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Abstract
Background: Searching for small tandem/disperse repetitive DNA sequences streamlines many biomedical
research processes. For instance, whole genomic array analysis in yeast has revealed 22 PHO-regulated genes.
The promoter regions of all but one of them contain at least one of the two core Pho4p binding sites, CACGTG
and CACGTT. In humans, microsatellites play a role in a number of rare neurodegenerative diseases such as
spinocerebellar ataxia type 1 (SCA1). SCA1 is a hereditary neurodegenerative disease caused by an expanded
CAG repeat in the coding sequence of the gene. In bacterial pathogens, microsatellites are proposed to regulate
expression of some virulence factors. For example, bacteria commonly generate intra-strain diversity through
phase variation which is strongly associated with virulence determinants. A recent analysis of the complete
sequences of the Helicobacter pylori strains 26695 and J99 has identified 46 putative phase-variable genes among
the two genomes through their association with homopolymeric tracts and dinucleotide repeats. Life scientists
are increasingly interested in studying the function of small sequences of DNA. However, current search
algorithms often generate thousands of matches – most of which are irrelevant to the researcher.

Results: We present our hash function as well as our search algorithm to locate small sequences of DNA within
multiple genomes. Our system applies information retrieval algorithms to discover knowledge of cross-species
conservation of repeat sequences. We discuss our incorporation of the Gene Ontology (GO) database into these
algorithms. We conduct an exhaustive time analysis of our system for various repetitive sequence lengths. For
instance, a search for eight bases of sequence within 3.224 GBases on 49 different chromosomes takes 1.147
seconds on average. To illustrate the relevance of the search results, we conduct a search with and without added
annotation terms for the yeast Pho4p binding sites, CACGTG and CACGTT. Also, a cross-species search is
presented to illustrate how potential hidden correlations in genomic data can be quickly discerned. The findings
in one species are used as a catalyst to discover something new in another species. These experiments also
demonstrate that our system performs well while searching multiple genomes – without the main memory
constraints present in other systems.

Conclusion: We present a time-efficient algorithm to locate small segments of DNA and concurrently to search
the annotation data accompanying the sequence. Genome-wide searches for short sequences often return
hundreds of hits. Our experiments show that subsequently searching the annotation data can refine and focus the
results for the user. Our algorithms are also space-efficient in terms of main memory requirements. Source code
is available upon request.
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Background
Many algorithms have been developed recently that
search DNA sequences looking for various types of subse-
quences [1-10]. All of these algorithms were developed to
help life science researchers efficiently and accurately find
short segments of DNA within entire genomes. Some
search for short tandem nucleotide repeat (STNR)
sequences that are commonly found throughout the
genomes of higher organisms [1-6]. Others search for var-
iable length tandem repeats (VLTR) and multi-period tan-
dem repeats (MPTR) [8]. Most of them require that the
sequence be repeated at least a few times in order to guar-
antee being detected and all of them require that the
repeat be of a certain minimum length. Many of the algo-
rithms can identify repeats without a priori knowledge of
the repeat pattern. They do this by identifying short seg-
ments of DNA, termed words, and then manipulating the
properties of these words as a process moves down the
length of the sequence. A word's properties include, for
instance: location, distance to the nearest identical word,
and Hamming distance [11] to similar words. Once the
process is finished, the results are displayed with accom-
panying statistics. Each new search must proceed from the
beginning of the sequence. However, Ning, Cox, and Mul-
likin [10] have developed a different type of algorithm
called 'Sequence Search and Alignment by Hashing Algo-
rithm', SSAHA, that stores information about the loca-
tions of DNA words into a hash table. During a homology
search, these locations are sorted and then examined for a
series of numbers that are word-length apart. Since the
hash map is in main memory, this search can be quite fast.
For instance, a search through 2.7 GBases of DNA took
only 2.20 seconds per query on average while searching
for homology with 177 query sequences (104,755 total
bases). However, in this experiment, the system required
a minimum homology of 2k - 1 bases (where the word
size k = 10) to guarantee a match. Furthermore, under no
circumstances can the SSAHA algorithm find matches for
sequence lengths less than k. Also, since the hash map is
in main memory, scaling becomes a problem for multiple
species searches.

In addition to SSAHA, other algorithms employ a static
index of the database to speed retrievals. For instance,
BLAT [12] is very effective for aligning mRNA and
genomic DNA taken from the same species. It uses an
index of non-overlapping length k DNA words (and their
positions in the database) to find short matching
sequences that can be extended into longer matches. As
with the SSAHA algorithm, BLAT cannot locate hits
smaller than length k. Also, BLAT excludes from the index
k-mers that occur too often as well as k-mers containing
ambiguity codes in order to reduce the number of initial
matches to extend. This practice improves performance at
the cost of missing some hits.

The FLASH [13] and TEIRESAIS [14] algorithms were
designed to manage mismatches between a query
sequence and sequences in the database. FLASH uses a
strategy where non-contiguous DNA words are concate-
nated and then indexed. The algorithm generates a very
large number of concatenated DNA words from each por-
tion of an original string. TEIRESAIS was built to discover
patterns in biological sequences by scanning input
sequences to locate the set of all patterns with at least min-
imal support. Then, it builds larger patterns by matching
prefixes and suffixes of patterns in the initial set. However,
like the SSAHA algorithm, scaling becomes a problem for
FLASH and TEIRESAIS for multiple species searches.

While accuracy and efficiency are important to life science
researchers, they undoubtedly would like to do more than
just locate their query sequences. For example, suppose a
researcher knows the sequence of a transcription factor
binding site and wishes to search through several species
to see what genes this factor might be controlling. Current
algorithms could easily generate tens of thousands of hits
but leave the researcher with weeks of additional work in
order to locate more specific information. If, however, the
researcher also had an idea about possible annotation
terms that would accompany specific genes of interest,
then they could substantially narrow the search results by
simultaneously searching for those terms. The expected
results would be all genes that contain both the sequence
and the annotation terms. This would add value to the
search and help the researcher to understand a biological
meaning in the results.

We have developed a search algorithm based on a unique
and fast hash function that can search for a query
sequence of any length in any number of genomic
sequences. Like most other recent search algorithms, our
algorithm uses the properties of DNA words, or more spe-
cifically their location. We have also incorporated an
information retrieval function into our hash structure for
fast retrieval of the annotation data that accompanies
genomic sequences. This can possibly help facilitate
knowledge discovery through cross-species conservation
of sequences.

Results
Algorithm efficiency and utility
We report three experiments in this paper; the first exper-
iment demonstrates the efficiency of our algorithm while
the second and third demonstrate the potentials to the life
science community. Our current implementation features
a Dual Xeon 2.4 GHz processor with 512 KB cache, 2 GB
RAM, and 120 GB EIDE 7200 rpm hard drive.
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Experiment 1: Efficiency study
For our efficiency study, a random number generator was
used to select locations from within Arabidopsis thaliana
chromosome 5, which is over 26,000,000 base pairs. Then
a sequence was retrieved from each location. For each
sequence length, ten thousand different sequences were
obtained and searched. Presently, our database consists of
49 different chromosome sequences from Arabidopsis thal-
iana, Haemophilus influenzae, Helicobacter pylori 26695,
Helicobacter pylori J99, Homo sapien and Saccharomyces cer-
evisiae. Each chromosome was searched for each query.
Since we obtained query sequences from a chromosome
within our database, we can expect to find at least one hit
per query. The average search times and the average
number of hits over all chromosomes for each query
length are listed in Table 1. For instance, length 4 queries
require approximately 56 seconds to retrieve 15,428,878
hits on average. Length 8 queries require just over one sec-
ond to retrieve an average of 98,141 hits while length
1024 queries require approximately 4.7 second to retrieve
1 hit on average. The discussion below details an explana-
tion of these results.

Experiment 2: Refining repetitive sequence searches
Our abstract mentioned that a whole genomic array anal-
ysis in yeast had revealed 22 PHO-regulated genes. The

promoter regions of all but one of them contain at least
one of the two core Pho4p binding sites, CACGTG and
CACGTT [15]. Using these sequences, we tried a simple
test of the utility of our algorithm. First, the yeast genome
was searched for both sequences without adding any
annotation terms to find 4027 total hits. Assume that we
are interested in learning more about these sites. We can
try to focus the search by adding annotation terms. Pho-
regulated genes are involved in phosphate metabolism in
yeast so the term 'phosphatase' was added to the search
which narrowed the results to 51 total hits. We found 10
hits for CACGTG, 20 hits for CACGTT, and 21 hits for
AACGTG (the reverse complement of CACGTT). If the
promoter region is defined as 1500 base pairs upstream of
the start codon, then CACGTG was located in 4 different
promoters, CACGTT was in 7 different promoters and
AACGTG was in 8 promoters. In other words, 19 genes in
the yeast genome contain at least one of the two core
Pho4p binding sites in their promoter region and also
contain the term 'phosphatase' in their annotation data.
This figure is 90.5% (19 / 21) of the results reported in ref-
erence [15] and gives a high level of confidence for further
investigation of these genes. If the promoter region is
extended by 1500 base pairs, then there are 8 more hits –
Protein IDs 6321642, 14318551, 6320067, 6324664,
6319971, 6321700, 6322880, and 6325061. These

Table 1: Time study over 3.224 GBases using randomly obtained sequences

Query Length (Bases) Average Search Time (Seconds) Average Number of Hits

4 56.40 15,428,878
8 1.147 98,141
12 2.254 2308
16 2.235 121
32 2.451 1.55
64 2.517 1.15
128 2.648 1.07
256 2.956 1.03
512 3.598 1.01
1024 4.738 1.01

Table 2: Cross-species search for PHO4P binding sites, CACGTG and CACGTT (with reverse complement)

Arabidopsis 
thaliana

Haemophilus 
influenzae

Helicobacter 
pylori 26695

Helicobacter 
pylori J99

Homo sapien Saccharomyces 
cerevisiae

Total Hits In Genome 30,056 1077 81 119 67,881 4027
Hits With 'Phosphatase' Present In 

Annotation
267 1 0 0 535 51

Percentage Of Hits With 'Phosphatase' 
Where Hit Is In Promoter (3000 Base 

Pairs Upstream)

53.9 100 0 0 28.8 52.9
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searches were repeated for the other genomes in our data-
base and the results are shown in Table 2.

Experiment 3: Cross-species study
In this experiment, the findings from a published work
involving phase-variable sites in Helicobacter pylori were
used as an impetus to identify a potentially new phase-
variable site in Haemophilus influenzae. Furthermore, there
is supporting evidence for the new site in another pub-
lished work involving Haemophilus influenzae. Although
the experiment presented is specific to phase-variable sites
in two species of microorganisms, the methodology is
flexible enough to be applied to other similar biological
problems.

A recent study [18] of Helicobacter pylori 26695 and J99
reported 46 candidate phase-variable genes that were
identified by either having a homopolymeric tract greater
than or equal to (G)7, (C)7, (A)9, and (T)9 or having a
dinucleotide repeat greater than or equal to four copies.
Seven of the 46 genes reported in the study were classified
as lipopolysaccharide-biosynthesis related. A search of
our database was conducted for the same set of repetitive
sequences in the same species. We refined the search by
concurrently searching for the term 'lipopolysaccharide'
similarly to the previous experiment. The search returned
eight distinct genes – two of them (Protein ID 15611217,
and 15611264) were identified by having a (CT)4 repeat
in their open reading frames. This finding was used as an
impetus for a new search in a different species.

Assuming that (CT)4 also plays a role in the phase-variable
properties of lipopolysaccharide genes in other microor-
ganisms, a search for (CT)4 was conducted in Haemophilus
influenzae. Of the 20 total hits, one gene (Protein ID
16273438) is described as a 'Lic-1 operon protein'. This
gene is a lipopolysaccharide biosynthesis-related gene
because 'Lic-1' is a homologue of lipopolysaccharide and
'operon' is a group of closely linked genes that produces a
single messenger RNA molecule in transcription. The
paper by Hood et.al. [19] reports three phase-variable
lipopolysaccharide biosynthesis genes (Lic1, Lic2, and
Lic3) in Haemophilus influenzae that were identified by
multiple (>4) CAAT repeats. A search for (CAAT)4 in Hae-
mophilus influenzae with a concurrent search for 'Lic-1'
returned Protein ID 16273437 which abuts to Protein ID
16273438 and is part of the same operon. Thus, the 'Lic-1
operon' of Haemophilus influenzae contains both (CAAT)4
repeats as well as (CT)4 repeats – separated by approxi-
mately 1400 base pairs.

A molecular biological analysis would be required to ver-
ify whether the (CT)4 repeat in the Lic-1 operon plays a
role in phase-variability, but since it is known in Helico-
bacter pylori [18] it might also in Haemophilus influenzae.

The purpose of the experiment in this paper is to illustrate
how cross-species searches using our database can quickly
help discern hidden correlations in the data.

The search algorithms presented here are available on our
web site [16] so that users can conduct experiments simi-
lar to the ones presented above. Users wanting a brief
introduction to the web site can read the paper [17]. The
current paper describes the hash function in detail and
gives example searches. Here we also present detailed
experiments which are not found in the previous paper
that demonstrate the usefulness of our approach to the
research community.

Discussion
Our hash function described below processes DNA words
that are eight bases in length. Therefore, length 8 queries
will retrieve one hash bin in an average of 1.15 seconds.
Length 4 queries must retrieve 256 contiguous hash bins
because there are 256 possible combinations that make a
length 4 query into a length 8 query. For longer queries,
although the query lengths double, the search times do
not because the recursive search function has been opti-
mized to reduce IO operations. When it has been deter-
mined that the query is not present, no further IO
operations are performed. The search times presented
grow at O(n) time, where n is the number of chromo-
somes searched. The chromosomes are searched sequen-
tially so searching a very large number of chromosomes
should be possible with our system. After the hits have
been retrieved for the current chromosome, its pages are
free to be swapped by the operating system.

Conclusion
We have presented a novel algorithm for homology
searches in DNA sequences. Our hash function approach
can quickly locate exact matches with a query sequence of
any length. Also, our new search engine has several infor-
mation retrieval features to assist researchers in finding
functional homologies across species. Several more data
mining features are in development. As more species are
added to our database, we anticipate a richer data mining
experience for the life science research community.

Methods
Definitions
Necessary concepts
We define a mapping function m(A) = 1, m(T) = 2, m(G)
= 3, and m(C) = 4 to map DNA bases into digits. We can
convert a DNA word into a number by applying the gen-
eral positional number system conversion function f() to
Q = {q0q1q2...q|Q|-1}:
Page 4 of 10
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where Q is a DNA word, m is the mapping function, q is
one base of the word, r is the radix (four in our case), and
|Q| is the length of the word. This conversion differs
slightly from the usual number system conversion since
zero is not used in order to achieve a one-to-one mapping
between a DNA word and the radix 10 number system. If
m(A) = 0, the function could not distinguish between one
A and a string of A's. Table 3 lists twenty sequences and
their corresponding radix 10 numbers. One caveat to this
conversion in our implementation is that we proceed
from left-to-right down the DNA word for coding conven-
ience instead of the usual right-to-left. For instance, the
codon ATG is (1 * 40) + (2 * 41) + (3 * 42) = 57.

Algorithms
Obtaining sequence and annotation data
We used sequences and annotation data from NCBI [20].
When available, genomic sequence from a FASTA nucleic
acid file (*.fna) and annotation data from a protein table
file (*.ptt) were used. Human genomic sequence data
from build 34.2 was obtained from the BLAST database in
FASTA format [21]. Human annotation data for this build
was obtained from two different files. The file named
gene.q contained the gene annotation which was listed by
GeneID. The file named seq_gene.md listed the beginning
and ending locations along a chromosome for each
GeneID.

Constructing the hash table
Sequences in our database are preprocessed as follows. At
each base along the sequence, the algorithm counts up k
consecutive bases to make a k-word. Then, it converts the
word into an integer key as discussed above. If the
sequence has n bases, then there are n - k + 1 keys in the
sequence. The location of each key is the number of bases
from the beginning of the sequence to the first base of the
word that made the key. Thus, the pair <key, location>
describes each base along the length of the sequence. For
our application, we add one more descriptive attribute to

this pair which is the protein ID (PID) of the nearest gene
to this location. For human sequences, this ID came from
the seq_gene.md file while for other sequences it came
from the *.ptt file. A hash table file is used to store loca-
tions and PIDs while a related indexing file stores informa-
tion about the hash table and is accessed via the key.

Our database contains a set of sequences S = {s1, s2, ...,
sNd} where si is the sequence for the i-th chromosome in
the database. Each sequence in S has two associated files,

a list  of <location, PID> pairs and an array  of offsets

into  which serves as an index for . There are 4k bins

in , one for each of the 4k possible k-words. After sort-

ing, the algorithm writes each <location, PID> pair into 
and counts the number of pairs written for each key. This

information is written into  according to the following
format:

key|offset,occurrences,bytes,numbersize

where key is discussed above, offset is the starting position
within  of the first <location, PID> pair for this key,
occurrences is the number of <location, PID> pairs for this
key, bytes is the number of bytes written to  for this key,
i.e. the hash bin size, and numbersize is the size in bytes of
each location and PID. Figure 1 shows how offset plus bytes
equals offset for the next key. Each line of  is extended
with spaces on the right up to an appropriate number (we
use 30) so that all lines have the same length. In this way,
when using  as an index into , we can easily
determine which line to read based on the key. See lines
4–10 and 20–23 of the search algorithm presented in Fig-
ure 2. Using larger k-words during processing will increase
the size of  but will not change the size . It will, how-
ever, decrease the size of each hash bin within .

To distinguish locations from PIDs within , one can
either use delimiters between them or add leading zeros to
shorter numbers to make all numbers the same size. Using
delimiters saves space for shorter sequences while adding
leading zeros saves space for longer sequences. For
instance, if all PIDs are 8 bytes and all locations are

Table 3: Conversions between DNA sequences and the radix 10 number system

SEQ NUMBER SEQ NUMBER SEQUENCE NUMBER SEQUENCE NUMBER

A 1 (C)3 84 AATGCT 3,301 GCTCACTG 62,003
C 4 (A)4 85 AGTGTCA 8,941 GGGAGGTGAA 388,991

(A)2 5 (C)4 340 ATGGGGT 12,281 GGGCGGAATT 679,999
(C)2 20 (A)5 341 GTAGATAA 23,003 GTTTCCTGCG 1,111,211
(A)3 21 (C)5 1,364 GCGGCTGA 32,003 GCTAAAAGGC 1,299,827

f Q m q ri
i

Q
i( ) = ( ) ⋅

=

−

∑
0

1| |

 
 
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extended to 8 bytes with leading zeros, then this approach
begins to save space for sequences longer than approxi-
mately 1,000,000 base pairs. The average chromosome
length in our database is 65.79 million base pairs. There-
fore, our implementation uses leading zeros.

Sequences in FASTA format allow for bases other than A,
T, G, and C. For instance, R = (A or G), Y = (T or C), and
K = (G or T), etc. However, a radix of 4 will only
accommodate A, T, G, and C during the conversion.
Therefore, for other bases, the algorithm converts the
DNA word into each possible combination. For instance,
the word YA is converted into two words, TA and CA,
which are both stored into their respective hash bins.
Query sequences are similarly converted into each possi-

ble combination before searching and these combina-
tions are searched sequentially. Therefore, in sequence s1

of Figure 1, a user could search for YAA and recover two
CAA hits (at positions 0 and 19) and no TAA hits. This
approach differs from the SSAHA system which converts
all non-standard bases into A's and would not recover any
hits since there are no AAA's in s1. The next two sections

show how to use  and  to search for a query

sequence within .

We also have a table in a relational database to hold gene
annotation information. The schema of the Protein table
is as follows:

Index file A and data file L for sequence s1Figure 1
Index file A and data file L for sequence s1: CAATTACGAGCTCTGCCTACAATGAT. The format for  and  are 
discussed in the text. To demonstrate how different regions map to different genes, the first 13 bases map to the gene with 
PID = 1234 and the last 13 bases map to the gene with PID = 5678. We add leading zeroes to each location so that all numbers 
in  are four bytes and we record this as numbersize in each line in . Keys in this example are made from two bases of 
sequence so there are 42 = 16 lines in  ranging from m(AA) = 5 through m(CC) = 20. Key number m(GT) = 11 and number 
m(GG) = 15 are not present in the sequence. For clarity, each offset in  is repeated in the correct position above the line in 

 and each PID is underlined. Two arrows map two different lines from  into  by pointing to two bubbles that show the 
content of two hash bins.

A

key|offset,occurrences,bytes,numbersize
5|0,2,16,4

6|16,2,16,4

7|32,2,16,4

8|48,2,16,4

9|64,3,24,4

10|88,1,8,4

11|96,0,0,4

12|96,3,24,4

13|120,1,8,4

14|128,2,16,4

15|144,0,0,4

16|144,1,8,4

17|152,2,16,4

18|168,1,8,4

19|176,2,16,4

20|192,1,8,4

L

0 16 32 48 64 88 96

0001123400205678000412340017567800071234002356780000123400195678000212340021567800245678000312340010

120 128 144 152 168 176 192

1234001212340016567800081234001356780022567800061234000512340018567800111234000912340014567800155678

<0003, 1234> The only <location, PID>

pair in the bin for key m(TT) = 10.

<0001, 1234><0020 ,5678> Two <location,

PID> pairs in the bin for key m(AA) = 5.

 

 



  

 

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 Protein(species: NUMBER(3), chr: NUMBER(2), begin:
NUMBER(8),

 end: NUMBER(8), strand: CHAR(1), length:
NUMBER(5),

 PID: NUMBER(10), product: VARCHAR2(3000),

 PRIMARY KEY (PID));

Species is a number that can be de-referenced when
needed. The chromosome number, the beginning of the
gene, the end of the gene, and the length are self-explana-
tory. The strand attribute is either + or - depending on the
direction of the gene. The PID attribute is the universally
unique Protein ID number that allows us to access infor-
mation on other databases. Finally, the gene product con-
tains a brief description of the function of the gene. Some
examples include: Proline /pyrroline-5-carboxylate dehy-

drogenase, carbonic anhydrase, and lipopolysaccharide
biosynthesis protein. Both the PID and the product are
indexed based on the frequency of the queries on these
attributes.

Hash function
The function below takes as input a DNA word q and
returns the key(s) necessary to locate the correct hash
bin(s). It is used by the search function which is presented
in the next section. Assume that k is still the length of the
DNA words that were used to make the hash table in the
previous section. If |q| <k, we would like to expand q into
a larger sequence domain q', where |q'| = k, while still
retaining all of the properties of q. One possible way is to
add every combination of A, T, G, and C to the left of q
such that the final length is k. Once again, our algorithm
works from left to right for coding convenience. Another
simpler way is to add A's to the left of q to get the word

Database search pseudo codeFigure 2
Database search pseudo code. The length of the query sequence Q determines which block of code will execute. Lines 3 – 
18 execute for |Q| <k (wordsize) while lines 19 – 29 execute for |Q| = k. If k < |Q| < 2k then Q is divided into two k length 
pieces for recursive calls to Search in lines 32 – 35 and the results from these calls are further tested in lines 38 – 41 to obtain 
the final answer in line 42. If |Q| > = 2k, a similar block of code is executed in lines 44 – 57. However, a different comparison is 
made in line 54 as compared to line 40.

30. if (k < length< 2k) {
31. //Make two new strings:
32. Q

1
= q

0
q
1
…q

k - 1
of Q

33. Q
2
= q

length – k
q

length – k+1
… q

length – 1
of Q

34. Result set R1 = Search( Q
1
, S

x
, k)

35. Result set R2 = Search( Q
2
, S

x
, k)

36. //R1 and R2 format is <location, PID> pairs
37. //Compare each R1.location to each R2.location
38. for(i = 0; i < R1.length; i = i + 2)
39. for( j = 0; j < R2.length; j = j + 2)
40. if R1[i] + length - k = R2[j]
41. Result set R3 = R3 U R1[i] U R1[i+1]
42. return R3 //The format is <location, PID> pairs.
43. }
44. if (2k <= length) {
45. //Make two new strings:
46. Q

1
= q

0
q
1
…q

k - 1
of Q

47. Q
2
= q

k
q
k+1
… q

length - 1
of Q

48. Result set R1 = Search( Q
1
, S

x
, k)

49. Result set R2 = Search( Q
2
, S

x
, k)

50. //R1 and R2 format is <location, PID> pairs
51. //Compare each R1.location to each R.2.location
52. for(i = 0; i < R1.length; i = i + 2)
53. for( j = 0; j < R2.length; j = j + 2)
54. if R1[i] + k = R2[j]
55. Result set R3 = R3 U R1[i] U R1[i+1]
56. return R3 //The format is <location, PID> pairs.
57. }

Search(Q, S
x
, k)

1. length = |Q|
2. if(length <= k) h(Q) = Hash(Q, k)
3. if (length < k) {
4. low = min(h(Q))
5. high = max(h(Q))
6. //Read line number low and high from file A

x
of S

x

7. Low = {offset, occurrences, bytes, numbersize} from
8. line low
9. High = {offset, occurrences, bytes, numbersize} from
10. line high
11. count = ((High .offset – Low .offset) /
12. Low.numbersize) + (High .occurrences * 2)
13. Result set R = R[count]
14. Seek Low.offset bytes into file L

x
of S

x

15. for(i = 0; i < count; i++)
16. R[i] = (int)read(Low.numbersize)
17. return R //The format is <location, PID> pairs.
18. }
19. if (length = k) {
20. key = h(Q)
21. //Read line number key from file A

x
of S

x

22. Line = {offset, occurrences, bytes, numbersize} from
23. line key
24. Result set R = R[Line.occurrences * 2]
25. Seek Line.offset bytes into file L

x
of S

x

26. for(i = 0; i < Line.occurrences * 2; i++)
27. R[i] = (int)read(Line.numbersize)
28. return R //The format is <location, PID> pairs.
29. }
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qLow = A1A2...Ak-|q|q

and to add C's to the left of q to get the word

qHigh = C1C2...Ck-|q|q

so that |qLow| = |qHigh| = k. By applying the conversion func-
tion to qLow and qHigh, the low and high values of a range of
numbers that represents q within q' are found. Further-
more, the numbers in this range are consecutive. The
input to the function, q, is the entire query, Q, if |Q| < = k
and is a k-length subsequence of Q if |Q| >k. The search
function presented below determines which case is
appropriate.

 Hash(q, k)

 offset = f((A)k)

 if(|q| <k) //Case 1

 qLow = A0A1...Ak-|q|q

 qHigh = C0C1...Ck-|q|q

 h(q) = {f(qLow) - offset, f(qHigh) - offset}

 else if(|q| = k) //Case 2

 h(q) = {f(q) - offset}

 return h(q)

Case 1 returns two keys that bound 4k-|q| contiguous hash
bins. Case 2 returns only one key for one hash bin. An off-
set is subtracted from each conversion so that the smallest
key, (A)k, will equal zero, the next larger key will equal
one, and so forth.

Searching the database
We now present an algorithm called Search to locate all
occurrences of a query sequence Q within the database
(see Figure 2). The database S contains a set of sequences
{s1, s2, ..., sNd} where s is the sequence of a chromosome.
All sequences in S are searched separately with their union
giving the final result. Each sequence sx has two associated

files, the array index  and the list of offsets , which
are used differently during a search based on the length of
Q. Since our implementation uses k bases of DNA per k-
word, the three possibilities for length are shorter than k,
equal to k, and longer than k. In all three cases, the algo-
rithm returns <location, PID> pairs of all occurrences of Q.
By taking the reverse complement of Q and reapplying the
search algorithm, we can search the opposite strand of
each sequence.

Case 1 – Query length shorter than k bases
There is a set of keys derived by extending Q to k bases
with all possible combinations of sequence and then
applying the hash function to each sequence. A range for
this set is found by adding A's (or C's) to the left hand side
of Q until length equals k and converting to get the low key

(or the high key). Since  is ordered, this range is contin-

uous from low to high. Next,  is consulted to determine
the offset, the numbersize in bytes, and the count of the

numbers to read from . Then, the hard drive's read/

write head seeks offset bytes into  and loads into main
memory only the pages necessary for reading. See lines 3–
18 of Figure 2.

Case 2 – Query length exactly k bases

Q is converted into its key and  is consulted to find the
offset, the numbersize in bytes, and the count of the num-
bers to read. Then, the read/write head seeks to the correct

position within  and loads into main memory only the
pages necessary for reading. See lines 19–29 of Figure 2.

Case 3 – Query length longer than k bases
The search algorithm divides Q into two parts, Q1 and Q2,
where Q1 is the first k bases of Q and Q2 is the last length -
k bases of Q. Recursive calls to Search with Q1 and Q2
retrieve two sets of results having the format <location,
PID>. They are named R1 and R2. After retrieval, we find
matches by comparing locations. If length is greater than k
and less than 2k, then Q1 and Q2 will overlap and a match
will be a location from R2 that is (length - k) greater than a
location from R1. If length is greater than or equal to 2k,
then Q1 and Q2 will abut and a match will be a location
from R2 that is k greater than a location from R1. See lines
30–57 of Figure 2.

Retrieval IO is the most time-consuming step in our algo-
rithm. Let n be the length of a sequence. If we assume an
even distribution of each k-word in the sequence then
there will be approximately n / 4k k-words per hash bin. If
each word and each PID are 8 bytes, for instance, then
there will be approximately 16n / 4k bytes per hash bin. As
an example, with n = 200,000,000 bases and k = 8 there
are 48,828 bytes per hash bin on average. Page sizes usu-
ally range from 4,096 bytes up to 4,194,304 bytes. If we
assume a page size from the upper half of this range then
in this example we can safely estimate for short queries (6
to 16 bases) that the algorithm will only retrieve one or
two pages per search. This keeps retrieval times low and
allows our system to perform well even with very large
hash map files each with 4+ GB made from 200+ million
base pair sequences.

x x










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Examples of searches
As an example of each category of search with k = 2, we
will search for Q of lengths 1, 2, 3, and 4 from s1 of Figure
1. Line numbers in this section refer to the pseudo code in
Figure 2 unless indicated otherwise. Lines 3 through 18
are used to search for "G" within s1. Hash("G", 2) in line
2 returns the smallest and biggest keys from the set of keys
{13 ("AG"), 14 ("TG"), 15 ("GG"), 16 ("CG")}. The key
for (A)2 from Table 3 is 5. Therefore, in line 4 and 5, index
line low = 13 - 5 = 8 and index line high = 16 - 5 = 11. Line

8 from  in Figure 1 is 13|120,1,8,4 (the lines begin at
zero) and line 11 is 16|144,1,8,4. Applying lines 11 and
12 of the algorithm, we get count = ((144 - 120) / 4) + (1

* 2) = 8. Thus, we seek 120 bytes into  and read 8 num-
bers which are all 4 bytes long. The result set is [<0008,
1234> <0013, 5678> <0022, 5678> <0006, 1234>] as
<location, PID> pairs. Going back to s1, all occurrences of
"G" have been found (see table 6):

Next, lines 19 through 29 will find exact matches to "TT".

The key for "TT" = 10 so the index line from  in Figure
1 is 10 - 5 = 5 which is 10|88,1,8,4. In line 25 through 27

of the algorithm, we seek 88 bytes into  and read 2
numbers which are both 4 bytes long. The result set is
[<0003, 1234>] as a <location, PID> pair. From the origi-
nal sequence s1 the only occurrence of "TT" is at location
3.

Now we will illustrate finding "CAA" as a disperse repeat.
Disperse repeats are repeats that are not adjacent. From
lines 32 and 33 of the search algorithm, Q1 = "CA" and Q2
= "AA". Lines 34 and 35 are recursive calls to Search that
return R1 = [<0000, 1234> <0019, 5678>] and R2 =
[<0001, 1234> <0020, 5678>] as <location, PID> pairs.
The locations in R1 are 0 and 19 and in R2 are 1 and 20.
Applying lines 36–41, R1 [0] + 3 - 2 = R2 [0]. Similarly,
R1[2] + 3 - 2 = R2[2]. So, the pairs [<0000, 1234> <0019,
5678>] are returned as the result set.

Finally, we will illustrate finding the tandem repeat (CT)2.
Tandem repeats are adjacent repeats. So this example will
find "CTCT" as a tandem repeat of "CT". By applying lines
46 and 47 of the algorithm, Q1 = "CT" and Q2 = "CT", too.
In this example, R1 = R2 = [<0010, 1234> <0012, 1234>
<0016, 5678>]. Applying lines 50–55, R1 [0] + 2 = R2[2].
This is the only pair of locations that meet the criterion, so
the result set is [<0010, 1234>].

Information retrieval using query expansion
We conducted the following experiments to examine the
best approach for query expansion [11] using the Gene
Ontology (GO) database [22]. The first step was to deter-
mine the correlation between individual NCBI annota-
tion terms and GO terms. There were 14,349 unique NCBI
annotation terms in our database. Of these terms, we

Table 4: NCBI terms correlation to gene ontology (GO) terms

14,349 Unique NCBI One Term 
Windows

18,934 Unique NCBI Two Term 
Windows

24,747 Unique NCBI Three Term 
Windows

GO Term Equality 160 164 73
GO Term Similarity 160 164 73
GO Phrase Similarity 561,294 6840 818

Table 5: Gene ontology (GO) term expansion with siblings

14,349 Unique NCBI One Term 
Windows

18,934 Unique NCBI Two Term 
Windows

24,747 Unique NCBI Three Term 
Windows

GO Term Equality 16,001 9096 4313
GO Term Similarity 16,001 9096 4313
GO Phrase Similarity 19,137,006 228,624 28,556

Table 6

Location 2-Word
08 AG
13 TG
22 TG
06 CG








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found 160 (1.12%) matching terms within the GO data-
base. There were also found 160 inexact matching terms
by searching for similarity (i.e. using the LIKE keyword in
the WHERE clause instead of equality). Next, we
broadened the matching criterion even further by testing
unique NCBI terms similarity to GO phrases. The NCBI
term was surrounded by wildcard characters (i.e.
%term%) and again tested for similarity. This search gave
561,294 matching phrases. We conducted similar experi-
ments with two and three term windows. The results are
shown in Table 4. Next, we expanded the GO terms
retrieved from the previous experiments by including
their unique siblings. Siblings are defined as terms (or
phrases) having the same parent in the term2term table in
GO. For example, "apoptosis" and "hypersensitive
response" are siblings of "autophagic cell death" which
share the same parent, "programmed cell death". The
results are presented in Table 5. Presently, based on these
experiments, we expand annotation terms by querying the
GO database with two term windows and including all
siblings of GO phrases. This is in an attempt to include
other relevant terms in the search.
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