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Abstract

Background: Liquid chromatography coupled to mass spectrometry (LC/MS) has been widely
used in proteomics and metabolomics research. In this context, the technology has been
increasingly used for differential profiling, i.e. broad screening of biomolecular components across
multiple samples in order to elucidate the observed phenotypes and discover biomarkers. One of
the major challenges in this domain remains development of better solutions for processing of LC/
MS data.

Results: We present a software package MZmine that enables differential LC/MS analysis of
metabolomics data. This software is a toolbox containing methods for all data processing stages
preceding differential analysis: spectral filtering, peak detection, alignment and normalization.
Specifically, we developed and implemented a new recursive peak search algorithm and a secondary
peak picking method for improving already aligned results, as well as a normalization tool that uses
multiple internal standards. Visualization tools enable comparative viewing of data across multiple
samples. Peak lists can be exported into other data analysis programs. The toolbox has already
been utilized in a wide range of applications. We demonstrate its utility on an example of metabolic
profiling of Catharanthus roseus cell cultures.

Conclusion: The software is freely available under the GNU General Public License and it can be
obtained from the project web page at: http://mzmine.sourceforge.net/.

Background

Liquid chromatography coupled to mass spectrometry
[1,2] (LC/MS) has been widely used in proteomics [3] and
metabolomics [4] research. In this context, the technology
has been increasingly utilized for differential profiling, i.e.
broad screening of biomolecular components across mul-
tiple samples (corresponding to different conditions,
interventions, or time points) in order to elucidate the
observed phenotypes or discover biomarkers [5,6].

Typical LC/MS experiments include several analytical
stages, starting with sample pre-treatment which com-
monly includes sample cleanup and extraction methods.
The sample can then be introduced to the LC column
where the molecules separate based on their size (size
exclusion chromatography), affinity to stationary phase
(affinity chromatography), polarity (ion exchange chro-
matography), or hydrophobicity (reversed phase chroma-
tography). The retention time measures the time between
the sample injection and the appearance of the com-
pound peak maximum after chromatographic separation.
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In analyses of complex mixtures, it is likely that many ana-
lytes elute at the same or similar time and individual com-
pound peaks cannot be resolved by LC alone. Mass
spectrometry (MS) can then be used to separate the co-
elutants according to mass-to-charge ratio (m/z). The co-
elutants enter the LC-MS interface where they are ionized
and introduced into the mass spectrometer where m/z is
measured. Several ionization methods exist, among the
most commonly used are the soft ionization methods
such as electrospray ionization (ESI) and atmospheric
pressure — chemical ionization (APCI). The principles of
mass detection can also vary, with the most common
instruments being triple quadrupole, (quadrupole) ion
trap, (quadrupole) time of flight mass spectrometers [2].
While discussion of the merits of each type of chromatog-
raphy, ion source, and mass detector are beyond the scope
of this paper, it is evident that many different types of
applications can be developed with LC/MS. Due to such
variety of possible applications and approaches it is also
challenging to develop a generic solution for processing
and analysis of LC/MS data. Additionally, the commercial
software solutions provided by instrument vendors are
limited to the instruments provided by the vendors.
Although this may change in the future by adoption of
mzData [7] data representation format, mzData does not
represent the raw data and as such may have its
limitations.

One increasingly utilized type of LC/MS application is dif-
ferential profiling, where the extraction, LC methods, and
MS instrument setup are set to provide a broad coverage
of compounds, with the main aim to enable relative quan-
titative comparisons for individual compounds across
multiple samples. The applications of such approach can
be found in domains of systems biology, functional
genomics, and biomarker discovery. While such
approaches cannot match targeted analytical measure-
ments in ability to accurately quantitate individual ana-
lytes, it is the role of data processing methods to enable
comparative studies of analytes, even if they may be
unknown [5]. The data processing for differential profil-
ing usually proceeds through several stages. Spectral filter-
ing stage aims at reducing the complexity of spectra and
removing the noise. Peak detection finds the peaks corre-
sponding to the compounds or fragments thereof. Align-
ment, data processing step specific to profiling
experiments, aims at matching the corresponding peaks
across multiple sample runs. The role of normalization is
then to reduce the systematic error by adjusting the inten-
sities within each sample run.

Few integrated solutions for differential analysis of LC/MS
data have already been introduced for proteomics and
metabolomics applications. MarkerLynx, the commercial
package from Waters, Inc. is an add-on to MassLynx
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(Waters, Inc.) software. IMPRESS and WINLIN software
packages (TNO Pharma, The Netherlands) perform the
smoothing on each mass trace separately, followed by
entropy based method to filter the traces [8]. The align-
ment is then performed using the partial linear fit method
initially developed for aligning NMR spectra [9]. Proprie-
tary MassView software [10] and a toolkit by Radulovic et
al. [11] were developed upon the similar principles for
proteomics applications, while approaching the peak
detection in 2 dimensions (retention time and m/z). The
Bioinformatics Toolbox in Matlab (Mathworks, Inc.) con-
tains capabilities for preprocessing of mass spectra which
can be utilized on MS data analysis applications of low
memory and performance demand.

One of the challenges in algorithm and application devel-
opment in domain of LC/MS data processing is that a
solution for a particular stage of processing is of limited
use if it is not embedded into the full data processing
pipeline. Therefore, an integrated LC/MS software envi-
ronment enabling easy integration of new methods would
benefit both the algorithm developers and the end users.
In this paper we report development of tools for differen-
tial profiling of LC/MS data, aiming primarily at metabo-
lomics applications, as well as a new platform
independent open source software package MZmine built
to integrate these tools. We demonstrate its utility on an
example of metabolic profiling of Catharanthus roseus cell
cultures.

Implementation

MZmine is a collection of methods for data processing
stages used in differential profiling of LC/MS data. Scope
of the software is limited to data processing, and therefore
other tools should be used for statistical analyses follow-
ing the initial data processing.

Software design of the toolbox

Main goals in the design of the software have been good
usability and expandability with new data processing
methods. To facilitate good usability, we have developed
a graphical user interface shown in Figure 1. The GUI
allows user to experiment with different combinations of
the data processing methods and parameter values for
each of the steps and visually check quality of intermedi-
ate results. Some experimenting and visual validation is
often required to find the best methods and parameter
values for a new set of data.

The toolbox is implemented as a stand-alone Java applica-
tion. While using Java language means only slight per-
formance degradation compared to C++ [12], it affords
platform independence. The class model for the software
contains interfaces for each of the data processing stages,
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MZmine graphical user interface: (A) List of imported raw data files. (B) Total ion chromatogram (TIC) for selected file. (C)
Mass spectrum for selected retention time for the same file. (D) Peak list for the same file, with listed m/z values, retention
times, and intensities. (E) 2d map of the same file, with retention time on x-axis and m/z on y-axis. (F) Zoomed-in spectra for a
different file. (G) Peak alignment matrix for all files listed. (H) Available alignment results, e.g. for different normalizations. The
spectra shown in the GUI are from lipidomic profiling of mouse white adipose tissue using Quattro Micro (Waters, Inc.) triple
quadrupole mass spectrometer.

and new data processing methods can be added to the
toolbox by implementing a suitable interface.

proprietary format to this common presentation. We have
tested the toolbox with NetCDF metabolomics or protein
tryptic digest data created from the following instruments:

Input data formats and conversion

The toolbox accepts input in NetCDF format. In order to
implement the support for NetCDF files in the toolbox,
we used NetCDF Java Library (Version 2) by Unidata com-
munity [13]. Most of the mass spectrometer vendors pro-
vide converters for translating raw data files from their

Quattro Micro (Waters), QTof Premier (Waters), QSTAR
Pulsar (Applied Biosystems), LTQ-FTMS (Thermo Finni-
gan), and LCQ (Thermo Finnigan). In the future, toolbox
will also include support for upcoming new mass spec-
trometry data formats such as mzData [7] and mzXML
[14].
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Since raw LC/MS data files can be large relative to the
available main memory, the core classes for representing
raw data do not load all spectra into memory at once, but
retrieve necessary parts from disk when requested. This
makes it possible to visualise and work with several large
raw data files at the same time.

Smoothing and peak detection

Smoothing aims to remove noise in the measured spectra,
which facilitates further peak detection. Smoothing is an
optional stage in data processing and can also be left out
if the data is not noisy or if the input data is already avail-
able as centroids. For smoothing the spectra, toolbox
offers implementations of a moving average filter and
Savitzky-Golay filter.

After smoothing, peak detection is done to find the peaks
in the measurement data. The toolbox contains two peak
picking methods: local maximum method and recursive
threshold method. Both of these methods work in similar
steps, which are shown as a listing:

calc eXtracted Ion Chromatograms (XICs) for m/z bins
for each spectrum
find peaks in spectrum
filter out spectral peaks with the lowest intensities
connect new spectral peaks with previous ones
end
filter out too long and too short 2D-peaks

The extracted ion chromatogram (XIC) is a curve showing
time vs. sum of intensities over a small m/z range. Only
row in the listing where the two available peak detection
methods differ is the step for finding one-dimensional
spectral peaks, i.e. peaks found in mass spectra of each
instrument scan. Local maximum method treats every
local intensity maximum along the spectrum as a spectral
peak, while recursive threshold method requires maxi-
mum to have a user-definable width that differentiates it
from sharper noise peaks. Spectral peaks are filtered in
both chromatographic and m/z directions to remove
those with weakest intensities. To speed-up chromato-
graphic filtering, a set of XICs is precalculated for m/z bins
of user-definable width before looping through spectra.
Chromatographic filtering is then done inside the loop by
comparing spectral peak's intensity to intensities of a XIC
curve that goes through the location of spectral peak.

http://www.biomedcentral.com/1471-2105/6/179

During the loop through the spectra, one dimensional
spectral peaks of current spectrum are connected with
spectral peaks of the spectrum from the previous scan to
form two-dimensional strings of spectral peaks. Joining
occurs only between the peaks in successive spectra that
have similar m/z values according to pre-set threshold,
and form together a good shaped peak in the chromato-
graphic direction. Figure 2 shows a simple example of the
two-step process: first finding spectral peaks and then con-
necting them.

Choice of methods for smoothing and peak detection
depends on the nature of input data. If data is already pre-
processed and centroided, smoothing is not needed and
the peak picking method based on searching for local
maximums works the best. When working with spectral
data acquired in continuous mode, recursive threshold
peak picker gives better results.

Peak picking gives two measures for the size of the peak:
peak height is defined as the maximum intensity of all
datapoints forming the peak and peak area is measured as
sum over intensities of all datapoints. It is user-selectable
which of these two quantities is used in the further
processing stages. Following peak detection, each LC/MS
run s(s = 1...S) is represented by a peak list:

P.= {p,.}; with i = 1..N,and ¢ = {mz, dmz, t, drt, height,
area};, (1)

where N, is a total number of peaks for run s and c¢ is an
index for parameters of each peak p;, : mz is the mean m/z
value for data points within the peak, dmz is standard
deviation of m/z values within the peak, rt is retention
time at the maximum intensity datapoint, dit is the
lengths of the peak in time, height is height of the peak and
area is area of the peak calculated as described above.

Alignment

Alignment methods search for corresponding peaks across
different LC/MS runs. Peaks from the same compound
match usually closely in m/z values, but there can be var-
iation in retention times between the runs. The former
depends on mass accuracy and resolution of the mass
spectrometer while the latter largely depends on the ana-
lytical method used.

The results of alignment are represented by a master peak
list:

Q = {q;c}; withj = 1N, s = 1...S and ¢ = {mz, dmz, 11,
ort, height, area};, (2)

where N, is the number of rows in the master peak list

matrix. Element g; is set to empty value when no peak
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Figure 2

The two-step peak picking process used by the two available peak picking methods: (A) This plot is a zoom-in to a small part of
a spectrum. In the first step, one-dimensional spectral peaks are detected in each spectrum alone. Green dots over the spec-

trum show the locations of detected spectral peaks. (B) This plot is a zoom-in to a small fragment of two-dimensional view of
raw data. Black lines show two-dimensional peaks created by connecting successive spectral peaks. Peak height is calculated as
the highest intensity among these data points, while the peak area corresponds to the sum of the intensities.
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from the peak list s has been aligned to row j of master
peak list.

The toolbox currently implements a simple alignment
method utilizing the master peak list. This method takes
one peak from a peak list at a time and aligns the peak to
either the best matching existing row of the master peak
list or appends a new row to the master peak list, if match-
ing row is not found for the peak. The alignment process
is described in the pseudocode:
fors=1...S

fori=1..N;

alignToMaster(p;,)

end
end
function alignToMaster(p;,)

pick j such that

g;;does not contain p' ; swith dist(Q;, p';,) <=dist(Q;, p;;)
and

minimizes dist(Q;, p;)

if (dist(Q; p;)>user-defined threshold) or (could not
pickj)

append p;, to a new, empty row of Q
else
if g, contains p';,
assign qj; == pjq
alignToMaster(p';)
else
assign g, := pjq
end
end
end

where the distance between a peak p;, and a master peak
list row Q; is calculated using function:

http://www.biomedcentral.com/1471-2105/6/179

dist(Qj.pis) = e Py = Ty | +| st =i | 3)
where p,; ,.and p; ,,are the m/z ratio and retention time
of a peak in an individual peak list and ;. ,,; and gj.

are the average m/z ratio and retention time of peaks from
all peak lists except s assigned to the same row Q; of the
master peak list. k is an adjustable parameter that controls
the balance between accuracy of m/z ratio and retention
time values. Generally, k can be set to a larger number
with increased mass accuracy and resolution of the mass
detector.

After aligning peak lists as described above, it is likely that
master peak list contains empty gaps, because not every
peak is detected and aligned in every sample. Such miss-
ing values often complicate further statistical analyses,
and for this reason we developed a secondary peak pick-

ing method for filling these gaps. This method uses ¢;,. .

and ¢, values for estimating location where a missing

peak should be found. Search is then conducted to find
the highest local maximum over a range around the
expected location in the raw measurement signal. The size
of the search range is a user-definable parameter in the
gap-filling method. Intensity of the local maximum is
then used as estimated peak height.

Normalization methods
Normalization is needed to reduce the systematic error in
data. The toolbox implements two different approaches: a
set of linear normalization methods and a new approach
that utilizes multiple internal standard compounds
injected to the samples.

Linear normalization methods divide all peak heights
within a single peak list by the same number. Implemen-
tation of linear normalization method in the toolbox
offers four different ways to calculate the normalization
factor: average peak height, average squared peak height,
maximum peak height and total raw signal.

The toolbox also contains a new normalization method
that utilizes information from multiple standard com-
pounds, which are injected to each of the samples in
known concentrations prior to LC/MS analysis. The stand-
ard compound peaks can be used to calculate a set of nor-
malization factors, one for each standard compound.
There are currently two different ways to use this informa-
tion in normalization. One option is to search for a stand-
ard compound peak closest to the peak. The distance
function is same as (3). A variation of this method is the
method based on normalization using weighted
contribution of each standard compound. In this method,
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the same distance metric as above (3) is used to calculate
distance of a peak to each standard compound. Contribu-
tion of each standard to the final normalization factor is
weighted using the inverse of distance between the peak
and the standard.

nfl + an o+ nfm
dist(p,18;)  dist(p,1S,) " dist(p,1S
L = ist(p, 1S;) 1;(17 i) ist(p, 1Sy,) (4)
El‘dist(p,lsl)

where m is the number of injected standard compounds,
nf; is the normalization factor calculated using Ith stand-
ard compound and dist(p, IS;) is the distance between
peak to be normalized and peak of the Ith standard com-
pound. Both methods reduce to the common single-
standard calibration when m = 1, i.e. only a single internal
standard is used.

Visualization methods

After processing, data is ready to be exported from the
toolbox as a tab-delimited peak height and area matrix.
This matrix can be then further processed with packages
such as Matlab (MathWorks, Inc.) or R Statistical Lan-
guage which already have a large collection of data analy-
sis tools available for statistical analyses of multivariate
data.

The toolbox also contains two visualization methods for
quickly previewing the processed results. Both of these
methods plot the peaks to a two-dimensional plot where
x-axis is the retention time and y-axis m/z ratio. Logratio
plot is useful for displaying differences in peak heights
between two groups of samples (Figure 3). Differences are
measured using logratio value, which compares average
peak heights in two selected groups:

Di {13 height

I, =log, . .
pl,{l},helght

) (5)

where p; 1y heighe and Pj (2} neigh: are average heights of
peak p; . . in the first and second group of peak lists,
respectively. In the logratio plot color coding is used for
visualizing the logratio values: red shades for positive
logratio values and green shades for negative logratio
values.

Another visualization method is a coefficient of variation
plot, which displays variation of peak heights within one
group of samples:

L 2C (D3 {5} height) ’ ©)

pi,{s},height
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where p; (3 neig; is the average peak height and o(p; (),

heighe) 18 the standard deviation of peak heights in the
selected group of samples {s}. The coefficient of variation
plot is drawn similarly as the logratio plot, but color cod-
ing is used for displaying the coefficient of variation for
peak heights within a selected group of samples.

These visualization methods are particularly useful for
quality control, because in the toolbox environment it is
easy to go back to raw data and visually verify the findings.

Example: Metabolic profiling of plant secondary
compounds in Catharanthus roseus

Studies of plant metabolites are a demanding area since
plants produce large number of metabolites of high chem-
ical diversity, many of which are unknown [15]. Plant sec-
ondary metabolites are produced as responses to changes
in the environmental conditions. The biosynthetic path-
ways of secondary metabolites are largely unknown, and
discovery driven 'omics' approaches promise to enhance
our knowledge in this domain [16]. In order to illustrate
the utility of the MZmine toolbox, we demonstrate it on
metabolic profiling of cell cultures of the medicinal plant
Catharanthus roseus. This plant has been extensively stud-
ied due to the presence of terpenoid indole alkaloids
(TIA), several of which are in high demand for pharma-
ceutical use [17]. We focused on fraction containing most
important secondary metabolites leading to TIA [see
Additional file 1]. We profiled 20 samples, of which 10
were control strains and 10 were elicited strains. Elicita-
tion induces the stress response and can therefore lead to
production of secondary metabolites. The replicates are
the same strain in parallel cultures corresponding to the
same time point, so they can be considered as biological
replicates. We also injected an internal standard com-
pound vincamine (PubChem SID 390304).

Using MZmine toolbox with moving average filter (m/z =
0.3 window setting), recursive threshold peak detection
(default settings), alignment (100s tolerance in retention
time, otherwise default settings), gap-filling (60s toler-
ance in retention time), and normalization by total raw
signal, we detected 2175 peaks. Representative total ion
chromatograms from one elicited and one control sample
are shown in Figure 3A. The log-ratio view for top 20%
most intense peaks is shown in Figure 3B.

After exporting the processed data in tabular format, fur-
ther analyses of the data matrix were performed in Matlab
using PLS Toolbox (Eigenvector Research, Inc.) and with
R Statistical Language. Principal components analysis [18]
revealed clear differences between the elicited and control
groups (Figure 4A). Using factor analysis (not shown), we
found that the two of the main contributors to the cluster-
ing of the elicited group were ajmalicine (PubChem SID
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Figure 3
(A) Total ion chromatograms from two representative samples from Catharanthus roseus cell cultures. (B) Log-ratio plot view,

comparing mean intensities of detected peaks between two selected groups of samples from Catharanthus roseus (10 elicited vs.
10 controls).
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Figure 4

Data analysis of Catharanthus roseus metabolite profile data, using the 2175 detected peaks as variables. (A) Principal compo-
nents analysis shows differences between the elicited and control strains. Subsequent factor analysis revealed the clustering of
the elicited group is largely due to the tabersonine and ajmalicine. (B) Comparison of intensity distribution between elicited and
control groups for internal standard (Vincamine), Ajmalicine, and Tabersonine.

Page 9 of 12

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:179

153462) and tabersonine (PubChem SID 163306). The
compounds were identified using our internal spectral
library based on molecular weight and retention time.
Their distribution within the elicited and control groups
shows the compounds are significantly upregulated after
elicitation (Figure 4B). Our findings are in line with recent
report using the targeted approach [19].

Discussion

System requirements and performance

MZmine is available under the GNU General Public
License [see Additional file 2]. The toolbox needs Java
Runtime Environment 5.0 or later (Sun Microsystems,
Inc.) installed on the computer. Minimum system
requirements for running the software are 2.4 GHz proc-
essor and 1 GB of memory. Also a high-resolution display
mode or a dual monitor configuration is necessary for tak-
ing full advantage of the graphical user interface. As a ref-
erence, the total time from loading 50 NetCDF files
(unprocessed continuous MS data acquired in full scan
mode on Quattro Micro instrument) of size 100 Mbytes
each to the export as a data matrix of approximately
10000 peaks took 40 minutes on a Dell Precision 650
workstation (Intel Xeon 3.06 GHz processor with 2 GB
RAM), which is significantly less than the time of actual
data acquisition by the LC/MS system (40 hours). The
major performance bottleneck is the gap filling stage.
Since many of the stages of the data processing can easily
be parallelized, significant performance improvement
could be gained by distributed computing. Future imple-
mentations of the software will include this capacity.

The software settings largely depend on the type of appli-
cation, analytical method and instrument used for data
collection. As part of the application development, it is
advisable to experiment with different settings to opti-
mize the performance.

Methods and applications

So far the MZmine has been primarily utilized in the
domain of metabolomics, which included lipidomics and
global metabolomics applications in biomedical domain,
primary metabolite screening in microbes, and plant
metabolomics. Specifically, the early prototype version of
MZmine has been applied to lipidomic analyses in a recent
study of PPARY2 knock-out mouse model [20].

The methods currently available in the toolbox have been
found sufficient in these applications. However, we will
further focus especially on peak picking methods in the
future, since this stage is the most crucial part of the data
processing. In order to study the metabolic profiles with
as many compounds as possible, every real peak should
be found from raw LC/MS data files. On the other hand,
false-positive peak detections complicate the statistical

http://www.biomedcentral.com/1471-2105/6/179

analyses and may prevent some interesting results to be
found. In addition to these two issues, every single peak
should be detected as exactly as possible in both m/z and
retention time direction. This is necessary for determining
peak area and height correctly, for successful alignment
between samples, and for identification.

Currently it is difficult to perform comprehensive compar-
ison of available methods for differential profiling of LC/
MS data, since most of the methods are either proprietary
or vendor-specific. However, repeatability studies on bio-
logical tissues have shown that the median CV is in the
range of 18-23%, depending on normalization method
(data not shown). This is consistent with published
results [10,11]. The results on mixtures of internal stand-
ards were better, with CV <5%. The discrepancy in CV val-
ues is due to peak picking in complex biological mixtures,
where many compounds are at the trace levels near the
detection limit. This reaffirmed our belief that the stage of
peak picking is the critical step in profiling of biological
samples.

While the term quantitative analysis has recently been
used to describe the methods of differential profiling
[10,11], we believe true quantitative analysis would also
require calculation of compound concentrations. None of
the profiling toolboxes introduced so far have this ability.
While ideally one would use isotope labelled standard
and measure calibration curve for each compound, this is
in practice impossible for complex biological mixtures
where the compounds are of diverse chemical properties
and many of them unknown. We believe our
normalization method based on multiple internal stand-
ards is a step toward the ability to quantitate the com-
pounds in the biological samples.

Current and future developments

We are currently developing a version enabling distrib-
uted computing and implementing a method for detec-
tion of natural isotope patterns. We are also going to
extend the data import capability to mzXML and mzData
formats and enable database connectivity.

On the algorithm side, in addition to improved peak pick-
ing, we are implementing two normalization methods,
one based on multiplicative error model [6], and an
enhanced version of multiple-standard method which
takes into account information from compound identifi-
cation. The initial application of the latter method will be
developed for the lipid screening. One of the future goals
is to enable automated handling of multiple spectra com-
ing from single sample (i.e. MS and MS/MS or ESI+/MS
and ESI-/MS). The latter, combined with database connec-
tivity, will open the possibilities of automated
identification of metabolites, as well as enable develop-
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ment of proteomics profiling applications utilizing
MZmine.

Conclusion

We developed a platform independent software package
for processing of LC/MS profile data. The software has
already been tested and applied on a wide range of instru-
ments and applications in domain metabolomics. Given
its modular structure, the MZmine promises to be a pow-
erful tool and test bench for development of new LC/MS
data processing algorithms.

Availability and requirements
¢ Project name: MZmine LC/MS Toolbox

¢ Project home page: http://mzmine.sourceforge.net/
e Operating system(s): Platform independent
¢ Programming language: Java

e Other requirements: Java Runtime Environment (JRE)
5.0 or higher

e Licence: GNU General Public License

List of abbreviations
MS: Mass spectrometry

XIC: Extracted ion chromatogram

TIC: Total ion chromatogram

LC/MS: Liquid chromatography - mass spectrometry
ESI(+/-): (Positive/negative) Electrospray ionization
APCI: Atmospheric pressure chemical ionization
QTof: Quadrupole - time of flight mass spectrometer
FTMS: Fourier transform mass spectrometer

CV: Coefficient of variance

m/z: Mass-to-charge ratio (m is molecular weight and z is
charge of the ion)

GUI: Graphical user interface
API: Application programming interface
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