentiation

frizzled-2 signaling pathway
glycoprotein catabolism
heterophilic cell adhesion

immune response

intracellular protein transport
L-amino acid transport
macromolecule catabolism
metabolism

metabolism

mitotic cell cycle

muscle development

negative regulation of cell growth
nucleobase\, nucleoside\, nucleotide and nucleic acid metabolism
nucleosome assembly
organogenesis

perception of chemical substance
phototransduction

pinocytosis

potassium ion transport

protein biosynthesis

protein transport

regulation of apoptosis

regulation of protein kinase activity
regulation of translation
ribonucleotide metabolism

RNA localization

synaptogenesis

transcription

transcription\, DNA-dependent
translation

two-component signal transduction system (phosphorelay)
vision

GGGATTA - I/1
CCGTCCC - I/1
CGCACG - I/1
CTTCA - 171
AGGGG - 12
AGGAA - 171
CCcCC -32,3389 16/16
TTCCCGC -35,3236 6/7
TTCCCGCG -17,6184 4/4
GCGCGAAA - I/1
AGGGGG - I/1
AGGCA - 11
GCTGGAGA - I/1
CTGACCTA - 171
CTAAACTC - I/1
GAAAC - I/1
CCACGTC -7,62462 2/2
ACTTTG - 171
GACTC - I/1
CGGAAG - 12
CGGGCCCG - 12
TCCCGCCA - I/1
CCAAG - 171
AACGACT - 171
AACGG - 1/4
GGCTCT -92,8905 27/40
ACCCCCcCC - 12
TCTAA - I/1
AAGRGGCC -12,0169 6/6
CTTACGA -7,62462 2/2
CCAAG - 171
CGGAAG - /1
CCCAG - 171
CATAG - I/1
AAAAG - /1
CGTGCTTC - 171
CTTGATCC - I/1
ACGCCG - I/1
AGCGCCAC - I/1
CCGAG - I/1
CCGAG - 112
ACTTCCGG - 171
CACACGGG - 171
AATCCCT - I/1

A flow-chart of our algorithm is depicted in Figure 1.

The total number of motifs analyzed, after identifying
each motif with its reverse complement and disregarding
the self-overlapping ones, was 40,484. With the false dis-
covery rate set at 10%, 373 of these turned out to be sig-
nificant with at least one choice of scoring matrix (PAM1
or PAM10) and filter (Gene Ontology or microarray). 105

different Gene Ontology terms were involved, and 57
microarray time-points.

All the significant associations between motifs and Gene
Ontology terms and microarray time points, for both scor-
ing systems, are reported in Supplementary Table 1 [see
Additional file 1 suptabl.txt]. The total number of such
associations is 800, meaning that each motif was found,
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Table 3: Consensus binding sites corresponding to GO terms in the cellular component branch of the Gene Ontology. For each GO
term we display either the consensus sequence obtained from wconsensus, or the longest motif associated to the term if the consensus
sequence was not significant enough as defined in the text. The third column is the logarithm of the expected frequency of the
alignment as given by wconsensus, if exists. The fourth column contains the number A of motifs which were used in the alignment and
the total number B of motifs associated to the term in the format A/B. For this table the data obtained with PAMI and PAMI0 are

considered together.

actin cytoskeleton

chromatin

chromosome

chromosome), pericentric region
clathrin-coated vesicle

collagen

COPI-coated vesicle

cytosol

cytosolic large ribosomal subunit
(sensu Eukarya)

cytosolic ribosome (sensu
Eukarya)

endoplasmic reticulum
eukaryotic 43S preinitiation
complex

eukaryotic 48S initiation complex
eukaryotic translation initiation
factor 3 complex

external encapsulating structure
extracellular matrix
extracellular space

fibrillar collagen

Golgi lumen

heterogeneous nuclear
ribonucleoprotein complex
inner membrane

integral to membrane

integral to nuclear inner
membrane

intracellular

lytic vacuole

membrane

minor (U12-dependent)
spliceosome complex
mitochondrial inner membrane
presequence translocase complex
mitochondrion

muscle fiber

muscle myosin

muscle thin filament tropomyosin
nuclear chromatin

nucleosome

nucleus

plasma membrane

replisome

ribonucleoprotein complex
ribosome

sarcomere

small ribosomal subunit
synaptic vesicle

synaptonemal complex

vesicle coat

voltage-gated calcium channel
complex

AGGAC
GGCTC
GGCGGGAA
CAAATAGA
ATGGCA
GGACC
CTCAGAG
CGAAAGC
CGGAGGAG

TTTCCG

GACGTGGC
CGGAAAA

GGGCGGAA
CACCTCCG

GTATCTA
CAAATG
GGGAA
ACCCT
CAACAT
AATGGCG

ACCGGCT
ATCTCTG
ACCTGAG

CGGAAGCG
GATTCA
CCTGGC
ATTGCG

ACGGGAA

AAGTTGC
CCTCAG
CAGAG
TCCTCCA
ATTGAG
GGCTCT
CACCAATC
CTCCC
TCCCGCCA
CSGAA
CGTGTAG
AGCAGG
GGCGGAA
ACCAGAAT
GGTCTTA
ACTGCCT
CCTCCC

-9,99174

-11,6127

/1
3/3
172
1/1
171
1/1
I/1
172
1/3

4/5

1/4
172

171
1/4

1/1
172
I/1
I/1
3/4
1/4

171
1/4
172

5/15
I/1
1/6
1/1

172

172
171
1/1
I/1
I/1
28/45
1/5
1/1
171
6/8
1/3
172
172
I/1
1/1
171
1/1
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Table 4: Consensus binding sites corresponding to GO terms in the molecular function branch of the Gene Ontology. For each GO
term we display either the consensus sequence obtained from wconsensus, or the longest motif associated to the term if the consensus
sequence was not significant enough as defined in the text. The third column is the logarithm of the expected frequency of the
alignment as given by wconsensus, if exists. The fourth column contains the number A of motifs which were used in the alignment and
the total number B of motifs associated to the term in the format A/B. For this table the data obtained with PAMI and PAMI0 are

considered together.

calcium-activated potassium GCCACA
channel activity

chemoattractant activity GAATTTCC
G-protein coupled receptor AATAG
activity

ligand-dependent nuclear receptor CAGGG
activity

nucleic acid binding CGGGAG
pancreatic ribonuclease activity AACTACTC
phosphatidylinositol-4\, 5- AAGGA
bisphosphate 3-kinase activity

retinoic acid receptor activity ACCCA
RNA binding ATGGCG
serine-type endopeptidase activity CAGAGGG
single-stranded DNA binding AAACC
surfactant activity ACTCACCC
translation factor activity\, nucleic ~ CGGAAG
acid binding

uncoupling protein activity GACGTAGC

- 1/1

- 171
- 171

- 172
- I/1
- 171

- 171
- 171
- 171
- 171
- 171
- 171

Table 5: Consensus binding sites corresponding to microarray time-points. Only time-points for which the clustering algorithm

produced a consensus sequence of length 4 or more are shown.

Timepoint consensus sequences used In (expected freq.)
t=23 CTGG 4/7 -7,99646
t=50 CCMCA 5/15 -9,71859
t=6l SCCAGG 12/43 -18,6948
t=89 CWGGG 17/23 -11,1386
t=100 CCCWG 12/31 -12,5918
t=107 CGGM 13/14 -14,7383

on average, about twice. Even if the various filters and
scoring methods cannot be considered independent of
each other, this fact is certainly encouraging in terms of
the robustness of the method. These results are summa-
rized in Tab. 1.

While the high degree of superposition between the
results found with different choices is a clear indication of
the robustness of our approach, the lists obtained are still
significantly different: therefore the use of different filters/
scoring matrices is useful in expanding the range of regu-
latory interactions explored by the algorithm.

In the supplementary table 2 we also provide the lists of
the genes included in the sets found significant by one or
more filter [see Additional file 2].

Not surprisingly, in many instances several motifs, often
very similar to each other, are associated to the same GO
term or microarray timepoint. For all Gene Ontology
terms and microarray point associated to one or more
motifs, we constructed, when possible, a consensus bind-
ing sequence from the motifs associated to the term as
explained in the Materials and Methods section. The
results are presented in Tab. 2, 3, 4, for the three branches
of the Gene Ontology and in Tab. 5 for microarray time-
points. For the latter, the consensus obtained is reported
only when its length is at least 4. In many cases, in fact, the
large number of motifs significantly associated to a micro-
array time-point causes the clustering algorithm to pro-
duce very short and rather uninformative consensus
sequences. These results were produced by considering
the PAM1 and PAM10 results together.
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If our method is really able to identify genuine transcrip-
tion factor binding sites, we would expect to find, among
the surviving sets, at least some of the TF binding sites that
are known to regulate the transcription of target genes
through multiple occurrences in their promoters.

We focus here on some major examples.

E2Fs are transcription factors well known for their ability
to regulate DNA replication by binding multiple sites in
the promoters of the target genes [24]. Since the most
abundant subpopulation of sets surviving the GO filter
display a strong overrepresentation of DNA replication-
related terms, it would be reasonable to expect that many
of them are E2F binding sites. This was indeed the case, as
the motifs TTGGCGC associated to many significant sets
perfectly matched experimentally determined E2F bind-
ing sites as well as the consensus sequence found in the
TRANSFAC[25] database. Significantly, some of these
words were identified not only by the GO filter, but also
by the microarray filtering scheme, confirming that our
method is very robust in identifying the binding sites of
this particular transcription factor.

It is interesting to see whether these motifs are found in
the conserved parts of the upstream regions of experimen-
tally verified targets of regulation by E2F. From the
TRANSFAC database we identified 8 such targets, 6 of
which are included in the PAM1 version of the CORG
database: CAV1, MYC, DHFR, E2F2, RBL1 and CDC6. In
five cases at least one of the motifs we find matching the
E2F consensus can be found in the conserved part of the
upstream regions, and in four cases many instances of the
motifs are found: we find a total of 33 occurrences in the
upstream region of MYC, 14 for E2F2, 11 for RBL1 and 11
for CDC6. Only one occurrence is found for DHFR, and
none for CAV1. Similar results are found using the PAM10
version of CORG.

By performing these analyses, we observed that motifs
characterized by the annotations 'chromatin' and 'nucleo-
some assembly’, although obviously related to DNA
replication, could not be reconciled with E2F binding
sites, but included instead the motif AGAGCCITT and sev-
eral similar ones. Since most of the annotated genes in the
sets encoded for histone proteins, we speculated that these
consensus could be part of a critical control element
involved in the production of histones during DNA repli-
cation. One of the best known such elements is an evolu-
tionary conserved inverted repeat found in the 3'
untranslated region of histone mRNAs, controlling their
stability during the cell cycle [26]. Surprisingly, our con-
sensus sequence matched this element, raising the prob-
lem of how a 3' located regulatory element could be
identified by our method. The reason is that histone genes

http://www.biomedcentral.com/1471-2105/6/110

Table 6: Words associated to "muscle development" and related
terms

AGCAGG sarcomere

CCAAG sarcomere

CCAAG muscle development
TCCTCCA muscle thin filament tropomyosin

Table 7: Words associated to "endoplasmic reticulum”, "protein

transport” and "intracellular protein transport"

AAGTTGG endoplasmic reticulum
AATCGGC endoplasmic reticulum
ATCAGCG endoplasmic reticulum
CGCAG endoplasmic reticulum
GACGTGGC endoplasmic reticulum
ACGTG intracellular protein transport
CCACGTCA intracellular protein transport
GACGTGGC intracellular protein transport
CCCAG protein transport

form tight clusters in different chromosomal locations,
and the distance between the initiator codon is in many
cases below the 15000 bp limit used by our algorithm.
Although of serendipitous nature, this result underscores
two important points. The first is that our method is able
to identify not only regular transcription factor binding
sites, but also other less conventional regulatory elements
characterized by a motif repetition. The second is that our
approach could be systematically extended to other gene
regions, such as the 3' untranslated and the introns.

The highly heterogeneous annotation associated to the
sets surviving the GO filter strongly suggests that our
method can potentially identify relevant binding sites for
known and/or unknown transcription factors in the pro-
moter of groups of genes involved in a wide variety of bio-
logical processes, such as tissue and organelle-specific
transcription.

For instance, we identified many sets significantly
enriched for genes involved in muscle development and/
or functions (see Tab. 6). Interestingly, one of them
(AGCAGG, associated to the term "sarcomere") is com-
patible with the binding site of the well known muscular
master genes MyoD and Myf5 [27] as represented by a
mixture of the TRANSFAC matrices M00184 and M0001,
while the others had no significant match in the TRANS-
FAC database.

Another example are the different motifs associated with
the annotations "endoplasmic reticulum"”, "protein trans-

port" and "intracellular protein transport”(Tab. 7). Three
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Figure 2
Histogram of the distance from the TSS of the motifs found
significant by the algorithm (see text).

of them (ACGTG, CCACGTCA and GACGTGGC) with
known binding sites of ATF6 (TRANSFAC matrix
M00483), a strongly conserved transcription factor
involved in endoplasmic reticulum function [28]. The
others don't show significant overlapping with TRANS-
FAC, suggesting that they are new putative cis elements
important for regulating ER genes.

It is important to notice that in some instances, even
though no hypothesis on the precise transcription factor
can be formulated, it is at least possible to conjecture the
general structural class to which the TF belongs. For exam-
ple, the word GGGGGGGT, associated with the annota-
tion "organogenesis", is consistent with the binding sites
of many zinc finger transcription factors, such as Zicl,
Zic3 and MZF1 [29], thus suggesting that some of the
genes in the set are transcriptional target for a member of
this particular family of transcription factors.

It is interesting to investigate the distribution of the dis-
tance of the motifs identified by our algorithm from the
TSS of the corresponding gene. For all motifs found signif-
icant and for all genes in which the motif is overrepre-
sented we computed the distance between the locations in
which the motif is found and the TSS of the gene. All these
data are represented as a histogram in Fig. 2. The motifs
are very obviously concentrated near the TSS. This fact
suggests that the choice to cut at 15,000 bp the length of

http://www.biomedcentral.com/1471-2105/6/110

the upstream regions considered is unlikely to decrease
the signal significantly. The data shown are for PAM1, but
the ones for PAM10 do not differ in any significant way.

Taken together, these results suggest that our approach
has the potential to identify new critical regulatory
elements for genes involved in a wide variety of biological
processes.

Conclusion

We have discussed a new algorithm for the "ab initio"
identification of transcription factor binding sites in the
human genome. The method is based on three
ingredients:

- the so called phylogenetic footprinting, i.e. the idea that
functional sequences are preferentially conserved over the
course of evolution by selective pressure.

- the overrepresentation criterion, i.e. the observation that
binding sequences are usually overrepresented in the
upstream region of the genes that are regulated by the cor-
responding transcription factors.

- the coregulation test, i.e. the use of coregulation
(detected by using GO categories or microarray data) as a
criterion to select the true positive binding sequences

Experience with yeast [14,15] suggests that our method is
characterized by a low rate of false positives but, presum-
ably, a rather high number of false negatives. The reason
for this is that the basic ingredients of our analysis are
motifs defined as completely specified sequences. This
requires the motifs to be overrepresented, in the upstream
region of a gene in order to be selected for our analysis
and thus limits our candidates to a subset of all possible
motifs. Our method is therefore complementary with
respect to the standard approaches to binding sequences
identification which use weighted matrices instead of
completely specified motifs, since these typically have
problems in detecting the true positive signals from the
statistical background noise.

The variability of the motifs, which is a fundamental fea-
ture of Eukariotic binding sequences and is neglected at
the beginning of our algorithm is recovered at the end
thanks to the careful consensus reconstruction discussed
in the previous section. These are the major novelties of
our approach.

We consider as an encouraging validation test of our pro-
cedure the fact that several known TF binding sequences
are found with our method. This makes us confident
about the reliability of the other candidates that we found.
Needless to say, these should be validated with suitable
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experimental tests. Indeed we think our "ab initio"
approach could be of value as a preliminary test for any
experimental search of binding sequences.

Several improvements of the present algorithm are possi-
ble. In particular it would be interesting to extend our
analysis to other regions besides the 5' upstream one (the
results on the control element of histones discussed above
clearly indicate that this would be a fruitful research
direction). In this respect the most natural candidates are
the 3' downstream regions and the first intronic interval.

The method could be extended without major modifica-
tions to motifs with gaps, as considered in [40]. Extension
to longer motifs would also be important: however the
extension of the algorithm to motifs significantly longer
than the ones considered here should probably take into
account motif variability from the start, which would in
turn imply a significant increase in computational
complexity. We are currently investigating some possible
ways of overcoming this problem.

Similarly, it would be important to address the combina-
torial nature of transcriptional regulation by studying the
correlation of overrepresented words along the lines dis-
cussed for instance in [30,31]. It is only by looking at the
intricated network of interactions as a whole that one can
hope to understand the collective behaviours leading to
the tight and impressively efficient regulation of gene
expression in higher eukaryotes and in particular in mam-
malians. It also clear that the algorithm can in principle be
applied to any pair of closely related organisms.

We plan to address these issues in future work.

Methods

Construction of the new release of the CORG database
Definition of upstream regions and conserved non-coding
blocks:

An upstream region is a sequence window that contains 5'
genomic DNA extending from the start of translation of
each individual transcript. The maximal size of an
upstream region is taken to be 15 kbp. This upper bound
stems from the observation that most promoter regions
are less than 15,000 bp away from the start of translation
[32]. Evidently, upstream regions may be smaller since
they are bounded by the size of the intergenic region
under consideration. Given this definition, upstream
regions of different transcripts of the same gene or tran-
scripts belonging to neighbouring genes could overlap.
This is taken into account when compiling the conserva-
tion information by cutting the upstream region short of
15 kbp when necessary. All man and mouse DNA
sequences were retrieved from the NCBI genome assem-
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blies (NCBI33 and mNCBI30). Gene annotations were
obtained from the EnsEMBL databases (release 17).

Orthologous man/mouse upstream regions were scanned
for significant local similarities. We prefer a local align-
ment approach over a global one. That is we do not con-
strain the arrangement of putative regulatory modules.
We denote these similarities as Conserved Non-coding
sequence Blocks (CNBs). CNBs are computed with an
implementation of the algorithm of Waterman and Eggert
[33], which extends the well known Smith-Waterman
algorithm to suboptimal alignments. The two scoring
matrices used in the computation are derived from the
Kimura two-parameter model and are normalized to a
distance of 1 PAM and 10 PAM, respectively. The two
matrices yield alignments of differing stringency with an
expected level of identity of 99% for 1 PAM vs. 90.7 % for
10 PAM. Gap penalties were set to 11x match score for
opening a gap and 0.1x match score for extending one.
On average 8% (1 PAM) vs. 18% (10 PAM) of each
upstream region (excluding repeats) is covered with
CNBs.

An assessment of statistical significance of alignment
scores was introduced to discriminate "true" from random
alignments. Waterman and Vingron [34] showed that
scores of local suboptimal alignments follow approxi-
mately the order statistics of a Poisson distribution. This
facilitates the calculation of p-values by simulating ran-
dom scores. We applied a P-value cutoff of 0.001.

Further details on the derivation of the data set can be
found in [35]. Most of the data are part of the CORG data-
base and can be accessed via the website http://corg.mol

gen.mpg.de.

Construction of the sets

The first step in the algorithm is the construction of sets of
genes associated to all possible motifs. In this work a
motif is defined as a short (5-8 bps), completely specified
DNA sequence. The set associated to the motif m consists
of all genes such that m is overrepresented, in the sense
defined below, in the CNBs upstream of the genes. Motifs
are always read on both strands, and therefore the sets
associated to a motif and to its reverse complement coin-
cide by definition. All genes for which one ore more CNBs
were available were examined and assigned to one or
more sets: 11,265 genes are included in the PAM1 version
of CORG, and 13,294 in the PAM10 one.

The CORG database includes many rather long entries, up
to several hundred bps. It is likely that many of these are
actually exons. Since the inclusion of long exons would
decrease our signal/noise ratio, we discarded all entries of
length greater than 200 bps. We also eliminated multiple
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overlapping entries so that, as a final result of this prelim-
inary step, each nucleotide in each conserved upstream
region has exactly the same statistical weight. With this
choice we end up with a total of 389560 distinct CNBs in
the PAM10 case out of which 9155 (2.3%) have a length
greater than 200 bp and, according to the strategy dis-
cussed above, were discarded in the following steps of our
analysis. In the PAM1 case we find a total of 203417 CNBs
out of which 3408 (1.7%) have a length greater than 200
b. As expected the proportion of CNBs larger than 200 bp
decreases as the stringency of the alignments increases.

The definition of overrepresentation of a motif is the same
that we used in Ref. [14] and [15], and was originally
introduced in Ref.[16]. It is based on the frequency f(m)
of the motif in all the CNBs contained in the database. For
each gene we count the occurrences of m in the CNBs
associated to the gene; then we compute the probability P
of finding as many or more occurrences, based on a
binomial distribution. The parameters of the binomial
distribution are chosen as follows: f(m) is the success
probability at each trial, and the number of trials is equal
to the number of motifs that can be read in the CNBs
associated to the gene. The use of the binomial approxi-
mation is based on the assumption of independence
between successive trials. While rigorously speaking such
assumption is never correct, it leads to serious errors only
for periodic motifs, that are likely to be repeated several
times in a row on the sequence. Therefore we did not
include in our analysis the motifs that can be found
repeated (possibly as their reverse complement) at a dis-
tance of 1, 2 or 3 bps (for example, respectively, CCCCC,
ACGTA, CATCA).

If P < 0.01 we include the gene in the set labeled by the
motif m. Notice that no biological significance is ascribed
to these sets before they are selected for evidence of coreg-
ulation as explained below: therefore the choice of the
cutoff on P can be arbitrarily lenient. Based on previous
experience, we set the cutoff at P = 0.01. As it can be
expected from the number of genes analyzed, essentially
all possible motifs turn out to be overrepresented in some
genes with this cutoff; however only a small fraction of
them are selected by the GO and microarray filters and
thus identified as candidate binding sites.

At this point we have thus obtained, for each possible
motif m, a set of genes such that m is overrepresented in
the CNBs of the genes in the set. The next step consists in
looking for evidence of coregulation of the genes included
in each set.

The Gene Ontology filter
As a first filter to select the sets whose genes are function-
ally related, and hence likely co-regulated, we analyze the

http://www.biomedcentral.com/1471-2105/6/110

prevalence of Gene Ontology (GO) annotations terms
[36] in each set. For all GO terms associated to the genes
of a set we perform an exact Fisher's test to determine
whether the term appears in the set significantly more
often than expected by chance. More precisely the Fisher's
test gives us the probability P of obtaining an equal or
greater number of genes annotated to the term in a set
made of the same number of genes, but selected at ran-
dom from the database. If P is statistically significant, then
we can postulate the existence of a correlation between
the overrepresentation of the motif m labeling the set and
the functional characterization of the genes in the set, and
hence include m in the list of candidate binding sites
found by the algorithm.

Since this test is performed for all GO term and all sets,
multiple testing is certainly an important issue. It is made
rather non-trivial by the fact that the tests made on differ-
ent GO terms are far from being independent of each
other (think for example of testing the same set of genes
for overrepresentation of the terms "cell cycle" and "DNA
replication"). We chose to approach this issue with a safe,
brute-force method based on random sampling,
previously used in Ref. [15]: we generated a large sample
of randomly selected gene sets of the typical size of our
sets and we used it to estimate the number of false discov-
eries to be expected as a function of the cutoff on P-values.
This allowed us to tune the cutoff on the Fisher's test P-val-
ues to obtain the desired value of the FDR (False Discov-
ery Rate), which for the results we present is 10%.

The Microarray filter

An alternative and complementary filter to select candi-
date binding sites of our method uses microarray data.
The assumption is that the distribution of expression val-
ues of a set of co-regulated genes is significantly different
from the distribution of expression values of the whole
genome. We used microarray data from the Stanford
human cell-cyle experiment [37], consisting of 114 micro-
arrays. We used the labels available in the raw data file
(Unigene identifier and HUGO symbol when available)
to make the correspondence with the Ensembl clusters
used to identify the genes in the sets.

For each set and each microarray experiment, the compar-
ison between the distribution of the data for the set and
for the wholes genome was performed using the non par-
ametric Kolmogorov-Smirnov (KS) test on the distribu-
tion of log(R), where R is the red/green normalized ratio.
The goal is to identify the sets (and thus the corresponding
motifs) showing an expression pattern significantly differ-
ent from the background distribution (i.e. from the whole
genome expression pattern for that particular microarray
experiment). The non parametric KS test is the best suited
tool for this type of analysis since it makes it possible to
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compare the expression levels measured in a given exper-
iment without any a-priori assumption about the distri-
bution of the data. Moreover the KS test looks for
significant differences in the whole distribution (the sta-
tistic used is the largest difference between the cumulative
distributions): therefore, at least in principle, it is able to
detect subtle differences which would not be detected by
tests based, for example, simply on the average expression
level. However, like most non-parametric tests, the KS test
is generally less potent than parametric tests, and hence
requires a very strong signal to turn out significant. In par-
ticular, it is more likely to be successful in detecting the
differential expression of large sets of genes, like our own.
The KS test on expression data was previously used to
identify candidate binding sites in Ref. [17].

Finally we evaluated the False Discovery Rate (FDR) by
using the standard Benjamini-Hochberg method [38], set-
ting a FDR threshold of 10%.

Construction of consensus sequences for the binding sites

In many cases several words, similar to each other, are
found to be significantly associated to the same Gene
Ontology term, or to the same microarray experiment. In
such cases it is natural to assemble such words into a con-
sensus sequence for the candidate binding site. This was
systematically done for each Gene Ontology term in the
following way: all the words associated to the same Gene
Ontology term were aligned using the wconsensus [39]
package. We selected the wconsensus results in the follow-
ing way: the best matrix found by wconsensus was
accepted if its expected frequency was less than 0.001;
other matrices were also accepted if they exceeded such
significance and they were generated from motifs that did
not enter the previously accepted matrices. Therefore the
algorithm is in principle capable of generating more than
one consensus from a group of motifs. However in prac-
tice this never happens in our case: either one or no con-
sensus sequence was produced for each group of motifs.

The same approach gives less satisfactory results when
applied to the words associated to the same microarray
experiment, the reason being that several microarray
experiments turn out to be associated to a large number of
rather different motifs, which cannot produce a single,
meaningful consensus sequence. This is hardly surprising
based on the results of the same approach applied to yeast
[14], where the analysis of a rather small set of microarray
experiments revealed many unrelated binding sites.
Indeed genes regulated by several different transcription
factor can be expected to show differential expression in
the same experimental conditions. For several time-
points, the best consensus was a three-letter sequence of
dubious informative value. Only for six time-points we
obtained a consensus of length 4 or higher.

http://www.biomedcentral.com/1471-2105/6/110

Additional material and raw data are available at: http://
www.to.infn.it/ftbio/tf human/supplementary.html
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