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Abstract

Background: In a previous report (La et al., Proteins, 2005), we have demonstrated that the
identification of phylogenetic motifs, protein sequence fragments conserving the overall familial
phylogeny, represent a promising approach for sequence/function annotation. Across a structurally
and functionally heterogeneous dataset, phylogenetic motifs have been demonstrated to
correspond to a wide variety of functional site archetypes, including those defined by surface loops,
active site clefts, and less exposed regions. However, in our original demonstration of the
technique, phylogenetic motif identification is dependent upon a manually determined similarity
threshold, prohibiting large-scale application of the technique.

Results: In this report, we present an algorithmic approach that determines thresholds without
human subjectivity. The approach relies on significant raw data preprocessing to improve signal
detection. Subsequently, Partition Around Medoids Clustering (PAMC) of the similarity scores
assesses sequence fragments where functional annotation remains in question. The accuracy of the
approach is confirmed through comparisons to our previous (manual) results and structural
analyses. Triosephosphate isomerase and arginyl-tRNA synthetase are discussed as exemplar cases.
A quantitative functional site prediction assessment algorithm indicates that the phylogenetic motif
predictions, which require sequence information only, are nearly as good as those from
evolutionary trace methods that do incorporate structure.

Conclusion: The automated threshold detection algorithm has been incorporated into MINER,
our web-based phylogenetic motif identification server. MINER is freely available on the web at
http://www.pmap.csupomona.edu/MINER/. Pre-calculated functional site predictions of the COG
database and an implementation of the threshold detection algorithm, in the R statistical language,
can also be accessed at the website.

Background

Due to the exponential growth of genomic and protein
sequence data, development of automated strategies for
large scale functional site identification is an important
post-genomic challenge. Many recent efforts predict func-

tional sites from sequence alone. Strong candidates for
functional sites include individual highly conserved posi-
tions within a sequence alignment and highly conserved
sequence motifs [1-5]. Although attractive due to their rel-
ative  simplicity,  conservation-based  approaches
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frequently result in too many false positives to be satisfac-
tory [3]. Further, sequence regions with significant varia-
bility can also be functionally important [6], especially
when their composition may define sub-family functional
specificity. The Evolutionary Trace (ET) procedure [7], and
similar approaches [6,8,9], address this problem by using
evolutionary information to identify subfamily con-
served, yet overall variable, positions. It has been demon-
strated that the ET methods identify statistically
significant structural clusters [10] and has subsequently
been established in large scale analyses [11].

Recently, we demonstrated that sequence fragments con-
serving the overall phylogeny, termed phylogenetic motifs
(PMs), are very likely to correspond to protein functional
sites [12]. We briefly highlight the key results of our previ-
ous report here (see Implementation for a technical
description of the approach). Despite little overall
sequence proximity, PMs are structurally clustered around
a wide variety of protein functional regions, including
sites defined by surface loops, active site clefts, substrate
binding epitopes, and protein-protein interfaces. Ostensi-
bly, PMs identify sequence clusters of ET positions, and, as
expected, the results of the two approaches are similar.
However, compared to raw ET predictions, PMs seem to
be more structurally focused on active site regions. Lastly,
we have demonstrated appreciable tree significance of the
fragment windows, especially in PM regions, using boot-
strap analysis.

In a recent review, Jones and Thornton [13] classify pro-
tein functional site prediction strategies into one of two
groups: (1) those based on sequence conservation and (2)
those based on "feature" (i.e. phylogenetic) conservation.
Congruence between phylogenetic and traditional motifs
has been clearly established [12]. As a consequence, PMs
bridge the two normally disparate groups. For example, in
the case of triosephosphate isomerase, all seven tradi-
tional motifs are also identified as PMs, including the
PROSITE [14] definition of the family. However, due to
the large number of clades within some families (e.g. cyto-
chrome P450) there are instances when PM sequences are
not overall conserved. This point is in enticing because it
suggests that PMs can sometimes functionally annotate
regions that traditional methods would ignore. Further-
more, it has been reported [12] that traditional motifs not
conserving phylogeny are less likely to be structurally clus-
tered around known functional sites.

PMs are identified using a sliding sequence window algo-
rithm that exhaustively compares the phylogenetic simi-
larity of each fragment window to the complete familial
tree. Phylogenetic similarity z-scores (PSZs), which are
defined below, quantify the similarity between the win-
dow and familial tree. (Smaller PSZs indicate greater phy-
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logenetic similarity.) In our current approach, all
overlapping windows scoring past some PSZ threshold are
identified as a PM. The PSZ threshold is manually
adjusted to define what constitutes a "hit". Automated
threshold determination is a difficult problem because no
single threshold value is sufficient for every instance. Each
protein family requires a unique value to correctly identify
a signal (a PM window) from noise. In our previous work,
we manually set threshold values where PSZs strongly
deviate from all other values. Structural analyses indicate
that ideal PSZ threshold ranges between -1.5 and -2.0. In
other words, the ideal phylogenetic similarity cutoff for
accurate functional site predictions generally falls
between 1.5 and 2 standard deviations away from the
mean of the PSZ distribution.

In this report, we describe an automated algorithm for
determining proper PSZ thresholds. Structural analyses
and comparisons to our previous manual thresholds indi-
cate that the approach retains functional site prediction
accuracy. The method utilizes significant raw data pre-
processing that eliminates unnecessary (redundant) data
points. Subsequently, the robust Partition Around
Medoids Clustering (PAMC) algorithm is employed to
automatically determine the appropriate PSZ thresholds.
The implemented approach is computationally efficient
and demonstrated to be suitable for large, heterogeneous
datasets, which remains a difficult bioinformatic problem
[15].

Implementation

Phylogenetic motif identification

During PM identification, we mask the multiple sequence
alignment by purging all highly (more than 50%) gapped
positions. The masked alignment is parsed into a series of
sequence fragment windows of fixed width. In this report,
awindow width of five, which has previously been shown
to be most sensitive for identifying functional sites [12], is
used throughout. Except for the copper, zinc superoxide
dismutase and myoglobin families, which use the same
datasets as before [12], all sequences are taken from the
Clusters of Orthologous Groups (COGs) database [16].
Only COGs with more than 25 sequences are investigated
to ensure proper and significant tree construction. Pair-
wise tree similarity is calculated using a modified partition
metric algorithm [17], which counts the number topolog-
ical differences between the fragment window and famil-
ial trees. Thus, smaller partition metric scores correspond
to greater tree similarity. Phylogenetic similarity is meas-
ured using z-scores calculated from the raw partition met-
ric distribution. Although not the best alignment method
for distantly related sequences, ClustalW (v1.83) align-
ments are used throughout [18]. Given the similarity
within the COG families, ClustalW alignments are
satisfactory.
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Phylogenetic trees are constructed using the neighbor-
joining implementation within ClustalW. Neighbor-join-
ing is a distance-based approach for constructing phyloge-
netic trees commonly used for bootstrap analysis that
requires massive tree sampling [19]. Similarly, due to the
large number of window trees required here, the algorith-
mic efficiency of distance-based methods is necessary. For
example, in the medium-sized triosephosphate isomerase
protein family, over 250 trees must be calculated. Further-
more, as Kuhner and Felsenstein point out [20], distance-
based approaches actually outperform maximum-likeli-
hood methods when applied to short sequences. MINER,
our web-based implementation of the PM identification
algorithm, is  available  online at  http://
www.pmap.csupomona.edu/MINER/[21]. A standalone
version of MINER, implemented in PERL, is freely availa-
ble to the Academic community upon request.

Raw data preprocessing

Empirically, our manual assessment of functional site pre-
diction accuracy indicates that all PSZs below y = -2
should be identified as PMs, whereas PSZ's above -1
should never be considered. In the subsequent clustering
step, only scores between -1 and y are used to define the
PSZ. This simplification is taken because the objective of
this work is to automatically classify windows whose deter-
mination remain in question. The significance of the PSZs
outside this range is known a priori, thus they can be elim-
inated from further consideration. Clustering of the data
points between -1 and  (termed the "gap") was originally
expected to automatically determine the appropriate PSZ
threshold. However, several different clustering tech-
niques (hierarchical, k-means, PAMC, and expectation-
maximization) have failed to provide satisfactory results.

In order to accentuate differences within the PSZ distribu-
tion, and thus simplifying the clustering problem, the fol-
lowing preprocessing procedure is employed. As stated
above, all overlapping windows scoring past some prede-
termined threshold are defined as PMs. We use the same
rationale in detecting PSZ thresholds. The process begins
by identifying all overlapping windows scoring past -1.
For the purpose of threshold detection only, we "sharpen"
these regions by selecting the lowest window score as a
reference; all other scores are eliminated. This process has
the effect of reducing the number of contiguous and
related PSZ scores (corresponding to overlapping win-
dows) into a single value (see Figure 1). After accentuating
the high phylogenetic similarity regions, PAMC can
robustly identify the ideal PSZ threshold. Several different
upper bounds have been considered, but our empirical
results indicate that -1 is best.
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Automated PSZ threshold determination

PAMC is a partitioning algorithm based on the k-means
approach of clustering [22]. In k-means clustering [23],
the center of a cluster is represented by its arithmetic aver-
age. In PAMC, each cluster is represented by the median
value, making PAMC a k-medoids approach. The basic
concept of PAMC is to partition a dataset containing a
number of points into & number clusters. PAMC starts
from an initial random set of medoids and iteratively
swaps medoids with non-medoids to evaluate if the total
distances between clusters are improved. PAMC is more
effective and robust than k-means for small datasets
because medians are less biased by outliers deviating from
the mean. Our PSZ dataset is small, especially after pre-
processing, making PAMC an appropriate clustering
choice. In addition, because the goal is to separate signals
(cluster one) from noise (cluster two), k-based
approaches are ideal. The preprocessed gap is differenti-
ated into k = 2 number of groups. Clustering is performed
by the PAMC implementation within the cluster package
of the R statistical language [24]. The PAM algorithm
implemented in R simply uses the Euclidean measure by
default and the Manhattan as a defined alternative. We
use the Euclidean measure throughout.

In determining the ideal PSZ threshold value, the number
of data points in the signal cluster is counted. If the signal
cluster contains five or less data points, the threshold is set
to the most accommodating (least negative) value in that
cluster. However, an algorithmic override that defines the
PSZ threshold at the first (rank ordered) PSZ above y if
any of the following three situations occur: (1) if the sig-
nal cluster contains more than five data points, (2) if less
than three points reside in the gap - it does not make
sense to cluster so few data points into two groups, or (3)
no PSZs lower than -2 are present within the distribution.
The algorithmic override prevents normalizes the number
of putative functional sites, preventing both too many and
too few predictions. Empirical results investigating the
accuracy of the method's predictions vis-a-vis structure
indicate that the algorithmic override maximizes accu-
racy. For example, in examples where the override reduces
the number of predictions, frequently the excluded sites
are structurally removed from the active site region. The
ideal value of i is established in the next section.

Quantitative assessment of functional site predictions

The accuracy of the functional site predictions herein is
quantitatively determined using the method put forth by
Aloy et al. [25]. In the scheme, a known functional site
sphere is defined by the location of SITE and ACTSITE
records within a PDB file. In line with our previous report
[12], we also include residues directly interacting with
substrates and catalytically important metal ions, which
are identified using LIGPLOT [26]. Prediction spheres are
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Figure |

Partitioning Around Medoids Clustering (PAMC) is used to partition PSZs between -1.0 and % = -2.0 into two groups (signal
and noise clusters). The results from the (A) raw and (B) sharpened PSZ datasets are shown. Red indicated sharpened data
points. We demonstrate two common scenarios (left) triosephosphate isomerase and (right) arginyl-tRNA synthetase. In all
cases, it is clear that sharpening the PSZ dataset allows one to more easily discern the number of distinctive potential signals
under the partition boundary (gap) in question. (C) The effect of different sharpening ranges is demonstrated. PSZ ranges
tested include -1.0 to -2.0 (red), -2.5 (dark orange), and -3.0 (light orange). In the case of triosephosphate isomerase the first
two ranges give identical results. The ideal threshold is found to be -1.65 and -2.20 for triosephosphate isomerase and arginyl-
tRNA synthetase, respectively.
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similarly constructed for each PM. The accuracy of each
PM prediction is based on the relative location of the
known functional site and prediction spheres. If the pre-
diction sphere is completely engulfed within the known
functional site sphere, then the prediction is deemed cor-
rect. If the two spheres partially overlap, then the predic-
tion provides useful information. And, if there is no
overlap between the two spheres, then the prediction is
wrong. In the case of the known functional site, the sphere
is centered on the geometric center of the CB atoms (CA
for glycine) of all functional residues. Similarly, the PM
sphere is centered on the geometric center of the corre-
sponding CB atoms (CA for glycine). In both cases, the
sphere is made just large enough to include all functional
or PM residues.

Results and discussion

Establishing algorithm parameters

As described below, the automatic threshold determina-
tion problem is simplified when considering only the
most extreme of several contiguous and related, PSZ val-
ues. We call this process data sharpening. As a conse-
quence, identification of the true phylogenetic signals is
greatly simplified. In contrast, contiguous windows with
similar values are the result of a single PM, making it dif-
ficult to properly count the number of true signals in an
unsharpened dataset. Because PMs are defined as all over-
lapping windows scoring past the PSZ threshold, reducing
the complexity of the problem to be in line with the
number of PMs, versus number of windows, makes intui-
tive sense. For example, if two PMs are considered, the
first consisting of three overlapping windows and the sec-
ond with five, only two unique signals, compared to the
eight constituent windows, are considered. Comparisons
of sharpened and unsharpened datasets are demonstrated
in Figure 1.

Thresholds are determined by first evaluating the optimal
range using the PAM clustering algorithm. Determining
whether a threshold can be placed within the range of -1.0
and -2.0 allows thresholds to sensitively accommodate
more functional sites, widening this range results in more
stringent thresholds. Figure 1C illustrates different thresh-
olds determined when considering three different PSZ
ranges. By broadening the range of the triosephosphate
isomerase (TIM) dataset, two distinct thresholds are
found. Ranges of {-1.0:-2.0} and {-1.0: -2.5} identify the
same threshold (PSZ = -1.65). However, expanding the
gap to {-1.0: -3.0} results in a significantly more stringent
threshold (PSZ = -2.86). The former PSZ threshold is
more similar to our manual determination of PSZ = -1.5
[12].

Similarly, the arginyl-tRNA synthetase family is evaluated
using the same three gap ranges. Like TIM, the determined
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The frequencies of the three different PSZ thresholds are
found on 1571 protein families (all COGs with more than 25
sequences). The normalized frequencies are represented as
kernel density estimates. All optimal ranges used consist of
two maximum densities from -1.0 to -3.0 (PSZ = -3.04 and -
1.82), from -1.0 to -2.5 (PSZ = -2.60 and -1.74), and from -1.0
to -2.0 (PSZ = -2.01 and -1.58). Kernel densities from fifteen
manually set thresholds that have been structurally verified
also contain two maximum densities (PSZ = -2.12 and -1.53).
Of the three ranges tested, the {-1.0: -2.0} gap is the only one
that is statistically similar to the structurally verified results.
The coloring of the three ranges is the same as in Figure 2C.

threshold becomes more stringent as the gap broadens.
However, the three gap ranges result in three distinct PSZ
threshold values. The arginyl-tRNA synthetase example is
noteworthy because the determined threshold in all three
instances is algorithmically set below 7. This occurs
because too many points exist in the PAM identified sig-
nal cluster. Since we assume functional sites cover only a
fraction of the protein sequence space, when the signal
cluster is larger than five, it is disregarded and the PSZ
threshold is set at the first (rank ordered) PSZ past .

Comparison of all three gap ranges on the determined
PSZ threshold for the 15 functionally and structurally
diverse proteins used previously [12] is partially used to
determine the ideal gap range. In all cases, the functional
significance of the manually determined threshold has
been demonstrated using structural analysis. Addition-
ally, the exact catalytic role of many of the identified PMs
(especially TIM [27], enolase [28], inorganic
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Table I: Manual verses automatically determined thresholds?
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Protein family PDB ID Manual PSZ Auto PSZ
Acetyglucosamine-6-phoshate deacyetylase 1012 -2.20 -2.25
Alcohol dehydrogenase 1JVB -2.20 -2.15
CuZnSOD ISPD -1.50 -1.50
Cytochrome P450 IN4G -2.20 -2.10
Enolase 20NE -2.00 -2.18
Glyceroladhyde-3-phosphate dehydrogenase 1DC4 -1.80 -1.90
Glycerol kinase IBO5 -2.00 -2.03
Glutamate dehydrogenase IHWZ -1.80 -2.12
Inorganic pyrophosphatase 16T -1.80 -1.67
Myoglobin IMBA -1.50 -1.51
Succinate dehydrogenase — FAD INEK -2.00 -2.20
Succinate dehydrogenase — Fe/S INEK -2.20 -1.63
Succinate dehydrogenase — Heme INEK -2.20 -1.88
TATA box binding protein ITBP -1.50 -2.16
Triosephosphate isomerase 7TIM -1.50 -1.85

2 A sequence window width of 5 is used for each of the above examples and gap range of {-1: -2}.

pyrophosphatase [29], copper, zince superoxide dis-
mutase [30], and TATA-box binding protein [31]) has also
been delineated. For example, eight PMs are identified in
the case of TIM, which cover all eight LIGPLOT [26] iden-
tified electrostatic interactions between enzyme and sub-
strate. Furthermore, the flexible "lid" region, which covers
the active site during catalysis [32-35], is also identified as
a functional site. We have also recently demonstrated that
PMs within TIM (and two other TIM-barrel families) also
correspond to evolutionarily conserved electrostatic net-
works that fine-tune the pKa values of catalytic residues
[36].

The frequency of threshold values (displayed as kernel
density estimates) determined using the three different
gap ranges is illustrated in Figure 2 for the entire COG
database [16]. Of the three PSZ ranges tested, the thresh-
old distribution resulting from the narrowest range is
most similar to the distribution of our structurally verified
dataset. Using a two-sample t-test, the statistical signifi-
cance between the PSZ threshold distributions can be
assessed. The t-test results (£ =-0.41, p = 0.69) indicate that
the manual and {-1.0: -2.0} distributions are not statisti-
cally different. However, when evaluating the manual
threshold distribution with the other two gap ranges, (t =
-6.08,p=2.14 x 1095) and (t =-9.49, p = 6.85 x 1098) for
{-1.0:-2.5} and {-1.0: -3.0}, respectively, we find that the
differences are highly significant. Furthermore, the distri-
bution of thresholds from the {-1.0: -2.0} show the most
frequent PSZ thresholds are set around -1.5 and -2.0,
which is in line with our original conclusions. A gap range
of {-1.0: -2.0} is used throughout the remainder of this
report. Table 1 compares the manually and automatically
determined PSZ thresholds.

Functional annotation of the COG database

Using the procedure established above, we exhaustively
functionally annotated the most recent update [16] of the
COG database. After parsing out COGs with less than 25
sequences, our dataset is composed of 1571 protein fam-
ilies. The number of PMs identified resembles a bell curve
centered on 6.1 motifs per COG (Figure 3A). The standard
deviation is 2.9. 24 PMs, the most of any COG
investigated, are identified within the cobalamin biosyn-
thesis protein family. Due to the extreme size of this pro-
tein, the number of identified PMs is within the expected
range - the cobalamin biosynthesis protein family align-
ment is the second longest in our dataset. Consistent with
our earlier qualitative observations [36], Figure 4 reveals a
roughly linear correlation between alignment length and
the number of phylogenetic motifs identified per COG.

In total, 9558 PMs are identified. Compared to the
number of PMs per COG, there is much more heterogene-
ity within the motif width distribution (Figure 3B). The
theoretical lower bound on PM width is five (one
fragment window); whereas there is no limit on their
maximum size. A motif width of five is by far the most
common, occurring 51% of the time. The maximum
width observed, which occurs in the methyl-accepting
chemotaxis protein family, is 42 (occurring once). The
large motif corresponds to the chemotaxis transduction 2
domain. As a stark contrast, only one other PM (width =
5) is identified within this family. The second, and much
smaller, motif coincides with the PROSITE [14] definition
(R-T-E- [EQ]-Q) of the family. The [EQ] position is a site
of reversible methylation.
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(A) Histogram tabulating the number of phylogenetic motifs per COG. (B) Histogram tabulating phylogenetic motif width
(note logarithmic scale). The theoretical lower bound on motif width (five, which equals one fragment window) occurs 51% of

the time. The {-1.0: -2.0} gap range is used in both cases.
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Number of phylogenetic motifs per COG, using the {-1.0: -
2.0} gap range, is plotted against alignment length. As
expected, there is a direct correlation between the two
quantities. At least one phylogenetic motif is identified in
each COG. Conversely, in large COGs |0+ phylogenetic
motifs are routinely identified.

The large-scale nature of this analysis provides an oppor-
tunity to assess the dependence of several factors on the
automatically determined PSZ thresholds. Correlations
between the determined PSZ thresholds and number of
PMs identified, number of sequences in the dataset, and
alignment length are calculated (see Table 2). As dis-
cussed, a roughly linear (R = 0.68) correlation between
number of PMs identified and alignment length is
identified (Figure 4). However, no other strong correla-
tions are identified between any of the probed character-
istics. While more-or-less uninteresting, this result is
actually encouraging because it indicates that PMs, in
addition to being accurate, represent a robust functional
site prediction algorithm suitable for large, heterogeneous
datasets.

Molecular examples

Clustering of the three different TIM gap ranges uncovers
two putative PSZ thresholds (see Figure 1C). We demon-
strate above that the narrowest gap range (and as a conse-
quence, the most lenient PSZ threshold) to be
appropriate. In this case, however, both the {-1.0: -2.0}
and the {-1.0: -2.5} gap ranges set the threshold at -1.83.
The determined threshold sensitively accommodates the
complete substrate binding epitope, including all eight
enzyme-substrate electrostatic interactions. However, the
{-1.0: -3.0} range identifies a more stringent threshold (-
2.75), which misses one enzyme-substrate salt bridge and
one hydrogen bond. Several other less drastic differences
also occur. A structural analysis of these automatically set
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Table 2: Correlation matrix of various phylogenetic motif parameters2

PSZ threshold

# phylogenetic motifs # sequences

# phylogenetic motifs 0.15
# sequences 0.08
MSA length -0.32

-0.07
0.68 0.00

a A sequence window width of 5 is used for each of the above examples and gap range of {-1: -2}.

Figure 5
Triosephosphate isomerase phylogenetic motifs identified at the two different PSZ thresholds. Colored spheres indicate phylo-
genetic motif a--carbons identified past the (A) -1.83 and (B) -2.75 thresholds, which correspond to gap ranges of {-1.0: -2.0}
and {-1.0, -3.0}, respectively. The {-1.0: -2.5} gap range identifies the same threshold as (A). The substrate analog is colored
white. Making the threshold more stringent fails to identify residues (the red phylogenetic motif) involved in two stabilizing
enzyme-substrate interactions (a salt bridge and an H-bond).

thresholds is shown in Figure 5. Despite the differences
between the two thresholds, both identify PMs that corre-
spond to the PROSITE [14] definition of the family, the
flexible "lid", and most of the enzyme-substrate contacts.
In both cases, all identified PMs are structurally clustered
at the C-terminal end of the barrel.

We also structurally verify functional site prediction accu-
racy within the arginyl-tRNA synthetase family, which is a
previously unreported example. As with TIM, we evaluate
the same three gap ranges. Structural verification and
comparison of these three thresholds is illustrated in Fig-
ure 6A-C. The more accommodating PSZ threshold iden-
tifies two structurally unique PM clusters. The first is

composed of four PMs, and corresponds to the enzyme
active site. Several stabilizing enzyme-tRNA and enzyme-
Arg interactions are included in this region (Figure 6D).
The second PM structural cluster is composed of a single
PM, and corresponds to three enzyme-tRNA H-bonds at
the tRNA anticodon arm [37]. Making the PSZ threshold
more stringent, by widening to the gap range to {-1.0: -
2.5}, eliminates two PMs, including the anticodon arm
PM. Only one PM is identified at the most stringent level.
Like with TIM, the ends of the identified PMs are trimmed
at increasingly stringent PSZ thresholds.
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Figure 6

Arginyl-tRNA synthetase phylogenetic motifs at the three PSZ thresholds are highlighted. Residues colored red indicate phylo-
genetic motifs identified using the (A) -2.04, (B) -2.93, and (C) -3.26 PSZ thresholds, which correspond to gap ranges of {-1.0:
-2.0}, {-1.0, -2.5}, and {-1.0, -3.0}, respectively. The arginine substrate is colored yellow; the tRNA is colored blue; and the anti-
codon is color cyan. Using (A), two structurally unique clusters of phylogenetic motifs are identified. One corresponds to the

enzyme active site, whereas the other corresponds to three H-bonds between the enzyme and the anti-codon arm of tRNA.

(D) is the same (A), but with the rest of the enzyme removed for clarity.
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Assessment of functional site predictions

The quantitative assessment of functional site predictions
from computational predictions remains an open prob-
lem in bioinformatics. Much of the difficulty arises from
the fact that function and more specifically, functional
sites, are ill defined concepts [38]. Aloy et al. [25] have
attempted to standardize assessment of functional site
predictions through comparisons to catalytically impor-
tant residues (see Methods for technical details). Predict-
ing functional sites with an automated evolutionary trace
method [7] utilizing structural information on 86 protein
families, Aloy et al. demonstrate impressive results: 79%

http://www.biomedcentral.com/1471-2105/6/116

correct, 15% useful information, and 6% Wrong. We use
the same assessment strategy on 30 sampled protein fam-
ilies from the COG database (see Table 3). Fourteen of the
analyzed families correspond to our earlier manual anal-
ysis [12] and the remaining are arbitrarily picked from
examples with at least one solved structure. Figure 7 dem-
onstrates that the PM functional site predictions are of
similar quality to the overall accuracy reported by Aloy et
al. Note that the dataset analyzed in Aloy et al. is not the
same as the dataset analyzed here. This result is particu-
larly encouraging due to the lack of structural details in
the PM technique.

Table 3: Structural assessment of the phylogenetic motif functional site predictions?

Protein family PDB ID Correct Useful info Wrong
A. Proteins from Table |

Acetyglucosamine-6-phoshate deacyetylaseb 1012 6 | 0
Alcohol dehydrogenase 1JVB 2 | |
CuZnSOD ISPD 3 2 |
Cytochrome P450 IN4G 6 4 0
Enolase 20NE 6 2 0
Glyceroladhyde-3-phosphate dehydrogenase 1DC4 2 2 3
Glycerol kinase 1B0O5 7 | 0
Glutamate dehydrogenase IHWZ 7 0 0
Inorganic pyrophosphatase 16T 3 2 0
Myoglobin IMBA 4 | 0
Succinate dehydrogenase — FAD INEK 4 | 2
Succinate dehydrogenase — Fe/S INEK 4 0 0
Succinate dehydrogenase — Heme INEK 5 0 0
TATA box binding protein ITBP n/ac

Triosephosphate isomerase 7TIM 3 4 |
B. Additional examples

Acetate kinase 1G99 4 4 0
Aconitase A 7ACN 8 3 5
Alanine racemase IL6F 4 | |
Arginyl-tRNA synthetase IF7U 2 2 |
Biotin carboxylaseb IDV2 3 3 2
Catalase IGGF 9 0 0
Citrate synthase INXG 8 | 0
Isocitrate dehydrogenases 11A2 3 0 0
Malate/lactate dehydrogenases IEMD 6 | 0
Malate synthase IP7T 6 0 0
Phosphomannomutase IP5D 5 2 0
Selenocysteine lyase IECX 5 2 |
Threonine aldolase ILWS5 6 2 0
Thymidylate synthase 1AIQ 4 0 |
Transaldolase IONR | | |
Trehalose-6-phosphate synthase IUQU 5 3 3

a A sequence window width of 5 is used for each of the above examples and gap range of {-1: -2}.

bThe known functional site defined in Acetyglucosamine-6-phoshate deacyetylase and biotin carboxylase is prohibitively incomplete; as such,
functional sites indicated in [41] and [42], respectively, are also included. < Because so much of the TATA-box binding protein surface area directly
interacts with its DNA substrate, the known functional site sphere encompasses nearly the entire protein, making the assessment unsporting

because all predictions will trivially be correct.
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1%

23% m Correct
m Useful info

B Wrong

Figure 7

Pie chart describing the relative accuracy of the automated
phylogenetic motif (PM) method using the {-1.0: -2.0} gap
range. Assessment is determined using the structure-based
approach described in [25]. The relative accuracy of the
automated PM method is encouraging as it does not require
any a priori structural information.

As Aloy et al. [25] point out, while the quality and robust-
ness of SITE and ACTSITE records within PDB files is of
varying quality, their approach does provide an
automated and unbiased method for assessing functional
site predictions. However, in automated efforts, examples
of known "functional sites" will always be missed. For
example, assessment of the TIM PM predictions indicates
that 3 are correct, 4 provide useful information, and 1 is
wrong. The "wrong" prediction actually corresponds to an
evolutionarily conserved dimer interface epitope (see Fig-
ure 5) that includes several stabilizing monomer-mono-
mer interactions [39]. Despite being far removed from the
active site, binding of a small molecule at the dimer inter-
face can inactivate the enzyme [40]. One of the three
enzyme-inhibitor contacts occurs from Phe75, which is a
residue within the "wrong" PM prediction. As a conse-
quence, it could be argued that this PM is functional. This
discussion is included here to encapsulate the ambiguity
involved in functional site definitions and the difficulty in
assessing their predictions.

Conclusion

In this report, we present an automated algorithm which
determines appropriate PSZ thresholds appropriate to
functional site predictions. We demonstrate that our
methodology is robust enough for large-scale analyses,
while sensitive enough to identify known functional sites.
For example, the method predicts all structural contacts,
including the catalytic residue, between triosephosphate
isomerase and its substrate. Additionally, the functionally
important flexible "lid" is also identified. In the case of

http://www.biomedcentral.com/1471-2105/6/116

arginyl-tRNA synthetase, PMs correspond to regions sur-
rounding both the amino acid/tRNA acceptor stem and
enzyme-anticodon interactions. Using a quantitative
structure-based functional site assessment algorithm, we
demonstrate that the sequence-only PM predictions com-
pare favorably to those from evolutionary trace
approaches that are dependent upon solved structures.

Availability and requirements
¢ Project name: MINER

. Project home
www.pmap.csupomona.edu/MINER/
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¢ License: GNU GPL

¢ Any restrictions to use by non-academics: License
needed
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