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Abstract

Background: In testing for differential gene expression involving multiple serial analysis of gene
expression (SAGE) libraries, it is critical to account for both between and within library variation.
Several methods have been proposed, including the t test, t, test, and an overdispersed logistic
regression approach. The merits of these tests, however, have not been fully evaluated. Questions
still remain on whether further improvements can be made.

Results: In this article, we introduce an overdispersed log-linear model approach to analyzing
SAGE; we evaluate and compare its performance with three other tests: the two-sample t test, t,,
test and another based on overdispersed logistic linear regression. Analysis of simulated and real
datasets show that both the log-linear and logistic overdispersion methods generally perform
better than the t and t,, tests; the log-linear method is further found to have better performance
than the logistic method, showing equal or higher statistical power over a range of parameter values
and with different data distributions.

Conclusion: Overdispersed log-linear models provide an attractive and reliable framework for
analyzing SAGE experiments involving multiple libraries. For convenience, the implementation of

this method is available through a user-friendly web-interface available at http:/

www.cbcb.duke.edu/sage.

Background

Serial analysis of gene expression (SAGE) is used to meas-
ure relative abundances of messenger RNAs (mRNAs) for
a large number of genes [1,2]. Brieflyy, mRNAs are
extracted from biological samples and reverse-transcribed
to cDNAs. The double-stranded cDNAs are then digested
by a 4-cutter restriction enzyme (anchoring enzymes, usu-
ally Nlalll). After digestion, another restriction enzyme
(tagging enzymes) is used to release the downstream DNA
sequences at 3' of most of the anchoring enzyme restric-
tion sites. The released sequences, usually 10-11 base
pairs (bp) long, are called SAGE tags. The tags derived

from many different species of mRNAs can be concate-
nated, cloned and sequenced. In a typical SAGE experi-
ment, a large number of tags (often ranging from 30,000
to 100,000) are collected from each sample, with each tag
representing, ideally, one gene; the tag count indicates the
transcription level of the gene represented by that specific
tag. A natural question of interest is whether a given tag is
differentially expressed. Over the past few years, SAGE has
been extensively used for expression analysis of cancer
samples for identifying diagnostic or therapeutic targets
[3.4].
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Most SAGE studies focus on comparing expression levels
between two samples. For such two-library comparisons,
several statistical methods have been proposed, such as
the simulation method of Zhang et al. [2], the Bayesian
approaches [5-7], and the normal approximation based z-
test [8] (which is equivalent to the chi-square test [9]). A
comparative review by Ruijter et al. [10] has shown that all
these methods perform equally well.

The comparison between two SAGE libraries can identify
biologically interesting tags (or genes). However, in many
cases it is essential to conduct experiments with replicates
in order to account for normal background biological var-
iation. For experiments involving multiple SAGE libraries,
between-library variation beyond the binomial sampling
variation is introduced. Such between-library variation
can be due to additional known factors involved in the
experimental design, as well as to unknown genetic or
environmental variation between observations. Indeed,
major differences in gene expression exist among SAGE
libraries prepared from the same tissues of different indi-
viduals [11]. Statistical methods are needed for analyzing
SAGE experiments involving multiple libraries. In the case
of two-group comparisons (e.g. comparisons between a
normal group and a cancer group), methods such as pool-
ing the libraries in each group and transforming to two-
library comparisons (for example, using the chi-square
test), or the two-sample t-test on proportions have been
proposed and discussed [12-14]. The pooling approach is
often problematic since it ignores gene expression varia-
tion among libraries within the same treatment group,
which leads to biased estimates for the variance. The two-
sample t-test on proportions, however, can be problem-
atic as well; proportions estimated from libraries with
smaller sizes are known to be more variable than those
from larger libraries.

For two-group comparisons, Baggerly et al. introduced a
test statistic, t,, based on a hierarchical beta-binomial
model to account for both between-library and within-
library variation [13]. The ¢, test statistic is assumed to
have an approximate ¢-distribution and like the t-test, the
t,-test is only good for two-group comparisons. For SAGE
experiments with a more general design (e.g. involving 2
or more factors), an approach based on overdispersed
logistic regression has been described [15]. Overdispersed
models aim to allow for the possibility of overdispersion
in the tag counts, i.e., cases where the variance in tag
counts exceeds what is expected for binomial or Poisson
sampling alone. Besides its flexibility in modeling multi-
ple factors and/or continuous covariates, logistic regres-
sion compares group proportions on a logit scale (log of
odds) rather than a raw scale as in the t and ¢, tests. Com-
paring groups in logistic regression (and any generalized
linear model) is equivalent to testing the hypotheses of

http://www.biomedcentral.com/1471-2105/6/165

whether the coefficients = 0. Baggerly et al. [15] showed
evidence suggesting that "the logit scale may be more
appropriate” than the original proportion scale. One
drawback with overdispersed logistic regression, however,
is that it can break down for cases where all the tag counts
in any of groups are very small. In such cases, the deviance
test rather than the t-test (on the hypothesis that the coef-
ficient S is zero) has been proposed [15]. Besides that a
systematic evaluation of the deviance test is needed, a
potential drawback with the deviance test is that it may
require multiple rounds of model fitting if a model con-
tains multiple factors or covariates. Furthermore, ques-
tions still remain on exactly when the deviance test should
be used in preference to the t-test.

In this report we introduce an overdispersed log-linear
model approach to analyzing SAGE which is closely
related to overdispersed logistic regression but has a dif-
ferent mean-variance relationship assumption. We com-
pare its performance in identifying differential expression
with that of three other methods, including the t-test, t,
test and overdispersed logistic regression. Analysis of sim-
ulated and real datasets show that both the log-linear and
logistic overdispersion methods generally perform better
than the ¢ and ¢, tests. Based on simulated data, the log-
linear method is found to have better performance than
the logistic method, showing equal or higher statistical
power over a range of parameter values and with different
data distributions. The overdispersed log-linear method
also appears to have better performance on the real SAGE
data which we analyze; a number of cases are seen where
a tag is identified by the log-linear approach and appears
to be clearly differentially expressed, but which would not
have been identified as significant using the logistic
regression method. Overdispersed log-linear models also
offer the same flexibility as logistic regression, allowing
for modeling multiple factors and/or covariates. We con-
clude that the overdispersed log-linear models provide an
attractive and reliable framework for analyzing SAGE
experiments involving multiple libraries.

Results

Overdispersed log-linear models: a case study
Overdispersed log-linear models (see details in Methods)
are very similar to overdispersed logistic models, but there
are two major differences. First, overdispersed log-linear
models work with logarithms of proportions (the log
link) with logarithms of sample sizes m; as offsets. In con-
trast, overdisersped logistic models use the log of the odds
(the logit link). Second, the assumption of an overdis-
persed log-linear model leads to derived weights used by
iteratively reweighted least squares (IRLS) that depend on
the means of the tag counts (i.e. the weights depend on
both library sizes and tag proportions). The weights in
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Table I: Comparisons of t- and deviance tests in overdispersed logistic regression and log-linear models and a test based on a Bayesian

model

Group |2 logistic regression log-linear model Bayesian model
library | library 2 t-testc deviance test t-teste deviance test Ed
Ib 0 0 0.645 0.115 0.003 0.001 0.01
2 2 2 0.485 0.122 0.002 0.002 0.02
3 5 5 0.383 0.133 0.003 0.005 0.04
4 10 10 0.324 0.149 0.007 0.01 0.05
5 20 20 0.291 0.183 0.02 0.025 0.07
6 50 50 0.324 0.29 0.104 0.117 0.11
7 100 100 0.494 0.508 0.376 0.404 0.12

aTag counts in group | are artificially increased towards the levels observed in group 2 (which are held fixed). Tag counts in group 2 are 312, 549,
246, 65, 41, and 52. The library sizes and tag counts in group 2 are taken from Baggerly et al. [15].
bThe empirical tag counts 0.506, and 0.494 are used to replace the zero counts in group I[15].

¢ The t-test here is testing the hypothesis that 5= 0.
dE, the Bayes Error Rate, is listed. [26].

Table 2: A list of parameter values used in the simulations

Distribution
overdispersion parameter (¢)

number of samples in groups A and B
mean proportion in group A (p,)
ratio of mean proportions (pg/ p,)

binomial (i.e. no overdispersion); beta-binomial; negative-binomial
8e-06, 2e-05, 4.3e-05 for beta-binomial; 0.17, 0.42, 0.95 for negative
binomial

5 in each group

1,5, 10, 20, 50, and 100 out of 50,000

|,2and 4

Note: the library sizes are 66148, 67094, 53338, 80124, 64984, 70452, 74052, 60086, 52966 and 45377, each of which was determined by a draw

from a uniform distribution over the interval from 30,000 to 90,000.

overdispersed logistic regression, in contrast, are a func-
tion of library sizes only (see Methods).

Baggerly et al. [15] illustrated that the overdispersed logis-
tic model can break down in cases where all proportions
in one group are 0. Here we show that such a breakdown
can also occur when the proportions in one group are
small. Table 1 lists the p-values obtained from both the
deviance and ¢ tests. Note that we are testing the hypothe-
sis that = 0. Artificially increasing the tag counts in group
1 so that they approach the level seen in group 2 (which
are held fixed), the deviance test in logistic regression and
both tests (deviance and t) in the log-linear model show
the expected trend of an increasing p-value (Table 1, col-
umns 5, 6, and 7). In contrast, the p-values from the t-test
in logistic regression actually decrease first and then
increase (Table 1, column 4). This discrepancy between
results from the t and deviance tests in the logistic model
(a discrepancy not seen in the log-linear case) suggests
that logistic regression can be problematic when the tag
counts of all samples in one group are small.

Simulation study

To systematically evaluate the performance of the various
tests in the case of two-group comparisons, we performed
a simulation study. The tests compared here are the ¢, t,,
logit-t and log-t. For ¢ and t,, the test is whether ,A = /B,
where ,A and ,B are the mean proportion in groups A and
B respectively. The logit-t and log-t are ¢ tests on the
hypothesis of whether £ = 0 in the overdispersed logistic
regression and log-linear models respectively. We do not
attempt to replace the t-test with the deviance test in the
overdispersed logistic regression model since this requires
making a possibly subjective decision on when to use one
test in preference to the other.

We generated tag counts under three different distribu-
tions, choosing different tag proportions and amounts of
overdispersion (Table 2). Data generated from the beta-
binomial and negative binomial distributions meet the
assumptions (i.e. have the mean-variance relationship
structure) of the overdispersed logistic regression and log-
linear models approaches, respectively. The negative
binomial distribution is equivalent to the gamma-Poisson

Page 3 of 14

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:165

hierarchical model and is considered a robust alternative
to the Poisson distribution [16,17]. It should be noted
that the t,-test is also derived under the assumption that
the data is generated from a beta-binomial distribution
[13]. The range of overdispersion parameter values was
chosen based on model fits from a real dataset (see section
below); we used the 25, 50. and 75 percentile values of the
estimated overdispersion ¢ from these fits. Note that the
overdispersion parameter ¢ in the logistic model is not
directly related to the ¢ in the log-linear model; ¢ values
from the two models should not be compared. Given an
overdispersion value ¢ and a group mean proportion p,
the & and S values for the beta-binomial distribution are
derived as a=p(1/¢- 1), and B= (1 -p)(1/¢- 1). The size
parameter in the negative binomial distribution is easily
derived as 1/¢. We used 5 samples (libraries) for each
group, and determined the sizes of each of 10 libraries by
randomly sampling from a uniform distribution over the
interval between 30,000 and 90,000. This yielded library
sizes of 66148, 67094, 53338, 80124, 64984, 70452,
74052, 60086, 52966 and 45377; these values were not
changed over the course of the simulations. Results (not
shown) from a separate run using a different set of library
sizes were found to be in agreement with those shown
here. A total of 5,000 sets of tag counts were generated for
each combination of parameter values. The sensitivity and
specificity of each of the tests were then evaluated and
compared through receiver operating characteristic (ROC)
curves [18].

The ROC curves (one for each of the four tests) shown in
Figure 1 were obtained using data generated from the
beta-binomial distribution (with overdispersion values ¢
shown on the top of the figure). Given the same false pos-
itive rate (x-axis), the overdispersion models (logistic and
log-linear) clearly show improved statistical power (y-
axis) compared to the two-sample t and t,, tests. In con-
trast, when the four tests are applied to data generated
from the negative binomial distribution, the overdis-
persed log-linear model clearly outperforms the other
three tests (Figure 2). Again, the two-sample t and ¢, tests
do not perform well in general. The figures generated
using other parameter values are available [see Additional
files 1 and 2]. These results suggest that for SAGE data, sta-
tistics methods based on raw proportions (as in the ¢t and
t, tests) show less power than the logistic or log-linear
model approaches. The overdispersed log-linear model
not only shows the best performance in cases where the
data are generated in a manner consistent with its assump-
tions (i.e. from the negative binomial distribution), but
also has competitive performance when the data come
from a different distribution (here the beta-binomial).
This suggests that the overdispersed log-linear model
approach is more robust.

http://www.biomedcentral.com/1471-2105/6/165

A pancreatic cancer dataset

We further compared the four tests (-test, ¢,-test, logit-t,
and log-t) using an experimental SAGE data set obtained
from the publicly available SAGE Genie website [19]. To
identify genes differentially expressed between the pancre-
atic cancer cells and normal ductal epithelium, Ryu et al.
[12] compared the gene expression levels of five pancre-
atic cancer cell lines and two samples of normal pancre-
atic ductal epithelial cells. The library sizes and numbers
of unique tags for the SAGE libraries are shown in Table 3.
Note that the numbers in the table are slightly different
from those described in the original paper due to the dif-
ferent SAGE tag processing procedures [20]. In this analy-
sis, we ignore tags with total counts less than 3.

We first compare the four tests by examining the overlap
between the top ranking genes (top 50 and 100) identi-
fied by each test (Table 4). For the ¢ and ¢, tests, the genes
are ranked by the absolute value of the t (or t,)) statistics
instead of by p-values (see Discussion section for details).
As shown in Table 4, the results from the logit-t and log-t
tests show the highest agreement (~80%); moderate
agreement is observed between ¢, and logit-t or log-t tests
(~60%) and the least agreement is seen between the t and
the other three tests (v40%). The top ranking genes iden-
tified by the t-test are often those with extremely small
within-group variances (data not shown). Overall, results
from the t-test differ the most from the results of the other
tests, while the most similar results are seen between the
logit-t and log-t tests. This generally agrees with the trend
seen in the simulations.

Of the top 100 genes (ranked by p-value) obtained from
the logit-t and log-t tests, 82 genes are in common leaving
18 genes from each test that are not within the top 100
identified by the other test. To further examine the dis-
crepancy between the logit-t and log-t tests, we plotted p-
values obtained from both tests for these 36 remaining
tags (Fig 3). It can be seen that, while tags identified by the
logit-t test are also given relatively small p-values by the
log-t test (all less than 0.05), those identified by the log-t
test show a wide range of p-values according to the logit-t
test. Table 5 lists tags which are ranked among the top 100
by the log-t test but which have p-values greater than 0.05
by the logit-t test; 4 of these were also identified by Ryu et
al. [12]. Our analysis indicates that the log-t test is rela-
tively robust in that it not only gives reasonably small p-
values to genes identified as significant by the logit-t test,
but also identifies genes which would never have been
considered significant by the logit-t test.

Ryu et al. [12] identified 49 up- and 37 down-regulated
genes in cancer with the two-sample t-test and a set of
rule-based methods. We compared their results with those
from the log-t test (choosing the same number of top
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Figure |

Comparisons based on simulated data from the beta-binomial distribution. This figure shows the receiver operating
characteristic curves (ROC) of the four tests applied to datasets generated from the beta-binomial distribution with various
magnitudes of overdispersion (@) (shown on the top of each graph). For a specific ¢, 10,000 observations (tags) are simulated;
5,000 are generated under the assumption that p, = ps and the remaining from pz = 2 p,, where p, and pg are the mean propor-
tions of the two groups and p, = 0.0002 (i.e. 10 out of 50,000). For figures generated under other conditions, see Additional file
I
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data are simulated by the same strategy as used in Figure |, except that pg = 4p,. Note that the overdispersion parameter here
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beta-binomial). For figures generated under other conditions, see Additional file 2.
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Table 3: Library information on 5 cancer and 2 normal pancreas SAGE libraries

Cancer cell lines

Normal cells

Library ASPC PL45 CAPANI CAPAN2 Panc-1 HX HI26
Library size 31,224 29,557 37,674 23,042 24,749 31,985 32,223
Unique tags 10,622 11,121 14,815 10,157 10,293 12,392 12,360
Table 4: Pair-wise comparisons of the four tests

t-test t,-test logit-t
t, test 39(12)2 -
logit-t 42(17) 66(29) -
log-t 36(16) 63(25) 82(43)

2 number of genes shared among the list of top 100 and top 50 (in parenthesis) genes identified by the two tests; we note that for the t and t, tests,
the genes were ranked by the absolute t or t, statistic rather than by p-values.

genes). Of the total of 86 genes, only 18 are in common
(with 9 in each down- and up-regulated gene group). The
most significant gene that is up-regulated in cancer on our
list (but not in the original paper) is tag, "CITCCAGCTA",
which represents the annexin A2 gene. This gene has been
reported to be up-regulated in human pancreatic carci-
noma cells and primary pancreatic cancers [21]. Another
example is tag TTGGTGAAGG', which corresponds to the
gene encoding thymosin, beta 4. This gene also has been
shown to be "expressed at high levels both in tumor cell
lines and in primary cultures of normal pancreas, but not
in normal tissue" [22]. A list of the top 20 genes up-regu-
lated and the top 20 genes down-regulated in cancer
based on the log-t test are listed in Table 6.

Discussion

In this report we introduced a log-linear model with over-
dispersion for testing differential gene expression in
SAGE. This model is closely related to the overdispersed
logistic model proposed by Baggerly et al. [15] but with a
different mean-variance relationship assumption. The dif-
ferences between two models can be seen clearly in the
weight (used by IRLS) associated with each observation:
assuming library sizes are reasonably close, the overdis-
persed log-linear model tends to assign higher weights to
observations in the group with the smaller mean propor-
tion; in contrast, approximately equal weights are
assigned to all the observations in the overdispersed logis-
tic model. Although for real SAGE data the true mean-var-
iance relationship is unknown, it has been observed that
"for the higher counts data, the between-library variability
is the dominant part of the variation" [13]; this suggests

that the magnitude of the overdispersion in the group
with higher counts is probably larger than that in the
group with low counts so that the assumptions of the
overdispersed log-linear model is probably more appro-
priate for SAGE data.

We also compared the model fits of the overdispersed
logistic and log-linear models. Due to the introduction of
the overdispersion parameter, the deviance statistic is no
longer a valid basis for model fit comparison. An alterna-
tive is to use the standardized Pearson residuals, which
have an asymptotic standard normal distribution [23].
Williams [24] proposed the approach of plotting the
standardized Pearson residuals against the predicted pro-
portions; a problem with a model fit is indicated by a sig-
nificant decrease in the variance of the standardized
residuals as estimated proportions approach zero. Figure
4 shows the residual plots from the logistic and log-linear
model fits for two tags (the tag counts are listed in Table
5). In the overdipersed logistic regression case (left panels
of Figure 4), the variance of the standardized Pearson's
residuals is seen to be much smaller in the normal group
than in the cancer group. Such a difference is not evident
in the overdispersed log-linear model fits (right panels of
Figure 4). Although the sample size is very small in this
example (only 2 in the normal group), the residual plots
give further indication that log-linear models provide a
better fit to SAGE data than logistic models.

From the simulation study we have shown that, besides
their limitation to two-group comparison, both the t- and
t,-tests, in general, are not as powerful as tests which allow
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Comparing p-values from the logit-t test and those from the log-t test. Of the top 100 tags (ranked according to p-
values) identified by the logit-t test and by the log-t test, 82 are common to both leaving 18 tags from each test that are not
within the top 100 identified by the other. The p-values from both tests for these 36 remaining tags are plotted here. The cir-
cles represent the 18 in the top 100 by the logit-t test and the triangles those from the log-t test. While all the tags identified
by the logit-t test also have reasonably low p-values according to the log-t test, the tags identified by the log-t test show a much

wider range of p-values according to the logit-t test.

for the possibility of overdispersion. We mention one spe-
cific problem that can arise with the ¢- and t,-tests if the
number of samples in the data set is small. Note that the
rank orders from the t-test and the ¢, test in Table 4 are
based on test statistics instead of p-values. The rank orders
based on p-values can be different from those based on

test statistics if the residual degrees of freedom differ
among tests. Both the t-test and the ¢, -test use the Satter-
thwaite approximation [25] for the number of degrees of
freedom since the variances are assumed to be different in
the two groups. An example of how this can be
problematic is given by tag "AGCTGTCCCC", which has

Page 8 of 14

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:165

http://www.biomedcentral.com/1471-2105/6/165

Table 5: A set of genes identified as significantly differentially expressed (p < 0.05 and also among the list of top 100 genes) according

to the log-t test but not by the logit-t test (p > 0.05)

Normal Cancer

Tag P (log-t) P (logit-t) HX Hl126 ASPC PL45 CAPANI CAPAN2 Panc-|
AGCAGATCAG* 0.003 0.088 16 9 272 152 138 135 384
TTGGTGAAGG 0.003 0.069 6 0 90 267 194 187 238
CCCATCGTCC 0.003 0.309 13 34 2047 1333 364 456 408
CCTCCAGCTA 0.006 0.465 3 16 452 1766 292 265 364
ACTTTTTCAA 0.008 0.096 25 43 413 379 226 200 65
CAAACCATCC* 0.0l 0.463 9 9 439 1235 154 143 133
TGCCCTCAGG 0.011 0.219 16 6 80 196 276 339 4
GCTGTTGCGC* 0.011 0.151 3 3 35 30 82 126 133
GACATCAAGT* 0.013 0.554 0 0 183 548 85 126 20
TTCACTGTGA 0.014 0.149 0 3 128 105 77 9l 16
TTGGGGTTTC 0.015 0.142 69 37 701 507 173 195 230
TGCCCTCAAA 0016 0.246 3 6 32 112 135 178 0
GGGGAAATCG 0.017 0.066 100 71 339 423 119 291 226

Note: Tag counts have been converted to number of tags per 100,000 for the comparison purpose. This scaling is not used in any statistical tests.

Tags with (*) are those also identified by Ryu et al. [12].

tag counts 70, 82 in the two normal samples, and 4, 1, 1,
1, 0 in the five cancer cell line samples. The differential
expression is highly significant based on the logit-t (p-
value 0.0003) and log-t (p-value 0.0005) tests. In contrast,
if the t,-test with the Satterthwaite approximation to the
degrees of freedom is used, this tag is barely significant at
the 5% level (p-value 0.050). The reason is that, while the
magnitude of the t, statistic for this tag is actually
extremely high (|t,| = 12.01), the calculated degrees of
freedom is only about 1 (which leads to low significance).
The small value for the degrees of freedom arises here
because the estimated variance in the cancer group is very
small; the approximated degrees of freedom is then about
equal to the sample size of the normal group minus 1
(here, 2-1 = 1). Cases like this occur frequently in this data
set since the number of libraries (samples) in one group is
very small. It is not uncommon to have small sample
numbers with SAGE data.

The four methods compared in this study follow the fre-
quentist approach of hypothesis testing, and can be
broadly considered as examples of linear models. For two-
group comparisons, Vencio et al. [26] introduced a Baye-
sian approach to rank tags by the Bayes Error Rate. We
compared their approach with the methods based on
linear models by looking at differences in gene rankings
determined using the pancreatic dataset. Considering the
top 100 genes identified by the different tests, the two
overdispersed models show the best agreement with the
Bayesian method (~70% in common); 63 genes (of the
top 100) are identified by all three tests. We also evaluated
the Bayesian method using the artificial data in Table 1; as
the tag counts in group 1 are increased, the evidence for

differential expression decreases (i.e. the Bayes Error Rate
goes up), which follows the expected trend. Furthermore,
if we recognize tags with p < 0.05 or E<0.1 as being signif-
icantly differentially expressed [26], the results from the
Bayesian approach are more consistent with those from
the log-linear model than from the logistic models (see
Table 1). Since the evidence measures used are conceptu-
ally very different, to perform a direct comparison
between "P-value"-based methods and the Bayesian
approach is not straightforward. Our results, however,
suggest that the Bayesian approach of Vencio is a compet-
itive Bayesian alternative for analyzing SAGE data in the
case of two-group comparisons.

The current study has not considered the issue of multiple
testing problems which is still under active research
[27,28]. We note that one possible area for further
improvement is to use information across genes (tags)
with similar magnitude of dispersion to obtain poten-
tially more robust and accurate overdispersion (and there-
fore, error) estimates. In all the methods compared here,
everything is done one tag at a time, i.e., estimates of the
amount of overdispersion are done for each tag individu-
ally and these can vary widely (see Figure 5). For expres-
sion data with continuous values, strategies on
information sharing have been proposed [29-31] and
these strategies may be adapted for discrete data such as in
SAGE.

Page 9 of 14

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:165

http://www.biomedcentral.com/1471-2105/6/165

Table 6: A list of top 40 genes differentially expressed between pancreatic cancer and normal ductal epithelium

Tag

Description

P HX HI26 ASPC PL45 CAPANI CAPAN2 Panc-|

Up-regulated in pancreatic cancer

CTTCCAGCTA
AAAAAAAAAA
AGCAGATCAG

TTGGTGAAGG
CCCATCGTCC
CCTCCAGCTA
GGAAAAAAAA

CCCCAGTTGC
AACTAAAAAA
TTCAATAAAA
GCAAAAAAAA
ACTTTTTCAA
CAAACCATCC
GTGTGGGGGG
TGCCCTCAGG
GCTGTTGCGC
AAGAAGATAG
GAAAAAAAAA
ACCTGTATCC

CAACTTAGTT

annexin A2

S100 calcium binding protein A10 (annexin Il ligand,
calpactin |, light polypeptide (pl 1))

thymosin, beta 4, X-linked

motichondria gene

keratin 8

ATP synthase, H+ transporting, mitochondrial Fl
complex, epsilon subunit

calpain, small subunit |

ribosomal protein S27a

RPLPI, Ribosomal protein, large, Pl

chromosome 21 open reading frame 97
motichondria gene

KRT18, Keratin 18

Junction plakoglobin

LCN2, Lipocalin 2 (oncogene 24p3)

ribosomal protein L23a

SMAD, mothers against DPP homolog 3 (Drosophila)
IFITM3, interferon induced transmembrane protein 3
(1-8V)

myosin regulatory light chain MRLC2

Down-regulated in pancreatic cancer

GACGACACGA
GGACCACTGA
GATCTCTTGG

AGCAGGAGCA
AGCTGTCCCC
GACTGCGCGT

GTGGTGTGTG
TAGGCATTCA
TGAGTGGTCA
GGCGGCTGCA

AAGTTTGCCT

AGCTCTCCCT

CCGAAGTCGA
GCTGCTGCGC
TTGGGAGCAG
TAAGGAGCTG
AACAGAAGCA
CCTCCACCTA
TGTGAGTCAC

TCAGGGATCT

ribosomal protein S28

ribosomal protein L3

S100 calcium binding protein A2

S100 calcium binding protein Al6

capping protein (actin filament) muscle Z-line, beta
tumor necrosis factor receptor superfamily, member
12A

congenital dyserythropoietic anemia, type |
microtubule-associated protein | light chain 3 beta
excision repair cross- complementing rodent repair
deficiency, group |

glutaredoxin (thioltransferase)

Ribosomal protein L17

transcriptional regulating factor |

isoleucine-tRNA synthetase

Ribosomal protein S26

hypothetical protein FLJ25692

peroxiredoxin 2

0.0011 19 25 128 217 143 148 170
0.0018 6 3 128 210 180 165 133
0.0027 16 9 272 152 138 135 384
0.003 6 0 90 267 194 187 238
0.0032 13 34 2047 1333 364 456 408
0.0059 3 16 452 1766 292 265 364
0.0063 3 6 64 6l 74 74 57
0.0066 22 22 64 88 77 6l 113
0.0078 19 16 45 85 80 6l 6l
0.0079 9 25 147 179 135 104 40
0.0079 6 3 58 68 40 65 65
0.0081 25 43 413 379 226 200 65
0.0095 9 9 439 1235 154 143 133
0.0096 6 3 29 64 50 56 6l
0.0106 16 6 80 196 276 339 4
0.0108 3 3 35 30 82 126 133
00116 16 9 77 108 85 65 24
0.0118 6 0 74 47 40 56 44
0.0123 13 3 26 8l 64 82 53
0.0128 6 6 51 6l 53 48 16
0.0001 428 388 109 122 90 117 154
0.0002 310 270 102 105 101 104 6l
0.0002 188 174 3 10 8 4 0
0.0005 144 152 26 41 45 26 16
0.0005 219 254 13 3 3 4 0
0.0007 103 93 10 10 24 22 16
0.0011 59 87 10 10 8 13 8
0.0012 119 II5 0 0 0 0 0
0.0017 66 53 0 7 5 13 8
0.0017 66 53 6 7 3 4 0
0.0022 66 62 0 3 3 0 4
0.0023 335 357 77 145 82 143 125
0.0024 53 56 0 7 5 0 0
0.0024 228 320 0 0 0 0 4
0.0031 72 43 10 10 19 4 8
0.0031 344 329 138 85 96 43 101
0.0031 75 59 13 24 24 9 16
0.0031 56 43 16 10 3 9 4
0.0038 3l 62 0 0 0 0 0
0.0038 41 53 0 0 0 0 0

Note: tag counts have been converted to tags per 100,000 for comparison purposes. The p values listed are from the log-t test.

Methods
Data

Suppose that there are a total of n SAGE libraries in an
experiment. Let m; be the size (total tag counts) of library
i (i = 1..n) and r; be the tag counts for a specific tag in that

library.

Also, let x; be the associated vector of explanatory varia-
bles and f the vector of coefficients. The comparison of
two groups of SAGE libraries is a special case where there
is only one explanatory variable associated with each
observation (i.e. one factor with 2 levels).
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Plot of standardized residuals against estimated proportions. Standardized Pearson's residuals (y-axis) plotted vs. the
proportion estimates (x-axis) for the two groups. The standardized Pearson's residuals are asymptotically distributed as a
standard normal. The model fits of two tags (among the list of genes in Table 5) are shown here; the left is from the fit using
the overdispersed logistic model and the right from the overdispersed log-linear model. A lower variance of residuals in the

group (normal) with lower mean proportion is an indication of poor model fit.
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Figure 5 ¢

The distribution of overdispersion estimates ((5 ). The

estimates are from the overdispersed log-linear model fit to
the pancreas data. Tags with the overdispersion estimate 0
are not shown in the figure.

The two-sample t-test

The t-test proposed by Welch [25] was used to test
whether the mean of the proportions in one group equals
the mean of the other. The proportions are assumed to
have unequal variances in the two groups and the degrees
of freedom is calculated based on the Satterthwaite
approximation as in the ¢ -test (see below).

The t,~test

Baggerly et al. [13] introduced a beta-binomial sampling
model to account for the extra-binomial variation for a
simple design in which the comparison is between two
groups of SAGE libraries. This is a special case of a linear
model that contains one explanatory variable. Briefly,
unobserved random variables P; are introduced to account
for the between-library variation. For a given group, P; is
assumed to have a beta distribution (¢, f) with mean and
variance E(P;)) = of(o#f), and Var(P) = off | [(o#+)?
(e+f+1)]. Notice that this is a special case of the form

http://www.biomedcentral.com/1471-2105/6/165

Var(P;) = ¢p,(1 - p;) as in the overdispersed logistic model,

where ¢ = 1/(o+f+1). Next, the group proportion p is
estimated by a weighted linear combination of individual

proportions within the group p =Y w;p; , where p; =r,/

m; and w; are weights associated with each individual pro-

portion. The unbiased variance estimator of p is given as

V= Z(Wif’i)z —(2 W?)ﬁz
1Y w?) '

To avoid having an estimated variance that is less than the
binomial sampling variance, a lower-bound for the vari-
ance is also provided. All the parameters (i.e. ¢, fand w;)
are obtained through an iterative procedure. The same
estimation procedure is applied to data from the other
group. For testing whether the proportion in one group
(say group A) equals the proportion in the other group
(group B), a t-like statistic t,, is constructed, where

__bPa—Ps
w = ——
N VA + VB
The t,, statistic is assumed to have a t-distribution with the

degrees of freedom (df) calculated from the Satterthwaite
approximation:

t

(Va +Vp)?
2 2
Vi, Vi

nA—l

df =

TlB—l

where n, and ny are the number of SAGE libraries in the
group A and B respectively. This test is called the ¢ -test
here. The implementation of both the t- and ¢,-test can be
found in [13].

Overdispersed logistic regression approach

Baggerly et al. [15] provided a thorough description on
this approach and details can be found in [24]. Briefly,
unobserved continuous random variables P; are
introduced to account for the between-library variation,
where the mean and variance of P; have the following
forms: E(P;) = p;; Var(P;) = ¢p,(1 - p;). Here ¢is a nonneg-
ative scale parameter. Conditional on P;= p;, the r; have a
binomial distribution (m;, p;). The unconditional mean
and variance of r; can be shown to be E(r;) = m; p; and
Var(r;) = m;p,(1 - p;) [1+(m;-1) ¢]. Notice that if ¢is O (i.e.
there is no between-library variation or overdispersion),
the variance of r; is the usual binomial variance m; p,(1 -
p;). The estimation of coefficients £ is carried out by the
iteratively reweighted least-squares (IRLS) procedure,
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where the weights w; are 1/ [1+(m; - 1) ¢]. Note that the
weights w; are equal if the library sizes m; are equal.

The parameter ¢ is estimated by equating the goodness of
fit Pearson's chi-square statistic X2 to its approximate
expected value, which is

n
E(X?) = Y w;(1 - wv;dy)[(1+ ¢(m; —1)],
i=1
where v; = m; p;(1 - p;), and d; is the variance of the linear

predictor x,-ﬁ. An iterative procedure is introduced to

estimate ¢ and S, where the estimates of ¢ (and accord-
ingly, the weights w;) and f are updated at each step.
Given the estimated coefficients, the testing hypothesis is
whether one (or more if there are more than two groups)
of the coefficients (/) is 0. For this, the t-test rather than
the z-test is recommended due to the introduction of the
overdispersion parameter into the model [15,32].

The hypothesis test based on overdispersed logistic regres-
sion is called the logit-t test here. The implementation
including source code can be found in [15]. We consider
overdispersion models (logistic or log-linear) only if the
Pearson's chi-square statistic from the usual logistic
regression (or log-linear) fit (i.e. without overdispersion)
is greater than or equal to its expected value, n-p.

Overdispersed log-linear models

This model is closely related to the overdispersed logistic
regression model. One way to derive it is based on the
gamma-Poisson hierarchical model assumption [16].
Assume that an unobserved random variables 6, is distrib-
uted according to

91. ~N Gamma(/l,-r 1/¢)’

where g, = m;p, ¢>0, E(6) = i;and Var(68) = u?¢ . Given
p; the response variable r;is assumed to be distributed as

1; | p;~ Poisson(;).

The unconditional mean and variance of r; can be shown
to be E(r;) = ;= m; p;and Var(r;) = &; (1+4,¢). Notice that
as ¢ decreases to 0, the variance of r; approaches the usual
Poisson variance y; (i.e. m; p;). The same mean-variance
relationship can also be derived if we assume r; has a neg-
ative- binomial distribution [16]. The mean g; of the
response variable r; and the covariates x; are connected
through the log link function,

log ;= log(m; p;) = x;/3.

http://www.biomedcentral.com/1471-2105/6/165

As in the overdispersed logistic regression model, the esti-
mates of the coefficients S are obtained by the iteratively
reweighted least-squares procedure, where the weights w;
are 1/(1+4; @) [33]. Note that, in contrast to the overdis-
persed logistic regression model where the weights only
depend on library sizes m;, the weights in the log-linear
model depend on ; (i.e. both m;and p;).

The hypothesis test based on overdispersed log-linear
models is called the log-t test here. The R [34] source code
and a web-interface for implementing this approach are
available [35].
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Additional material

Additional File 1

This gzipped tar file contains figures showing the receiver operating char-
acteristic curves (ROC) for the four tests applied to datasets generated
from the beta-binomial distribution with various magnitudes of overdis-
persion(¢) and mean proportions. For example, the file 2_8e-
06_0.0002.png shows the ROC curves when pg=2p,, ¢ = 8e-06 and p,,
=0.0002.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-165-81.g7]

Additional File 2

Similar to the file above, this file contains figures of ROC curves but with
data generated from the negative binomial distribution.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-165-S2.gz]
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