
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
Tools enabling the elucidation of molecular pathways active in 
human disease: Application to Hepatitis C virus infection
David J Reiss1, Iliana Avila-Campillo1, Vesteinn Thorsson1, 
Benno Schwikowski1,2 and Timothy Galitski*1

Address: 1Institute for Systems Biology, 1441 N. 34th Street, Seattle, WA 98103, USA and 2Institut Pasteur, 25–28 Rue du Dr. Roux, 75724 Paris 
CEDEX 15, France

Email: David J Reiss - dreiss@systemsbiology.org; Iliana Avila-Campillo - iavila@systemsbiology.org; 
Vesteinn Thorsson - thorsson@systemsbiology.org; Benno Schwikowski - benno@pasteur.fr; Timothy Galitski* - tgalitski@systemsbiology.org

* Corresponding author    

Abstract
Background: The extraction of biological knowledge from genome-scale data sets requires its
analysis in the context of additional biological information. The importance of integrating
experimental data sets with molecular interaction networks has been recognized and applied to the
study of model organisms, but its systematic application to the study of human disease has lagged
behind due to the lack of tools for performing such integration.

Results: We have developed techniques and software tools for simplifying and streamlining the
process of integration of diverse experimental data types in molecular networks, as well as for the
analysis of these networks. We applied these techniques to extract, from genomic expression data
from Hepatitis C virus-infected liver tissue, potentially useful hypotheses related to the onset of
this disease. Our integration of the expression data with large-scale molecular interaction networks
and subsequent analyses identified molecular pathways that appear to be induced or repressed in
the response to Hepatitis C viral infection.

Conclusion: The methods and tools we have implemented allow for the efficient dynamic
integration and analysis of diverse data in a major human disease system. This integrated data set
in turn enabled simple analyses to yield hypotheses related to the response to Hepatitis C viral
infection.

Background
DNA microarrays have been applied with much success to
study genomic patterns of gene expression across many
organisms. It has become widely acknowledged that to
extract hypotheses from these data, there are advantages
to the integration of orthogonal sources of information,
notably, molecular-interaction data [1]. Hypotheses
derived from genomic-expression data typically involve

pathways of metabolic and molecular information flow,
and complex cellular processes and structures, formed by
multiple interacting molecules. However, commonly
these molecular interactions are gleaned ad hoc from the
literature.

In model organisms such as Saccharomyces cerevisiae, inte-
grative systems-biology approaches to genomic-expres-
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sion analysis have developed and employed sophisticated
methods for the computational extraction of biological
knowledge. Examples include: biological module identifi-
cation and abstraction [2]; discovery of regulatory net-
works [3,4]; and identification of active pathways in
networks [5]. A hallmark of these advanced methods is
the integration of diverse genome-scale data sets, in partic-
ular, the combination of genomic-expression data and
molecular-interaction data. Another common characteris-
tic of these methods is the use of graphs (vertices and
edges, or nodes and links) to represent such integrated
data. Graphical methods are highly intuitive. Also, the for-
malism of the graph facilitates the development and
application of graph algorithms and machine-learning
techniques to extract information.

In studies of human disease, a limited repertoire of com-
putational techniques, including ANOVA, hierarchical
clustering, and discriminant analysis, has been applied to
extract information from genomic-expression data
derived from human tissues. Until recently, a critical bar-
rier has been a lack of large-scale machine-readable
sources of high-quality human molecular interaction
data. Using a combination of artificial-intelligence meth-
ods and expert human curation, several efforts have made
substantial progress in amassing, from the literature, data-
bases with large numbers (greater than 14000) of human
molecular interactions. These include the Human Protein
Reference Database (HPRD) [6,7], the Biomolecular Inter-
action Network Database (BIND) [8,9], the Database of
Interacting Proteins (DIP) [10,11], and the Transcription
Factor Database (Transfac) [12]. Thus, the bottleneck has
now shifted to the efficient integration of these data to
enable the application of advanced network-based analy-
sis and modelling methods. For this work, we have imple-
mented solutions to this bottleneck and applied them to
a set of genomic-expression data derived from biopsies of
human liver tissue infected with Hepatitis C Virus (HCV)
[13]. About 3% of all humans are infected with HCV [14],
and currently no vaccine exists. Chronic viral hepatitis C
results in liver fibrosis and cirrhosis in about 20% of those
infected [15]. Liver transplant is often required.

Specifically, we have developed two software tools, Inter-
actionFetcher and CytoTalk, that function as plug-ins for
Cytoscape, an open-source, platform-independent envi-
ronment for the visualization and analysis of biological
networks [16,17]. InteractionFetcher and CytoTalk simplify
the integration and analysis of interaction data (and other
data types) with genomic-expression data. To demon-
strate their utility, we applied them to generate and ana-
lyze a large network of human molecular-interaction
pathways that are putatively active during the infection of
human liver tissue with HCV.

Implementation
InteractionFetcher, a Cytoscape plug-in
InteractionFetcher dynamically retrieves remote biological
information for selected nodes in the current network
within Cytoscape. The plug-in requests biological data via
the XML-RPC protocol [18] from a remote server, which
retrieves the requested information from an SQL database
and passes it back to the plug-in. The plug-in then adds
the retrieved information to the current network as addi-
tional nodes, edges, and/or attributes. Currently imple-
mented data types include: protein/gene synonyms,
orthologs, sequences (gene/protein/upstream), and inter-
actions/associations. Some of this information can be
obtained via integrated queries. For example, retrieved
gene/protein synonym information may be used to
increase the number of molecular interactions that are
found. Currently-available interaction-data sets include
HPRD [6,7], BIND [8,9], DIP [10,11], and several other
predicted interaction and co-expression data sets [19-21].
Many options are available, including the ability to do
cross-species queries, using ortholog information from
Homologene [22] among species including H. sapiens, M.
musculus, S. cerevisiae, C. elegans, and D. melanogaster. For
example, if two proteins in H. sapiens have not been
observed to interact, but both of their orthologs in S. cer-
evisiae are known to interact, then an inferred interaction
(also known as an interolog) can be added to the network.
Moreover, the tool allows for easy viewing of the source
database's web page or linked PubMed abstract(s) describ-
ing each fetched interaction. Because the source code for
both the client and server of this plug-in are available, we
hope that the capabilities of plug-ins such as these can be
expanded by other researchers to include, for example,
experimental data (such as mRNA expression levels), met-
abolic information, or functional annotations. Cytoscape,
the InteractionFetcher and related plug-ins, plus all server-
side software are open-source and may be obtained at our
laboratory web site [23] or at the Cytoscape web site [17].

CytoTalk, a Cytoscape plug-in
CytoTalk enables a Cytoscape user to dynamically interact
with and manipulate the current network in a Cytoscape
window from an external process. This plug-in runs an
internal XML-RPC [18] server that enables the currently-
displayed network and its various attributes to be manip-
ulated from an external client that is XML-RPC-capable.
Example clients may include Perl and Python scripts,
scripts written in the R statistical language [24], UNIX
shell scripts, C or C++ programs, or Java processes. It
moreover expands the developmental possibilities of
Cytoscape plug-in developers by allowing other plug-ins to
be written in these languages. The external process may be
run on the same machine as Cytoscape, or anywhere else
on an accessible network. The open-source CytoTalk and
Cytoscape software as well as example CytoTalk clients in
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Perl, Python, and R may be obtained at our laboratory web
site [23] or at the Cytoscape web site [17].

Results and discussion
Gene-expression data
For our study, we utilized expression data derived from 28
liver biopsies collected by [13] from 11 HCV-positive liver
transplant patients, between 1 and 24 months post-trans-
plant. Since roughly 50% of HCV+ liver transplant
patients become re-infected during the two years after
receiving their new livers [25], these biopsies provide a
unique model for tracking the changes in gene expression
during HCV infection [13]. To compare gene-expression
patterns in liver tissue before and after infection with
HCV, [13] collected 28 post-transplant liver biopsies, plus
pre-transplant control biopsies, from 11 HCV+ liver-trans-
plant patients. Liver biopsies were obtained at intervals of
3 to 6 months, between 1 and 24 months post-transplant
[13]. These samples contain a mixture of cell types includ-
ing hepatocytes, hepatic stellate cells, Kupffer cells (liver
macrophages), in addition to various blood cells [13].
mRNA expression ratios of about 7000 genes were meas-
ured relative to a common reference pool of pre-trans-
plant biopsies. Using Rosetta Resolver(R) software [26],
the data were normalized and transformed to log10 ratios,
and p-values were computed for expression difference
from the reference pool. The measurements showed a
high degree of patient-to-patient variation. Most of the
genes (5968) were significantly expressed (p <10-7) in at
least one of the 28 samples. The research of [13] involved
genomic-expression data derived from human subjects.

Construction of the molecular-interaction scaffold
We sought to generate a network of molecular pathways
that are active (either induced or repressed) in HCV-
infected human liver cells. The effects of HCV infection
are likely to be complex, and the presence of contaminat-
ing blood cells and mixtures of various cell types in the
biopsy samples will add further complexity. In order to
emphasize the network interface between viral molecules
and human molecules, we initiated network construction
with a small "seed" network of interactions among HCV-
encoded molecules and between HCV-encoded and host-
encoded proteins. Interaction data were curated from
review articles ([27,28], and references therein). The seed
network also included the JAK-STAT interferon-response
pathway that is known to play a role in the response to
HCV infection [29]. This set comprised 106 interactions
between 86 macromolecules (proteins and the viral RNA).
The proteins were, when possible, cross-referenced to Ref-
Seq protein identifiers [30,31]. Figure 1 shows the seed
network visualized using Cytoscape [16,17]. This network
is available for exploration and analysis via Cytoscape at
our laboratory web site [23].

The seed network was expanded to a full "scaffold" net-
work using the 5968 genes implicated by the genomic-
expression data and large-scale molecular-interaction data
sets in public databases by searching for interactions
among the 5968 expressed genes and the molecules in the
seed network. To automate the construction of the scaf-
fold network, we implemented a Cytoscape plug-in, Inter-
actionFetcher, for dynamic retrieval of molecular
interactions and binding partners via the Internet. Interac-
tionFetcher rapidly adds interactions among molecules of
interest in a network. In addition, it may be used to itera-
tively expand a network through "in silico pull-down" of
molecules that are currently not present in the network
but are known to interact with molecules that are present.
Using this plug-in, we were able to integrate as many as
15,000 interactions among the proteins implicated by the
HCV expression-data set and seed-network proteins
(among the available interaction data sets, which include
HPRD [6,7], BIND [8,9], DIP [10,11], PreBIND [32,33],
and several other predicted and co-expression data sets;
see Methods). However, for this paper, we restricted our
search to individually curated human-only protein inter-
actions from HPRD and BIND, resulting in a scaffold net-
work of 4,592 unique interactions among 1,950
molecules (Figure 2). This network is available for explo-
ration and analysis with Cytoscape at our laboratory web
site [23], which also allows for easy viewing of additional
information provided by InteractionFetcher, such as each
interaction's source database web page and PubMed
abstract identifier(s).

Computational analysis of integrated gene-expression 
data and molecular-interaction data
A useful method of integrated analysis of expression data
within an interaction network is the ActivePaths algorithm
[5]. This method identifies contiguous pathways or sub-
networks that are active (induced or repressed relative to
randomly selected subnetworks) in subsets of the expres-
sion data. We applied this algorithm, which is available as
a Cytoscape plug-in, to the scaffold network. Due to the
high order (number of vertices) and size (number of
edges) of the scaffold network, it was necessary to itera-
tively apply the algorithm, as suggested by the developers,
to obtain increasingly smaller active subnetworks until
they contained fewer than 100 nodes. The resulting four
active subnetworks contained between 40 and 121 inter-
actions. Because there were overlaps among these four
highest-scoring active subnetworks, we combined them
into a single fully connected active subnetwork.

Additional analyses were performed by selecting scaffold
subnetworks that are significantly active and/or co-regu-
lated in temporal subsets of the microarray data. Because
the scaffold network is not differentiated with regard to
tissues, cell types, or cellular state, and the biopsy samples
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from which the expression data were derived likewise con-
tain mixtures of cell types and other contaminants, the
information in the active scaffold network does not, by
itself, answer the questions we are addressing. To increase
our chance of identifying pathways that might be modu-
lated in response to HCV infection, we performed a differ-

ential analysis of the scaffold network, to identify
subnetworks that become active more than eight months
after transplant. This choice of cut-off was made to nearly-
evenly divide the expression data into two halves (those
from biopsies prior to, and after, eight months post-trans-
plant), and by performing a differential analysis we can

Network of interactions among HCV-encoded molecules and host proteinsFigure 1
Network of interactions among HCV-encoded molecules and host proteins.Triangular nodes represent HCV-
encoded molecules. Host molecules are square nodes. Edges represent molecular interactions of several types: black for pro-
tein-protein, yellow for protein-DNA, light-green for phosphorylations, red for activations, dark-green for repressions, purple 
for covalent interactions, brown for methylations. Sources: [14, 15 and references therein].
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hope to subtract out some of the effects of the transplant
and post-transplant immune response signals from those
of HCV reinfection and progression.

We used the R statistical environment [24] to perform this
analysis. Because R is external to Cytoscape, we developed
a plug-in, called CytoTalk, that enables a user of R (or a

Network of interactions among proteins implicated by genomic expression dataFigure 2
Network of interactions among proteins implicated by genomic expression data. Genes were implicated by 
expression profiling of HCV-infected liver biopsy data [13]. The network of interactions was assembled from external data-
bases HPRD [6, 7] and BIND [8, 9], and automatically integrated using InteractionFetcher.
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wide variety of other environments or languages; see
Methods) to interactively query and modify Cytoscape net-
works, thereby greatly expanding the analytical capabili-
ties available to users of Cytoscape. We used R with
CytoTalk to select the proteins and interactions implicated
by specific statistical queries on the expression data. This
enabled us to extract a subnetwork of genes that were sig-
nificantly induced or repressed with |log10(ratio)| > 0.4 in
biopsies obtained more than 8 months after transplant.
The proteins encoded by these genes form a "late-active"
network. We similarly extracted an "early-active" network
encoded by genes that were active in biopsies obtained
earlier than 8 months after transplant. We compared these
two networks and identified an "only-late-active" subnet-
work that was not active prior to eight months, but was
active afterward. The expectation is that this "only-late-
active" subnetwork will contain pathways from the "late-
active" network that are activated in response to Hepatitis
C virus re-infection, while pathways from the "early-
active" network that may contain pathways activated as a
result of the transplant are removed.

In Figure 3, we have integrated the seed network, the com-
posite active-paths network, and the "only-late-active"
network into one network. This network is available for
exploration and analysis in Cytoscape at our laboratory
web site [23]. Genes that were induced on average after 8
months following transplant are indicated with a red col-
our. Genes that were repressed are green. We have high-
lighted the nodes and edges of the composite active-paths
subnetwork in "bold". The network in Figure 3 is signifi-
cantly over-represented with genes of several biological
processes, as annotated by the Gene Ontology Consor-
tium Database [34,35]; using the BioDataServer tool in
Cytoscape, and computed in R via CytoTalk, using the Bon-
ferroni-corrected hypergeometric distribution. Among
these include blood coagulation (p = 10-11), immune
response (p = 10-7), proteolysis and peptidolysis (p = 10-

5), lipid transport (p = 10-3), and complement activation
(p = 10-2). In addition, nearly the entire JAK-STAT inter-
feron-response signalling pathway is activated in this
network.

The visualization in Figure 3 enables one to identify these
pathways and see whether they are "turning on" (red) or
"turning off" (green) in the expression data. For example,
the blood coagulation pathway is active in the expression
data, although (as is to be expected with large and com-
plex pathways) not coherently induced or repressed. The
interferon-response pathway and genes activated by ISGF
are clearly induced, probably due in part to the immune
response to viral infection and partly in response to stand-
ard treatment of HCV-positive patients with interferon-
alpha. Also, genes encoding the Toll-like receptors TLR1
and 2, as well as the downstream signalling pathway con-

necting them, through MYD88, to the interferon-response
pathway appear to be repressed. TLRs 1 and 2 are known
viral detection receptors; it is known that TLR2 detects
HCV [36]. The interleukin receptor IL1R1, upstream of
MYD88, is also repressed along with other IL receptors,
whereas IL1A and B are induced. Additionally, we see that
many apoptosis-related genes encoding TNF, TNF recep-
tors, and TNF-signalling factors, are activated, whereas
growth factors (IGF and connected pathways), and cell
cycle and translation-related pathways (e.g. CDKN and
connected pathways) are repressed. Ignoring the observed
responses that are likely due to by-products of the biopsy
process (e.g. the blood coagulation pathway), the active
pathways observed are jointly consistent with a large-scale
response of complex molecular pathways to viral infec-
tion: hepatic cell reproduction is repressed and pro-
grammed cell death is induced.

Finally we note that a visual inspection of the network
suggests that many of the proteins that bind directly to
HCV-encoded molecules (i.e., are their first neighbours in
the network) appear on average to be down-regulated rel-
ative to the rest of the network. Statistical analysis of the
data supports this suggestion. As computed via CytoTalk
and R, about 80% of the first neighbours of the viral RNA
and proteins are down-regulated in the network of Figure
3, compared to 35% of the remaining genes in the net-
work (p = 0.0029). This finding suggests two non-exclu-
sive possibilities: genes encoding HCV-neighbour
proteins are targets of host regulatory mechanisms coun-
teracting viral replication; or they are targets of virus-
encoded regulatory mechanisms that sabotage anti-viral
defences.

Conclusion
The methods and software tools described here enable the
efficient dynamic integrated analysis of diverse data in a
major human-disease system. The results show the utility
of integrating large-scale human molecular-interaction
databases with genomic expression data. This approach is
useful for the extraction of biological hypotheses, because
it allows us to focus on groups of genes that are not only
apparently active in the expression data, but are also func-
tionally associated based on other data, such as molecular
interactions. Thus, information that is not restricted to
any one data type can be obtained. Moreover, our analy-
ses suggest how various pathways act in concert, and
serves as a large-scale window into the genomic response
to HCV infection of liver cells. Because the tools and
methods we have described are data-type-neutral, there is
the prospect of further data integration for a more com-
plete systems-biological approach to understanding viral
infection and response mechanisms. The integration of
additional, orthogonal sources of information such as
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Composite network of molecular pathways active in HCV-infected liver tissueFigure 3
Composite network of molecular pathways active in HCV-infected liver tissue. The network in Figure 1 was com-
bined with active subnetworks from the network in Figure 2. The active subnetworks were identified by active-paths analysis 
([5]; bold nodes and edges) and by identifying the subnetworks that changed most significantly in expression with time after 
transplant. Nodes (genes) colored red were induced in the expression data of biopsies from 8 months or more post-trans-
plant; green nodes were repressed. Areas that contain differentially active pathways or subnetworks, as described in the text, 
are highlighted.
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detailed clinical data will enable quantitative associations
of clinical variables with the activities of molecular path-
ways and processes.

Availability and requirements
• Project name: InteractionFetcher, SynonymFetcher,
HomologFetcher, and CytoTalk: plug-ins for Cytoscape

• Project home page: http://labs.systemsbiology.net/galit
ski/hepc/

• Operating system(s): Platform independent

• Programming language: Java

• Other requirements: Java 1.4 or higher

• License: GNU LGPL

• Any restrictions to use by non-academics: license
required for access to HPRD interactions (see [7])
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