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Abstract
Background: Various forms of the so-called loop closure problem are crucial to protein structure
prediction methods. Given an N- and a C-terminal end, the problem consists of finding a suitable
segment of a certain length that bridges the ends seamlessly.

In homology modelling, the problem arises in predicting loop regions. In de novo protein structure
prediction, the problem is encountered when implementing local moves for Markov Chain Monte
Carlo simulations.

Most loop closure algorithms keep the bond angles fixed or semi-fixed, and only vary the dihedral
angles. This is appropriate for a full-atom protein backbone, since the bond angles can be
considered as fixed, while the (φ, ψ) dihedral angles are variable. However, many de novo structure
prediction methods use protein models that only consist of Cα atoms, or otherwise do not make
use of all backbone atoms. These methods require a method that alters both bond and dihedral
angles, since the pseudo bond angle between three consecutive Cα atoms also varies considerably.

Results: Here we present a method that solves the loop closure problem for Cα only protein
models. We developed a variant of Cyclic Coordinate Descent (CCD), an inverse kinematics
method from the field of robotics, which was recently applied to the loop closure problem. Since
the method alters both bond and dihedral angles, which is equivalent to applying a full rotation
matrix, we call our method Full CCD (FCDD). FCCD replaces CCD's vector-based optimization
of a rotation around an axis with a singular value decomposition-based optimization of a general
rotation matrix. The method is easy to implement and numerically stable.

Conclusion: We tested the method's performance on sets of random protein Cα segments
between 5 and 30 amino acids long, and a number of loops of length 4, 8 and 12. FCCD is fast, has
a high success rate and readily generates conformations close to those of real loops. The presence
of constraints on the angles only has a small effect on the performance. A reference implementation
of FCCD in Python is available as supplementary information.

Background
Many protein structure prediction methods require an

algorithm that is capable of constructing a new conforma-
tion for a short segment of the protein, without affecting
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the rest of the molecule. In other words, a protein frag-
ment needs to be generated that seamlessly closes the gap
between two given, fixed end points. This problem is gen-
erally called the loop closure problem, and was introduced in
a classic paper by Go and Scheraga more than 30 years ago
[1]. It has been the continued subject of intensive research
over many years due to its high practical importance in
structure prediction.

The loop closure problem arises in at least two different
structure prediction contexts. In homology modelling, it
is often necessary to rebuild certain loops that differ
between the protein being modelled and the template
protein [2]. The modelled loop needs to bridge the gap
between the end points of the template's loop.

In de novo prediction, local resampling or local moves can be
considered as a variant of the loop closure problem. Typ-
ically, the conformation of a protein segment needs to be
changed without affecting the rest of the protein as a sam-
pling step in a Markov Chain Monte Carlo (MCMC) pro-
cedure [3]. In both homology and de novo structure
prediction, the problem is however essentially the same.

The classic article by Go and Scheraga [1] describes an
analytical solution to finding all possible solutions for a
protein backbone of three residues. In this case, the
degrees of freedom (DOF) comprise six dihedral angles,
ie. the backbone's (φ, ψ) angles. Another approach is to
use a fragment library derived from the set of solved pro-
tein structures, and look for fragments or combinations of
fragments that bridge the given fixed ends [4-6]. More
recently, the loop closure problem has been tackled using
algorithms borrowed from the field of robotics, in partic-
ular inverse kinematics methods [7-9]. Still other meth-
ods use various Monte Carlo chain perturbation
approaches, often combined with analytical methods
[10,11,3,12]. A good overview of loop closure methods
and references can be found in Kolodny et al. (2005) [6].

Most methods assume that one is working with a full-
atom protein backbone with fixed bond angles and bond
lengths, so the DOF consist solely of the backbone's (φ, ψ)
angles. However, in many cases not all the atoms of the
protein backbone are present in the model. In particular,
a large class of structure prediction, design and in silico
folding methods makes use of drastically simplified mod-
els of protein structure [13,14].

A protein structure might for example be represented by a
chain of Cα atoms or a chain of virtual atoms at the cent-
ers of mass of the side chain atoms [15]. In these models,
there is obviously no full-atom model of the protein's
backbone available.

In the case of Cα-only models, the structure can be
described as a sequence of pseudo bonds, pseudo angles θ
and pseudo dihedral angles τ [16]. Here, the term 'pseudo'
indicates that the consecutive Cα's are not actually con-
nected by chemical bonds. As in the case of the protein's
backbone, the pseudo bond lengths can be considered
fixed (typically 3.8 Å). In contrast, the pseudo bond angles
between three consecutive Cα atoms are most definitely
not fixed, but vary between 1.4 and 2.7 radians. Hence, a
Cα-only model of N residues can be represented by a
sequence of N - 2 pseudo bond angles θ and N - 3 pseudo
dihedral angles τ (Figure 1).

Most inverse kinematics approaches assume that the DOF
consist only of dihedral angles, and keep the bond angles
fixed or semi-fixed. Hence, they cannot be readily applied
to the Cα-only case without restricting the search space
unnecessarily. In principle, fragment library based meth-
ods would apply, but here the problem of data sparsity
arises [17,18]. Often, no suitable fragments can be found
if the number of residues between the fixed ends becomes
too high.

In order to solve the loop closure problem in Cα space, we
extend a particularly attractive approach that was recently
introduced by Canutescu & Dunbrack [8]. The algorithm
is called Cyclic Coordinate Descent (CCD), and like many
other loop closure algorithms it derives from the field of
robotics [19]. As pointed out by Canutescu & Dunbrack,
the CCD algorithm is meant as a black box method that
generates plausible protein segments that bridge two
given, fixed endpoints. The final choice is typically made
based upon the occurrence of steric clashes, applicable

A protein segment's Cα traceFigure 1
A protein segment's Cα trace. The Cα positions are num-
bered, and the pseudo bond angles θ and pseudo dihedrals τ 
are indicated. The segment has length 5, and is thus fully 
described by two pseudo dihedral and three pseudo bond 
angles.
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constraints (for example side chain conformations) and
evaluation of the energy.

The CCD algorithm does not directly generate conforma-
tions that bridge a given gap, but alters the dihedral angles
of a given starting segment that already overlaps at the N-
terminus such that it also closes at the C-terminus. The
starting segment can be generated in many ways, for
example by using a fragment library derived from real
structures or by constructing random artificial fragments
with reasonable conformations. Surprisingly, most pro-
tein loops can be closed efficiently by CCD starting from
artificial loops constructed with random (φ, ψ) dihedral
angles [8].

The CCD algorithm alters the (φ, ψ) dihedral angles for
every residue in the segment in an iterative way. In each
step, the RMSD between the chain end and the overlap is
minimized by optimizing one dihedral angle. Because
only one dihedral angle is optimized at a time, the opti-
mal rotation can be calculated efficiently using simple
vector arithmetic.

The list of advantages of CCD is impressive: it is concep-
tually simple and easy to implement, computationally
fast, very flexible (ie. capable of incorporating various
restraints and/or constraints) and numerically stable.
Therefore, we decided to adopt the CCD algorithm for use
with Cα-only models. Here, we describe a new version of
CCD that optimizes both dihedral angles and bond
angles, while maintaining all the advantages of the CCD
method. We call our method Full Cyclic Coordinate
Descent (FCCD), where "Full" indicates that both dihe-
dral angles and bond angles are optimized, while only the
bond lengths remain fixed. At the heart of the FCCD
method lies a procedure to superimpose point sets with
minimal Root Mean Square Deviation (RMSD), based on
singular value decomposition. As is the case for the CCD
algorithm, FCCD is not a modelling method in itself.
Rather, it can be used as a method to generate possible
conformations that can be evaluted using some kind of
energy function.

To test the algorithm, we selected random segments from
a protein structure database, and evaluated the efficiency
of closing the corresponding gaps starting from artificial
segments with protein-like (θ, τ) angles. We show that
FCCD is both fast and successful in solving the loop clo-
sure problem, even in the presence of angle constraints.
Conformations close to those of real protein loops are
readily generated. Finally, we discuss possible applica-
tions of the FCCD algorithm, and mention some possible
disadvantages.

Results and discussion
Overview of the FCCD algorithm
Figure 2 illustrates the essence of the FCCD algorithm,
and Table 3 provides detailed pseudo code. Here we
define some of the terms that will be used throughout the
article, and provide a high level overview of the FCCD
algorithm.

The fixed segment is a list of Cα vector positions that spec-
ifies the gap that needs to be bridged. Only the first and
last three Cα positions, with corresponding vectors (f0, f1,
f2) and (fN-3, fN-2, fN-1) are relevant. We will call these two
sets of vectors the N- and C-terminal overlaps, respectively.
The moving segment is a list of Cα position vectors that will
be manipulated by the FCCD algorithm to bridge the gap.
The closed segment is the moving segment after its pseudo
bond angles and pseudo dihedral angles were adjusted to
bridge the N- and C-terminal overlaps of the fixed seg-
ment. The vectors describing the positions of the Cα
atoms in a segment of N residues are labelled from 0 to N
- 1.

The action of the FCCD algorithm in Cα spaceFigure 2
The action of the FCCD algorithm in Cα space. The Cα 
traces of the moving, fixed and closed segments are shown in 
red, green and blue, respectively. The Cα atoms are repre-
sented as spheres. The labels f0, f1 and f2 indicate the three 
fixed vectors at the N-terminus that are initially common 
between the fixed and moving segments. The loop is closed 
when the three C-terminal vectors of the moving segment 
(labelled mN-3, mN-2, mN-1) superimpose with an RMSD below 
the given threshold on the three C-terminal vectors of the 
fixed segment (labelled (fN-3, fN-2, fN-1). This figure and Figure 
3 were made with PyMol http://www.pymol.org.
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Initially, the first three vectors of the moving loop coin-
cide with the first three vectors of the fixed segment, while
the last three vectors are conceivably reasonably close to
the last three vectors of the fixed loop. This last condition
is however not very critical. The moving segment can be
obtained using any algorithm that generates plausible Cα
fragments, including deriving them from real protein
structures. The fixed segment is typically derived from a
real protein of interest, or a model in an MCMC
simulation.

The FCCD algorithm changes the pseudo bond angles and
pseudo dihedral angles of the moving loop in such a way
that the RMSD between the last three vectors of the mov-
ing loop (mN-3, mN-2, mN-1) and the last three vectors of the
fixed loop (fN-3, fN-2, fN-1) is minimized, thereby seam-
lessly closing the gap.

Note that we assume that the last three vectors of the mov-
ing and fixed segments can be superimposed with an
RMSD of 0.0 Å (see Figure 2). In other words, the first and
last pseudo bond angles in both segments are equal. It is
however perfectly possible to use segments with different
pseudo bond angles at these positions. Since the final
possible minimum RMSD will be obviously greater than
0 in this case, the RMSD threshold needs to be adjusted
accordingly.

The algorithm proceeds in an iterative way. In each itera-
tion, a vector mi in the moving segment is chosen that will
serve as a center of rotation. This chosen center of rotation
will be called the pivot throughout this article. Then, the
rotation matrix that rotates (mN-3, mN-2, mN-1) on (fN-3, fN-

2, fN-1) around the pivot and resulting in minimum RMSD
is determined, and applied to all the vectors mj down-
stream i (with i <j <N). In the next iteration, a new pivot
is chosen, and the procedure is repeated. The vectors in
the chain can be traversed linearly, or they can be chosen
at random in each iteration. The difference between FCCD
and CCD is that the latter applies a general rotation to the
chain using an atom in the chain as a pivot, while the
former only applies a rotation around a single axis. The
process is stopped when the RMSD falls below a given
threshold.

Finding the optimal (with respect to the RMSD) rotation
matrix corresponds to finding one optimal pseudo bond
angle and pseudo dihedral angle pair. We define θi as the
bond angle of the vectors mi-1, mi, mi+1 and τi as the dihe-
dral angle of the vectors mi-2, mi-1, mi, mi+1 (see Figure 1
and [16]). These definitions have the intuitive interpreta-
tion that altering (θi, τi) changes the positions of all Cα's
downstream from position i. Conversely, using pivot mi
and applying a rotation matrix to all the positions down-

stream from position i corresponds to changing pseudo
bond angle θi and pseudo dihedral angle τi.

For a segment of N Cα's (with N > 3), the pseudo angles
range from θ1 to θN-2 and the pseudo dihedrals range from
τ2 to τN-2. Since the first and last bond angles of the mov-
ing segment are fixed, the pivot points range from posi-
tion 2 to position N - 3 (with N > 4). The pseudo bond
angle and pseudo dihedral angle pairs thus range from
(θ2, τ2) to (θN-3, τN-3).

Finding the optimal rotation matrix with respect to the
RMSD of the C-terminal overlaps can be efficiently solved
using singular value decomposition, as described in detail
in the following section.

Finding the optimal rotation
In this section we discuss solving the following subprob-
lem arising in the FCCD algorithm: given a chosen pivot
point i in the moving segment, find the optimal (θi, τi)
pair that minimizes the RMSD between the last three Cα
vectors in the moving segment and the last three Cα vec-
tors in the fixed segment. Recall that the (θi, τi) pair at
position i corresponds to the pseudo bond angles and
pseudo dihedral angles defined by vectors mi-1, mi, mi+1
and mi-2, mi-1, mi, mi+1 respectively.

Finding the optimal (θi, τi) pair simply corresponds to
finding the optimal rotation matrix using Cα position i as
the center of rotation (see Figure 2). This reformulated
problem can be solved by a variant of a well known algo-
rithm to superimpose two point sets with minimum
RMSD which makes use of singular value decomposition
[20,21]. Below, we describe this adapted version of the
algorithm.

First, the C-terminal overlaps of the moving and the fixed
segment need to be translated to the new origin that will
be used as pivot for the optimal rotation. This new origin
is the pivot vector mi at Cα position i in the moving seg-
ment. The new vector coordinates of the moving and the
fixed segments are put in two matrices (respectively M and
F), with the coordinates of the vectors positioned column
wise:

M = [mN-3 - mi | mN-2 - mi | mN-1 - mi]

F = [fN-3 - mi | fN-2 - mi | fN-1 - mi]

Then, the correlation matrix Σ is calculated using M and F
:

Σ = FMT
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Any real n × m matrix A can be written as the product of
an orthogonal n × n matrix U, a diagonal n × m matrix D
and an orthogonal m × m matrix VT [22]. Such a factoriza-
tion is called a singular value decomposition of A. The posi-
tive diagonal elements of D are called the singular values.
Hence, Σ can be written as:

Σ = UDVT

The optimal rotation Γ is then calculated as follows:

Γ = USVT

The value of the diagonal 3 × 3 matrix S is determined by
the product det(U)det(VT), which is either 1 or -1. If this
product is -1 then S = diag(1, 1, -1), else S is the 3 × 3 unit
matrix. The matrix S ensures that Γ is always a pure rota-
tion, and not a rotation-inversion [21].

In order to apply to all the vectors that are downstream
from the pivot point i, these vectors are first translated to
the origin of the rotation (ie. pivot point mi), left multi-
plied by Γ and finally translated back to the original
origin:

where i <j <N.

Adding angle constraints to FCCD
It is straightforward to constrain the (θ, τ) angles to a
given probability distribution. For each rotation matrix Γ,
the resulting new pseudo bond angles and dihedral angles
can easily be calculated. The new angles can for example
be accepted or rejected using a simple rejection sampling
Monte Carlo scheme, comparing the probabilities of the
previous pair (θprev, τprev) with that of the next pair (θnext,
τnext). If P (θnext, τnext) > P (θprev, τprev) the change is
accepted, otherwise it is accepted with a chance propor-
tional to P (θnext, τnext) / P (θprev, τprev). A similar approach
was used by Canutescu & Dunbrack [8], and we describe

its performance in combination with FCCD in the follow-
ing section.

More advanced methods could take the probability of the
sequence of angles into account as well, for example using
a Hidden Markov Model of the backbone [23]. The
pseudo code in Table 3 illustrates accepting/rejecting rota-
tions using an unspecified 'accept' function, whose details
will depend on the application.

FCCD's performance
In order to evaluate the general efficiency of the method,
we selected random fragments of various sizes from a rep-
resentative database of protein structures, and used these
fragments as fixed segments. Hence, the evaluation
described below is not limited to loops, but extends to
random protein segments. This is a relevant test, since
local moves in a typical MCMC simulation are indeed per-
formed on random segments.

The fixed segments were sampled from a dataset of fold
representatives (see Methods). First we selected a random
fold representative, and subsequently extracted a random
continuous fragment of suitable length. The lengths var-
ied from 10 to 30 with a step size of 5. It should be noted
that the length of the segment here refers to the number of
Cα atoms between the ends that need to be bridged.

The moving segments were generated using random dihe-
dral and bond angles in regions accessible to proteins (see
previous section). This was done by sampling the (θi, τi)
pairs according to a probability distribution derived from
a set of representative protein structures (see Methods).
The bond length was fixed at 3.8 Å, in tune with the con-
sensus Cα-Cα distance in protein structures. The last bond
angle in the moving segment was chosen equal to the last
bond angle in the fixed loop to make a final RMSD of 0.0
Å possible. The RMSD threshold was 0.1 Å. The maximum
number of iterations was set to 1000, where one iteration
is a sweep over all positions. We ran the FCCD program
on 1000 different fixed segments. Table 1 summarizes the
results.

m m m mj j i i
Γ Γ= − +( )

Table 1: Performance of the FCCD algorithm for various segment lengths. The first and second number in columns 2–4 refer to 
unconstrained and constrained FCCD, respectively. Columns 2 and 3 respectively show the average time and number of iterations 
needed for closing a single segment successfully. The percentage of loops successfully closed in under 1000 iterations is shown in the 
last column.

Segment length Average time (ms) Average iterations % Closed

5 4.5/51.7 14.0/27.0 99.90/86.50
10 5.2/28.3 10.5/16.8 99.40/98.20
15 5.6/28.6 7.8/12.1 99.60/99.40
20 6.2/27.1 6.3/9.0 99.80/99.40
25 7.6/31.7 5.5/7.6 99.00/99.90
30 7.1/31.0 4.4/6.3 99.70/99.40
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A first observation is the effect of the angle constraints.
These slow down FCCD with a factor of 10 for small seg-
ments (5 residues) and roughly a factor of 5 for larger seg-
ments (10 residues or more). Nonetheless FCCD
including constraints remains quite speed efficient: small
five residue segments are on average closed in about 50
ms, while larger segments (from 10 to 30 residues) are
closed considerably faster (on average in about 30 ms).
The explanation for this is of course that it is easier to close
large segments because they have more DOF. Hence,
FCCD, like CCD, is fast and easily handles large segments
efficiently.

Overall, the success rate of FCCD is excellent, and very lit-
tle affected by constraints. For 5 residue segments, adding
constraints diminishes the number of successfully closed
segments from 99.9% to 86.5%. This effect is however
much less pronounced for larger segments: more than
98% percent of the moving/fixed segment pairs can be
successfully closed. In short, FCCD is both speed efficient
and has a high success rate, even in the presence of
constraints.

Evaluation of FCCD's sampling space
Does FCCD potentially generate realistic protein confor-
mations? FCCD could be used to propose possible confor-
mations that are subsequently evaluated by an energy
function. In this context, it is of course imperative to gen-
erate realistic conformations. To answer this question, we
evaluate FCCD's ability to generate closed segments that
are close to real protein loops. We used 30 real loops with
lengths of 4, 8 and 12 residues as fixed segments. The loop
length refers to the number of residues between the N-
and C-terminal overlaps.

FCCD was applied using (θ, τ) constraints and an RMSD
threshold of 0.1 Å. The maximum number of iterations
was set to 1000. For each loop, we attempted to generate
closed segments from 1000 random moving segments
within the allowed number of iterations. The moving seg-
ments were generated as described in the previous section.
For all 30 loop cases, we then identified the closed seg-
ment that resembled the input loop best as judged by the
RMSD. For the calculation of the RMSD, we included the
N-and C-terminal overlaps. The results are shown in Table
2, and the best fitting loops for each loop size are shown
in Figure 3.

It is clear that FCCD readily generates closed segments
that are reasonably close to the real loops, with an average
RMSD of about 0.6, 2.2 and 3.0 Å for loops of 4, 8 and 12
residues, respectively. The highest minimum RMSD
values for these loop lengths are 0.76, 2.42 and 3.37 Å,
respectively, indicating that FCCD in general can come up
with a reasonably close conformation. Using more initial

moving segments will obviously increase the chance of
encountering a close conformation. Additionally, one can
also expect an even better performance with a more
refined way to constrain the (θ, τ) angles.

Conclusion
In this article, we introduce an algorithm that solves the
loop closure problem for Cα only protein models. The
method is conceptually similar to the CCD loop closure
method introduced by Canutescu and Dunbrack [8], but
optimizes dihedral and bond angles simultaneously,
while the former method only optimizes one angle at a
time. At the heart of the method lies a modified algorithm
to superimpose point sets with minimum RMSD, based
on singular value decomposition [20,21].

The algorithm is fast, numerically stable and leads to a
solution for the great majority of loop closure problems
studied here. Importantly, the method remains efficient
even in the presence of constraints on the dihedral and
bond angles. FCCD readily handles large gaps, and poten-
tially generates realistic conformations. Compared to
other loop closure methods, FCCD is surprisingly easy to
implement provided a function is available to calculate
the singular value decomposition of a matrix.

A possible disadvantage is that FCCD has a tendency to
induce large changes to the pseudo angles at the start of
the moving segment while angles near the end are less
affected, which is also the case for CCD [8]. This can for
example be avoided by selecting the pivot points in a ran-
dom fashion, or by limiting the allowed change in the
angles per iteration. Occasionally the method gets stuck,
which can be avoided by incorporating stochastic changes
away from the encountered local minimum. One can also
simply try again with a new random moving segment. We
believe that CCD and FCCD despite these disadvantages
are among the most efficient loop closure algorithms cur-
rently available.

The FCCD algorithm proposed here has great potential for
use in structure prediction methods that only make use of
Cα atoms, or that otherwise do not include all backbone
atoms [15,13,14]. FCCD could be used for example to
implement local moves in a MCMC procedure. The mov-
ing segments could be derived from a fragment database
or generated from a probabilistic model of the protein
backbone. The latter model could range from a primitive
probability distribution over allowed (θ, τ) angle pairs
like we used here to a Hidden Markov Model that also
models the sequence of (θ, τ) angle pairs.

We are planning to use the FCCD algorithm in combina-
tion with a sophisticated probabilistic model of the pro-
tein's backbone, which will steer both the generation of
Page 6 of 10
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Loops generated by FCCD (blue) that are close to real protein loops (green)Figure 3
Loops generated by FCCD (blue) that are close to real protein loops (green). The loops with lowest RMSD to a given loop of 
length 4 (top), 8 and 12 (bottom) are shown (loops 1qnr, A, 195–198, 3chb, D, 51–58 and 1ctq, A, 26–37). The N- terminus is 
at the left hand side.
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Table 2: Minimum RMSD (out of 1000 tries) between a fixed segment derived from a protein structure and a closed segment 
generated by FCCD. The length of the loops is shown between parentheses in the upper row.

Loop (4) RMSD Loop (8) RMSD Loop (12) RMSD

1dvj, A, 20–23 0.59 1cru, A, 85–92 2.31 1cru, A, 358–369 3.37
1dys, A, 47–50 0.67 1ctq, A, 144–151 2.22 1ctq, A, 26–37 2.40
1egu, A, 404–407 0.61 1d8w, A, 334–341 2.04 1d4o, A, 88–99 3.20
1ej0, A, 74–77 0.61 1ds1, A, 20–27 2.20 1d8w, A, 43–54 2.74
1i0h, A, 123–126 0.73 1gk8, A, 122–129 2.20 1ds1, A, 282–293 3.16
1id0, A, 405–408 0.66 1i0h, A, 145–152 2.42 1dys, A, 291–302 2.90
1qnr, A, 195–198 0.54 1ixh, 106–113 1.98 1egu, A, 508–519 3.06
1qop, A, 44–47 0.58 1lam, 420–427 2.16 1f74, A, 11–22 3.12
1tca, 95–98 0.76 1qop, B, 14–21 2.17 1q1w, A, 31–42 3.04
1thf, D, 121–124 0.56 3chb, D, 51–58 1.97 1qop, A, 175–186 2.97

Average RMSD 0.63 Average RMSD 2.17 Average RMSD 3.00

Table 3

maxit = maximum number of iterations
moving = N × 3 matrix of Cα positions in moving segment
fixed = N × 3 matrix of Cα positions in fixed segment
threshold = desired minimum RMSD
N = length of the segments
M = 3 × 3 matrix (centered coordinates along columns)
F = 3 × 3 matrix (centered coordinates along columns)
S = diag(1, 1, -1)
repeat maxit:

# Start iteration over pivots
for i from 2 to N-3:

pivot = moving[i,:]
# Make pivot point origin
for j from 0 to 2:

M [:,j] = moving [N-3+j,:]-pivot
F [:,j] = fixed [N-3+j,:]-pivot

# Find the rotation Γ that minimizes RMSD
Σ = FMT

U, D, VT = svd(Σ)
# Check for reflection
if det(U)det(VT)<0:

U = US
Γ = UVT

# Evaluate and apply rotation
if accept(Γ):

# Apply the rotation to the moving segment
for j from i+1 to N-1:

moving [j,:] = Γ (moving [j,:]-pivot)+pivot
rmsd = calc_rmsd(moving [N-3,:], fixed [N-3,:])
# Stop if RMSD below threshold
if rmsd<threshold:

return moving, rmsd
# Failed: RMSD threshold not reached before maxit
return 0

The accept function rejects or accepts the proposed rotation, based on the resulting (θ, τ) pair. The svd function performs singular value 
decomposition, and calc_rmsd calculates the RMSD between two lists of vectors.
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the initial moving loop and the acceptance/rejection of
the angles. The performance of FCCD in this context will
be the subject of a future publication.

Methods
Implementation
The FCCD algorithm was implemented in C, using the
LAPACK [24] function dgesvd for the calculation of the
singular value decomposition. Handling PDB files and
calculating the (θ, τ) angles [16] was done using Biopy-
thon's Bio.PDB module [25]. We used a 2.5 GHz Pentium
processor to calculate the benchmarks. A reference imple-
mentation of FCCD in Python is available as supplemen-
tary information.

Structure databases
For the calculation of the (θ, τ) probability distribution
and the generation of random protein fragments, we used
the SABMark 1.63 Twilight Zone database [26]. SABMark
Twilight Zone contains 2230 high quality protein struc-
tures, divided over 236 different folds. All protein pairs
have a BLAST E-value below 1, and thus presumably
belong to different superfamilies. A dataset of fold
representatives was generated by selecting a single struc-
ture at random for each fold (see Table 4).

The loops used to evaluate FCCD's sampling space were
derived from Canutescu & Dunbrack [8]. We shifted two
loops (1d8w, A, 46–57 and 1qop, A, 178–189) by three

residues to ensure that all loops had three flanking resi-
dues on each side.

Calculation of the (θ, τ) probability distribution
The bond angle θ was subdivided in 18 bins and the dihe-
dral angle τ in 36 bins, in both cases starting at 0 degrees
and with a bin width of 10 degrees. All (θ, τ) angles were
extracted from all structures in the SABMark Twilight
Zone database that consisted of a polypeptide chain with-
out breaks. In total, 257534 angle pairs were extracted.
Each such (θ, τ) angle pair was assigned to a bin pair, and
the number of angle pairs assigned to each bin pair was
stored in a 18 × 36 count matrix. Finally, the normalized
count matrix was used to assign a probability to any given
(θ, τ) angle pair.

List of abbreviations
• CCD: Cyclic Coordinate Descent

• DOF: Degrees Of Freedom

• FCCD: Full Cyclic Coordinate Descent

• MCMC: Markov Chain Monte Carlo

• RMSD: Root Mean Square Deviation

Table 4: SABMark identifiers of the 236 structures used as fold representatives

1ew6a_ 1ail__ 1l1la_ 1kid__ 1n8yc1 1gzhb1 1e5da1 1ep3b2 1ihoa_ 1m0wa1
1dhs__ 1gpua2 2lefa_ 1nsta_ 1eaf__ 1iiba_ 1d5ra2 1foha3 1gpua3 1crza2
3pvia_ 1i6pa_ 1e4ft1 1kx5d_ 2pth__ 1lu9a2 1dkla_ 1fsga_ 1m2oa3 2dpma_
1ajsa_ 1fxoa_ 3tgl__ 1bx4a_ 1mtyg_ 1duvg2 1qopb_ 1iata_ 1k2yx2 1f0ka_
1ayl_1 1toaa_ 8abp__ 1nh8a1 1bi5a2 2mhr__ 1a2pa_ 3lzt__ 1dkia_ 1e7la2
1bf4a_ 1bb8__ 1kpf__ 1mu5a2 1lfda_ 1gpea2 1jqca_ 1a2va2 1jfma_ 1ll7a2
1cjxa1 1lo7a_ 1fm0e_ 1fs1b2 1o0wa2 1dtja_ 1k0ra3 1evsa_ 1jpdx2 1qd1a1
1d5ya3 1h3fa2 1iq0a3 1tig__ 1xxaa_ 1ck9a_ 1gyxa_ 1e5qa2 1ivsa2 1qbea_
3grs_3 1f08a_ 1c7ka_ 1lkka_ 1dq3a3 1uox_1 12asa_ 1bob__ 1m4ja_ 1dv5a_
1f5ma_ 1k2ea_ 1ei1a2 1jdw__ 1ln1a_ 2pola2 1f0ia1 1rl6a1 1fvia2 1j7la_
1is2a1 1e8ga2 1qr0a1 2dnja_ 1kuua_ 1qh5a_ 1ii7a_ 1b8pa2 1j7na3 1chua3
1f00i3 1grj_1 1nkd__ 1mwxa3 1jp4a_ 1ih7a2 1eula2 1gnla_ 1maz__ 2por__
4htci_ 1es7b_ 1tocr1 1d1la_ 1fd3a_ 1i8na_ 1h8pa1 4sgbi_ 1fltv_ 1quba1
1d4va3 1tpg_2 1iuaa_ 1fv5a_ 1mdya_ 1zmec1 1fjgn_ 1eska_ 1i50i2 1fbva4
1dmc__ 1e53a_ 1ezvb1 1jeqa1 1k3ea_ 1rec__ 1lm5a_ 1k82a1 1jaja_ 1m0ka_
1c0va_ 1kqfc_ 1ocrk_ 1h67a_ 2cpga_ 1ljra1 1brwa1 1hs7a_ 2cbla2 1jmxa2
1hyp__ 1cuk_2 1ecwa_ 1l9la_ 1g7da_ 1jkw_1 1dgna_ 1iqpa1 1pa2a_ 1ko9a1
1f1za1 1ks9a1 2sqca2 1d2ta_ 1h3la_ 1wer__ 1b3ua_ 1n1ba2 1poc__ 1e79i_
1m1qa_ 1enwa_ 1g4ma1 1e5ba_ 1qhoa2 1kv7a2 1l4ia2 1c8da_ 1amm_1 1ca1_2
1phm_2 1d7pm_ 1jjcb2 1flca1 1gr3a_ 1mjsa_ 1a8d_1 1lf6a2 1fqta_ 1jb0e_
1jh2a_ 1lcya1 1mgqa_ 1hcia1 1b3qa2 1jlxa1 1dar_1 1exma2 1ejea_ 1agja_
1e79d2 2rspa_ 1h0ha1 1gtra1 2erl__ 1btn__ 1lf7a_ 1jmxa5 1crua_ 1m1xa4
1hx0a1 1goia1 1ciy_2 1daba_ 3tdt__ 1gg3a1 1pmi__ 1bdo__ 1h3ia2 1gppa_
1f39a_ 1k6wa1 1jqna_ 1lu9a1 1m6ia1 1o94a3
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Additional File 1
The file FCCD.py contains an implementation of the FCCD algorithm. 
The program was implemented in the interpreted, object oriented lan-
guage Python http://www.python.org. The Numeric Python package http:/
/numeric.scipy.org/, a Python module that implements many advanced 
mathematical operations efficiently in C and FORTRAN, provided imple-
mentations of singular value decomposition and various matrix opera-
tions. In addition, the Biopython toolkit, a set of Bioinformatics modules 
implemented in Python, was used to represent atomic coordinates as vector 
objects [25]. The core of the FCCD implementation comprises only 50 
lines of Python code. Numeric Python and Biopython (version 1.4b) are 
needed to execute the sample code.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-159-S1.py]
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