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Abstract

Background: Dekapentagonal maps depict the phylogenetic relationships of five genomes in a
visually appealing diagram and can be viewed as an alternative to a single evolutionary consensus
tree. In particular, the generated maps focus attention on those gene families that significantly
deviate from the consensus or plurality phylogeny. PentaPlot is a software tool that computes such
dekapentagonal maps given an appropriate probability support matrix.

Results: The visualization with dekapentagonal maps critically depends on the optimal layout of
unrooted tree topologies representing different evolutionary relationships among five organisms
along the vertices of the dekapentagon. This is a difficult optimization problem given the large
number of possible layouts. At its core our tool utilizes a genetic algorithm with demes and a local
search strategy to search for the optimal layout. The hybrid genetic algorithm performs
satisfactorily even in those cases where the chosen genomes are so divergent that little
phylogenetic information has survived in the individual gene families.

Conclusion: PentaPlot is being made publicly available as an open source project at http://
pentaplot.sourceforge.net.

Background

Trees have a long history as models for the evolutionary
history of organisms [1,2]. Lineage sorting and reticulate
evolution have long been recognized as processes that
make it difficult to infer species evolution from gene trees
[3,4]. However, the extent of gene transfer between diver-
gent species, particularly in case of microorganisms, has
initiated a reassessment of the applicability of a tree-based
concept for organismal evolution [5,6]. Individual genes
coexisting in a present day genome can have very different
evolutionary histories [7,8]. In particular, horizontal gene
transfer is recognized as an alternative to within lineage
processes like duplication and de-novo evolution of genes

for an organism to acquire new properties [9]. Here we
present a software tool, which computes dekapentagonal
maps to depict the phylogenetic relationships of five
genomes in a visually appealing diagram as an alternative
to bifurcating trees. Dekapentagonal maps allow for the
recognition of a plurality or majority signal and they can
serve as a visual tool to pre-screen for putative instances of
horizontally transferred genes (e.g., see [10]).

Given five genomes we can characterize all possible phyl-
ogenetic relationships between the genomes with fifteen
different unrooted tree topologies. One way to depict all
fifteen relationships is to use a generalization of

Page 1 of 9

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/6/139
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15938752
http://pentaplot.sourceforge.net
http://pentaplot.sourceforge.net
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:139

http://www.biomedcentral.com/1471-2105/6/139

R
ct
>J_<Ca ct Ca g
ct
H Ca 7(10) s >J-<
S IO s9 w” N
R g 96, / ca_ " ct
O \\x x /// x\\;\;)&10(23) >J_<R
ct S R Pas \\ / . * S
>J-< SO A He S R
H Ca /// . Voo R /// 7 N
/ P . 15 (24) >J-<
o Faay N 4 s ct
R H S T
>J-< Mane o0 —
Ca s s \ S o
e | ) } ¥5(24) >J—<
RC M ct | T c )
>J_< 3(10) *
Ca S \ ///’/ \ //\‘\ . H ct R
. . L e I
Ho S@  ct s ;o ° °
’// N\ x/// H
R S N // \\\ x)( Ca R
L 11 10) >J_<
) Ct s
ca. S uf2® e .
Ct R H Ct
>J_< ct s
Ca S
Figure |

Dekapentagonal map for the analyses of five photosynthetic genomes: Synechocystis sp. (S), Chloroflexus aurantiacus (Ca), Chloro-
bium tepidum (Ct), Rhodobacter capsulatus (R) and Heliobacillus mobilis (H), based on posterior probabilities. Each point plotted
within the dekapentagon represents a family of orthologous proteins — there are a total of 188 sets of orthologs common to
the five genomes [26]). The dekapentagon is divided into zones of proximity to topologies: points that fall into one of the 15
zones that correspond to the |5 tree topologies favor either that topology most or several neighboring topologies, and points
that fall into the single central zone represent unresolved relationships. The tree topology number (I to I5) is given first, fol-
lowed by the number of points per zone in parentheses. Abbreviations: Ca, Chloroflexus aurantiacus; Ct, Chlorobium tepidum; H,
Heliobacillus mobilis; R, Rhodobacter capsulatus. This figure was previously published in [10].

barycentric coordinates, so called dekapentagonal maps
(see below and [10]). The support value vector for a gene
family contains the posterior probabilities for each of the
fifteen tree topologies given the aligned sequences, or the
frequencies with which the fifteen different tree topolo-
gies are recovered from bootstrapped samples generated
from the aligned sequences. The dekapentagonal map of
five genomes depicts the support value vectors for all gene

families that have a representative in each of the five
genomes. The successful construction of dekapentagonal
maps critically depends on an optimal layout of the fif-
teen different tree topologies along the fifteen vertices of
the dekapentagon. Figure 1 is an example of a particular
layout of the tree topologies along the dekapentagon's
vertices (see [10] for detailed discussion of these analy-
ses). The points within the diagram denote actual data
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support for particular tree topologies, with each point rep-
resenting one family of orthologous genes [11,12]. The
individual regions within the map demark areas of sup-
port for individual topologies. The region in the center of
dekapentagonal map represents an area of no support for
any particular topology. The resulting display facilitates
recognition of frequently supported tree topologies
(topologies #5, #10 and #15 in Figure 1) and their shared
features (e.g., Chlorobium tepidum (Ct) grouping with Rho-
dobacter capsulatus (R)). The placement of a support value
vector to the inside of the dekapentagon depends on how
the fifteen topologies are laid out along the vertices. A
gene family that has equal support for only two of the tree
topologies will map to the periphery, if these two topolo-
gies occupy neighboring vertices, but it will map into the
center, if the two topologies occupy opposing vertices. We
define as optimal a layout of tree topologies along the ver-
tices, if it minimizes the distance of the support value vec-
tors from the periphery. This way an analysis of genomes
related only through strict vertical inheritance will result
in a cluster of points neighboring a single vertex; the hor-
izontal transfer of several genes will result in points close
to other not necessarily neighboring vertices (e.g. topol-
ogy #2 in Figure 1), and tree topologies between which
the data frequently cannot decide will be neighboring
each other.

Computing the optimal layout of the tree topologies
along the vertices of the dekapentagon presents a difficult
optimization problem given the large number of possible
layouts: (15-1)!/2 = 14!/2=4*1019 (only free circular per-
mutations [13] are counted, and the arrangements that
become equivalent by rotation or flipping of the dekapen-
tagon are considered the same arrangements).

This setting seems ideally suited for optimization based
on genetic algorithms [14]. At the core of the software tool
presented here is the design and implementation of a
hybrid genetic algorithm which computes optimal tree
topology layouts along the dekapentagon vertices using
demes in order to avoid premature convergence and
which employs a local search strategy to complement the
global search behavior of the crossover and mutation
operators.

Implementation

Design overview

PentaPlot is written as a program, which is comprised of
multiple processing steps implemented both in Perl and
C++. The processing steps are hidden from the user by
means of a master Perl script that ties all the processing
steps together. In normal usage the user prepares a proba-
bility matrix (see software documentation for formatting
details), which provides information about the support of
particular tree topologies by the families of orthologous

http://www.biomedcentral.com/1471-2105/6/139

genes. This matrix is processed by the program into the
visual dekapentagonal map as shown in Figure 1. The
individual processing steps are as follows:

e Compute tree topology layout from probability matrix.

® Map the polar coordinates for orthologous gene family
into a Cartesian coordinates.

e Summarize the number of genes, which fall into the
individual zones that support particular tree topologies.

¢ Construct the dekapentagonal map.

The generated dekapentagonal map is available as an
image, which either can be viewed in an interactive pre-
viewer or saved in the post-script and PDF formats. The
implementation heavily relies on Wall's genetic algorithm
C++ component library [15] and TeX [16].

PentaPlot also provides access to a number of tuning
parameters for the construction of the maps, which are
accessible via command line arguments:

e [terations (default 50): Optimizing tree topology lay-
outs with a genetic algorithm is a stochastic approach,
therefore, in order to obtain some confidence in the com-
puted solutions the solutions should be recomputed a
number of times. This parameter controls how often the
computation is to be repeated.

e Populations (default 10): A fundamental concept in
genetic algorithms is the notion of a population. Here we
apply a genetic algorithm that utilizes multiple popula-
tions at the same time in order to prevent premature con-
vergence. This parameter specifies how many populations
the algorithm should use.

¢ Population sizes (default 30): Population sizes are criti-
cal in genetic algorithms. If the population size is too
small there will not be enough genetic diversity in the
population to effectively explore the search space. If the
population size is too large then a large amount of com-
putation time might be wasted. This parameter controls
the sizes of the populations.

e Maximum number of generations (default 500): The
genetic algorithm as implemented in PentaPlot has an
automatic stopping criteria built in based on 99% conver-
gence within 50 generations, that is, if the performance of
the best layout of the current generation T and the per-
formance of the best layout of the generation T-50 are
within 1% from each other then the genetic algorithm ter-
minates. However, in particularly difficult optimization
landscapes this convergence might never occur and the

Page 3 of 9

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:139

http://www.biomedcentral.com/1471-2105/6/139

Table I: A simple probability matrix (see Figure | and text for more details)

Tree #/ (T)) Tree #2 (T,) Tree #3 (T;)

Support value vector for a set of orthologous genes

genetic algorithm might run forever (or at least for a very
long time). To avoid this situation the maximum genera-
tion parameter allows the user to limit the number of gen-
erations the genetic algorithm is allowed to compute.

Data preparation: The probability matrix

The first step in the phylogenetic analysis of genomes is
the detection of sets of orthologous genes from the
genomes making up the set of five genomes under consid-
eration, i.e., genes that share common ancestry and are
related through speciation and not gene duplication
events. We use reciprocal top scoring hits as a criterion to
select orthologous genes, i.e., each of the genes picks the
other members of the quintet as the top scoring hit in a
BLAST search [12,17,18]. While this selection scheme
aims at detecting orthologous genes, the resulting sets can
only be considerate to be putatively orthologous. While
this selection scheme aims at detecting orthologous genes,
the resulting sets only can be considered to be putatively
orthologous. These gene sets include horizontally trans-
ferred genes (xenologs), especially those instances, where
the transferred gene replaced its ortholog, synologs that
were brought into a single genome through lineage fusion
[19,20] and duplicated genes where one or the other par-
alog was lost in each the analyzed genomes [11]. When we
refer to sets of orthologous genes in the rest of the manu-
script we mean that those orthologs are putative. Once
these putatively orthologous genes are detected, they are
aligned and all possible unrooted tree topologies are eval-
uated (fifteen topologies for five genomes) and either
their posterior probabilities or bootstrap support values
are calculated (see [12] for details on methodology).
Therefore, each family of putatively orthologous genes is
associated with a 15-dimensional support value vector. This
construction results in probability matrices where each
row represents a family of orthologous genes and each
column represents a particular unrooted tree topology. A
value in a matrix represents the probability of support for
a particular tree topology by a particular gene family. It is
important to note that all the probabilities in one record
have to sum up to one. Any other method that calculates
support value vectors can be used to produce valid proba-
bility matrices. Please note that the construction of the
probability matrix is a preprocessing step and is not
included in the PentaPlot program.

Py P P

Mapping of probabilities into barycentric coordinate
systems

Barycentric coordinate systems (coordinate systems based
on centers of gravity) are most easily explained using tri-
angles instead of generalized polygons. A simple proba-
bility matrix is shown in Table 1.

With the tree topologies at the vertices of a triangle we can
interpret the probabilities as weights at each corner of the
triangle with the restriction that P, + P, + P; = 1. We can
then visualize this as shown in Figure 2. It is interesting to
note that, given the particular assignment of the tree
topologies to the vertices, the point P in the area of the tri-
angle is completely defined by the support at each vertex,
that is, the point P represents the center of gravity of this
construction. We can now interpret the point P as a visual
characterization of the support for each of the tree topol-
ogies by the set of orthologous genes in the example data-
set above. If our dataset had more than one record (e.g.,
Table 2) we would see multiple points in the triangle, one
for each set of orthologous genes. Figure 3 shows a visual-
ization of a dataset with numerous orthologous genes and
their support of three different tree topologies involving
four genomes A, B, C, and D, respectively. The areas at the
vertices demark the regions of support for the individual
tree topologies.

We can generalize this to the case of the dekapentagon as
shown in Figure 4. Similarly to the case of the triangle in
Figure 2, we only show the construction of the center of
gravity of a single set of orthologous genes. Again, the
weights at the vertices represent the support of a particular
tree topology by the set of orthologous genes. The points
M;; denote the centers of gravity due to the weights indi-
cated by the subscripts. When we include all the weights
in this construction we will obtain a unique M that repre-
sents the center of gravity of all the weights for a particular
arrangement of the weights along the vertices of the deka-
pentagon. Similar to the previous case we can interpret the
center of gravity as a visual representation of the support
for the tree topologies by this set of orthologous genes.
Should there be multiple sets of orthologous genes in the
dataset we will obtain multiple centers of gravity, one for
each set of orthologous genes.
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Figure 2
A barycentric coordinate system with three coordinates. See
text and [12, 25] for more details.

Figure 3

An example (modified from [I 1, 12]) of visualization of the
support of three different unrooted tree topologies by multi-
ple sets of orthologous genes from four genomes [12, 25].

Computing the center of gravity in a dekapentagon
Computing the center of gravity in a triangle is straightfor-
ward; however, the same computation in a dekapentagon
deserves some remarks. To construct the center of gravity
we place the dekapentagon into a Cartesian coordinate
system with its origin coinciding with the center of the
dekapentagon. Then the Cartesian coordinates (x; y;) of a
vertex i can be computed with the equations:

http://www.biomedcentral.com/1471-2105/6/139

Figure 4

Schematic presentation of calculating and plotting support
value vectors into a dekapentagon. Support values associated
with each vertex are represented as weights attached to the
vertices. Points M indicate locations of center of gravities of
vertices that are mentioned in the index associated with each
point M. See Implementation section for details of the calcu-
lation of the coordinates. This figure was previously pub-
lished in [10].

x; = R*cos(i*360/15),
yi = R*sin(i*360/15),

(1)

where R is the distance from origin to the vertex (equal for
all the vertices due to the location of the origin of the coor-
dinate system and here we assume that R is equal to 1),
and 1 <i < 15. For each pair of vertices i and j the coordi-
nates (x,, yy) of the center of gravity M; are calculated
according to the law of the lever:

Xy =%+ (x5 —x;) " p; [(pi + 1)), (2)
ym=Yi+ (i —vi)*pj /(b +pj)

where p; and p; represent the support ("weights") at the
vertices i and j, respectively. The process is repeated for all
pairs of vertices, and then iteratively for all "intermediate"
centers of gravities until only one pair of coordinates
remains, which represents the center of gravity of the
dekapentagon using all the "weights". The resulting coor-
dinates of the dekapentagon's center of gravity do not
depend on the order in which the masses are combined
but they do depend on the particular arrangement of the
support p along the vertices, i.e. on the way the 15
different tree topologies are assigned to the vertices. For
example, one could envision a family of orthologous
genes that supports only two of the fifteen possible tree
topologies. If these two topologies were assigned to two
opposing vertices, the support value vector would map to
the center of the dekapentagonal map, indicating no par-
ticular support for any tree topology, whereas if the two
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Table 2: A three dimensional probability matrix that is used to calculate support value map depicted in Figure 3 where n is the number
of orthologous genes considered. An analogous matrix with 15 columns can be constructed for |15-dimensional support value vectors.

Tree #1 (T)) Tree #2 (T,) Tree #3 (T;)
Support value vector for a set #| of orthologous genes P P, Pi3
Support value vector for a set #2 of orthologous genes Py Py P23
Support value vector for a set #n of orthologous genes Poi P Po3

topologies are assigned to neighboring vertices, the sup-
port value vector will map onto the periphery between
these two vertices, revealing support for these two topolo-
gies over the other 13 alternatives. Therefore, it is crucial
to compute a layout that moves the centers of gravity as
close to the periphery as possible.

As mentioned above, in our case we not only compute a
single center of gravity or barycentric point, but instead,
given a data set with N orthologous genes we will com-
pute N different barycentric points, one for each record in
the data set.

The layout algorithm

There are about 4*1010 possible arrangements of topolo-
gies on a dekapentagon's vertices. An arrangement is con-
sidered optimal when the topologies are arranged at the
polygon vertices in a way that maximizes the sum of the
distances of all barycentric points from the center of the
polygon. There are too many arrangements of topologies
around the dekapentagon to search for the optimal
arrangement exhaustively. Therefore, we used a heuristic
search based on genetic algorithms [21].

In the genetic algorithm setup, each generation consists of
a population of arrangements where each individual in a
population encodes a particular mapping of the possible
tree topologies identified by numerical identifiers (1
through 15) to vertices of the dekapentagon. The fittest
individuals in a population maximize the sum of all dis-
tances of the barycentric points from the center of the pol-
ygon. As is typical in evolutionary computation, the
genetic algorithm applies mutation and crossover opera-
tions to each successive generation of arrangements until
an optimal solution is obtained [14]. Genetic algorithms
today provide many different implementation strategies
beyond the basic bit string genetic algorithm first devel-
oped by Holland [14]. We chose an array-based, hybrid
genetic algorithm that uses demes to avoid premature
convergence [15].

Genetic algorithms are good at finding approximate solu-
tions in large search spaces but they are notoriously inef-

ficient when it comes to fine tuning these solutions. By
equipping a genetic algorithm with a local search strategy
we avoid these problems. This is referred to as hybrid
genetic algorithms [21] (sometimes also referred to as
memetic algorithms [22]). Our hybrid genetic algorithm
is summarized by the following pseudo code:
function evolve
create initial population
do

// perform crossover and mutation

population : = compute-new-population (population)

best : = fittest-individual (population)

optimized : = local-optimization (best)

// if optimized is fitter than best replace best

// with optimized in the population

if (fitness (optimized) > fitness (best))

replace (population,best,optimized)

until (stopping-condition)
return fittest-individual (population)
This algorithm is replicated over the demes giving rise to
our hybrid deme genetic algorithm. It is noteworthy that
we deviate from the standard notion of hybrid genetic
algorithm slightly by only applying the local optimization
function to the fittest individual of the population at each
generation in each deme due to the computational cost of
our local optimization: given the tree topology layout of

the fittest individual, our local optimization strategy
attempts to find an even better layout by systematically
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swapping tree topologies in the layout. The pseudo code
of the local search heuristic follows:

function local-optimization (layout [1..15])
bestScore : = bestSource : = bestTarget : = -1
fors:=1to 14 do
fort:=s+1to 15 do
swap-topologies (layout [s], layout [t])
score : = scoreArrangement (layout)
if (score > bestScore)
bestScore : = score
bestSource : ='s
bestTarget : =t
endif
undo-swap (layout [s], layout [t])
endfor
endfor
swap-topologies (layout [bestSource], layout [bestTarget])
return layout
This procedure steps through all topologies in a layout
and evaluates the score obtained by swapping each topol-
ogy with all other positions. Here 'scoreArrangement' is a
procedure that computes the barycentric coordinates for
each record in the data set and the score is derived from
the sum of all the distances of the barycentric points from
the center of the polygon. Most likely we can improve the
computational requirements of this local search proce-
dure by sampling possible swaps in the layouts instead of
trying them all [23].
Another key notion beyond the local search strategy is that
we have to constrain the structure of the individuals in the
populations in such a way that each individual can only
encode legal sequences of topologies, that is, each individ-
ual can only encode layouts of topologies around the
perimeter of the polygon that do not have repetitions.
This is analogous to the term closure condition that arises

in genetic programming where any term constructor com-
bined with any other legal term constructor must give rise

http://www.biomedcentral.com/1471-2105/6/139

to a legal term [24]. Here we opted for an array represen-
tation where each position in the array denotes a vertex on
the polygon. The contents at each array position denote a
tree topology assigned to that vertex. Each individual is
initialized in such a way that the tree topologies 1 through
15 are assigned to the vertices in such a way that there are
no repetitions. In order to make this work the crossover
and mutation operators have to preserve the uniqueness
property of the topology layouts. Goldberg's PMX
(partially matched crossover) operator [21] and Wall's
swap mutation implemented in GALIB [15] fulfill our
uniqueness requirement and have been implemented in
PentaPlot.

Results and discussion

We tested the design of our algorithm with four experi-
ments of increasing difficulty [10]. Each experiment
involved the comparison of five genomes. We applied
both posterior probability mapping and bootstrap sup-
port value mapping [11,12,25] to two different genome
quintets:

1. An inter-domain genome quintet consisting of repre-
sentatives of all three domains of life: Saccharomyces cere-
visiae (Y), Rhodobacter capsulatus (R), Bacillus subtilis (B),
Archaeoglobus fulgidus (A), Sulfolobus solfataricus (S).

2. Bacterial genomes representing the five phyla that con-
tain organisms with chlorophyll-based photosynthesis:
Chlorobium tepidum (Ct), Chloroflexus aurantiacus (Ca),
Heliobacillus mobilis (H), Rhodobacter capsulatus (R), Sul-
folobus solfataricus (S).

The two datasets resulting from the first genome quintet
each had 53 records, that is, 53 families of orthologous
genes with one representative in each of the five genomes.
The datasets resulting from the second genome quintet
each had 188 records. Our investigation reported in [10]
corroborated the layouts produced by our algorithm. The
increase in difficulty in these experiments arises from the
fact that (a) maximum likelihood mappings tend to pro-
duce barycentric points which lay close to the circumfer-
ence of the polygon making it more difficult to discern an
optimal layout and (b) the bacterial genomes contained a
large number of orthologous genes, that is, there were a
large number of barycentric points that needed to be con-
sidered during optimization.

We also compared the performance of our hybrid deme
genetic algorithm to other genetic algorithm implementa-
tions such as the binary string genetic algorithm, the array
based genetic algorithm, and a deme based genetic
algorithm in each of these four experiments. The popula-
tion size of the genetic algorithms in all the experiments
for all genetic algorithms was 300 individuals. In the case
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Table 3: Application of the different genetic algorithms to four experiments with increasing difficulty (the percentages indicate

reproducability of solutions over fifty runs).

Experiments \ GA Type Binary Array Deme Hybrid Deme
1) Inter-domain Bootstrap 0% 0% 100% 100%
2) Inter-domain ML Mapping 0% 0% 84% 84%
3) Bacterial Bootstrap 0% 0% 62% 72%
4) Bacterial ML Mapping 0% 0% 56% 72%
Table 4: Investigating the genetic algorithm with different population and size settings.
Pop. 10 20 30 50 80 100 300 500
Number \
Pop. Size
1 12% 24% 26% 34% 44% 44% 20% 10%
2 36% 28% 38% 42% 54% 52% 16% 12%
3 24% 34% 46% 70% 60% 56% 24% 12%

Table 5: Assuming population sizes of 30 and 50, investigating
the behavior of the genetic algorithm with different numbers of
populations.

Pop. Number\ 30 50
Pop. Size
2 38% 42%
4 52% 68%
8 60% 78%
10 72% 88%
15 82% 88%
20 82% 88%

of the deme configurations this population was distrib-
uted over 10 subpopulations. We used a convergence
stopping criterion of 99% with a window of 50 genera-
tions. Typical runs lasted between 50 and 70 generations.
The convergence percentages were computed by averaging
the number of times a genetic algorithm computed exactly
the same layout over the fifty runs. We postulate that a
high degree of reproducibility indicates either a global
optimal solution or a very strong local minimum, which
can be considered a quasi-optimal solution. Given that
the reproducible solutions found by the genetic algo-
rithms were corroborated in bipartition analyses [10] we
are confident that the genetic algorithms did converge on
a global optimum. The results are summarized in Table 3.

In the case of the binary string and array genetic algo-
rithms it was interesting to see that we did not achieve
reproducible solutions. Introducing demes into the

genetic algorithms produced the most dramatic perform-
ance jump as can be seen from Table 3. In the case of the
first experiment the performance jumped from 0% to
100% and dropped off with increasing difficulty of the
experiments. The deme genetic algorithm performed well
over the range of the experiments. However, in the fourth
experiment it only converged on an optimal solution on
every other run. The fourth column shows the perform-
ance of our hybrid deme genetic algorithm. We can see
that it shares the performance characteristics of the deme
genetic algorithm on the easier experiments but the per-
formance of the hybrid deme genetic algorithm did not
degenerate as fast with increasing difficulty of the
experiments.

Tables 4 and 5 summarize the performance of the hybrid
deme genetic algorithm using parameters other than the
default parameters. In these experiments we applied our
hybrid deme genetic algorithm to the maximum likeli-
hood mapping of the bacterial genomes (our most diffi-
cult experiment). Table 4 shows the convergence behavior
of the genetic algorithm given different number of popu-
lations and different sizes of the populations. Here,
convergence is defined as above. What is most intriguing
here is that bigger populations are not necessarily better.
One possible explanation for this premature convergence
might be the fact that the single best individual we are
selecting in the local search for improvement does not
have as much an impact on the large populations as it
does in smaller populations. Thus, larger populations are
more prone to early stagnation in their search. Table 5
highlights the fact that the deme idea is indeed very
important to this algorithm in order to prevent premature
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convergence. As can be seen from both tables, our default
values present a reasonable tradeoff between convergence
behavior and computational complexity implied in larger
number of populations or large populations.

Conclusion

Dekapentagonal maps provide an alternative to a single
evolutionary tree to visualize phylogenetic relationships
between organisms. Here we presented a tool, which com-
putes such dekapentagonal maps given an appropriate
probability matrix. The visualization critically depends on
the optimal layout of unrooted tree topologies along the
vertices of the dekapentagon. Given the large number of
possible layouts, this represents a difficult optimization
problem well suited for genetic algorithms. At its core our
tool utilizes a genetic algorithm with demes and a local
search strategy. The chosen optimality criterion moves the
individual barycentric points representing orthologous
genes as far to the periphery as possible. The resulting
arrangement places tree topologies between which indi-
vidual data sets frequently do not decide next to each
other. The developed hybrid genetic algorithm performs
satisfactorily even in those cases where the chosen
genomes are so divergent that little phylogenetic informa-
tion has survived in the individual gene families.

Availability and requirements
¢ Project name: PentaPlot

* Project home page: http://pentaplot.sourceforge.net

e Operating system(s): linux, kernel version 2.4.18 and
above

¢ Programming language: Perl, C++, LaTeX

e Other requirements: Perl 5, BioPerl 1.4, LaTeX 2e,
GAlib 2.4.5

e License: GNU GPL

® Any restrictions to use by non-academics: contact
authors
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