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Abstract

Background: Gene expression studies increasingly compare expression responses between
different experimental backgrounds (genetic, physiological, or phylogenetic). By focusing on
dynamic responses rather than a direct comparison of static expression levels, this type of study
allows a finer dissection of primary and secondary regulatory effects in the various backgrounds.
Usually, results of such experiments are presented in the form of Venn diagrams, which are intuitive
and visually appealing, but lack a statistical foundation.

Results: Here we introduce Vector Analysis (VA) as a simple, yet principled, approach to
comparing expression responses in different experimental backgrounds. VA enables the automatic
assignment of genes to response prototypes and provides statistical significance estimates to
eliminate spurious response patterns. The application of VA to a real dataset, comparing nutrient
starvation responses in wild type and mutant Arabidopsis plants, reveals that consistent patterns of
expression behavior are present in the data and are reliably detected by the algorithm.

Conclusion: Vector analysis is a flexible, easy-to-use technique to compare gene expression
patterns in different experimental backgrounds. It compares favorably with the classical Venn
diagram approach and can be implemented manually using spreadsheets, such as Excel, or
automatically by using the supplied software.

Background

Large-scale gene expression measurements by microarray
technology are used to compare mRNA levels in different
experimental or biological conditions [1]. However, in an
increasing number of cases, it seems far more relevant to
compare differences in expression responses, rather than
static expression levels. Perhaps the most common situa-
tion involves the comparison between a wild type and a
mutant organism. Here, the mRNA profile in any condi-
tion will differ between the two genetic backgrounds, but

these differences will be a complex combination of the
primary effect of the mutation and secondary effects of
various kinds. E.g., the mutant may show growth defects,
disease reactions, or compensating adjustments in its
physiology. All of these make a direct comparison
between the expression profiles problematic. In contrast,
comparing how organisms of each genetic background
respond to a common relevant stimulus can reveal regula-
tory mechanisms that are lost or gained by the mutation
as well as shared or 'disregulated' responses. Of course, the
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Principle of vector analysis. (A) The change in expression of a gene in the two experimental backgrounds is represented by a
vector. The two axes correspond to the log-fold changes in the two backgrounds. E.g., Gene | is strongly up-regulated in both
backgrounds, while Gene 2 is specifically down-regulated in background A, but has lost this response in background B. (B) The
plane can be systematically subdivided into sectors corresponding to the main behavior types that are possible. In the centre,
genes show very little response in either background (white). Other genes respond about the same in both backgrounds (blue
sector), are specifically changed in only one background (yellow), or are regulated in opposite directions in background A and

B (red).

same approach is useful for other studies comparing gene
expression in distinct types of background, e.g. between
cell lines, tissues, or even organisms. In each case, compar-
ing dynamic responses can provide more biological
insight than a static direct comparison of expression
profiles.

Despite the importance of comparing expression
responses in diverse backgrounds, accessible statistical
techniques for this common analytical task are sorely
lacking. Usually, genes that are differentially expressed in
either background are first identified independently and
then compared in the form of Venn diagrams that depict
the overlap between the two sets of genes (see [2-5] for
examples, and [6,7] for a mathematical introduction to
Venn diagrams). This approach is very attractive because
of its simplicity and immediate visualization. It is imple-
mented in many commercial microarray analysis pack-
ages (e.g. Genespring) and has also been used as an
alternative to clustering techniques to identify similarities
between experimental results (Venn mapping, [8]) and to
visualize general relationships among the functional
annotations associated with lists of differentially

expressed genes [9]. Venn diagrams, however, have a
number of limitations, most importantly the arbitrariness
of the initial definition of changed genes. In particular, the
content of the intersection of the two gene sets ("shared
responses") depends critically on the selection threshold
used in the initial definition of differentially expressed
genes. Another disadvantage is that differential responses
in the two backgrounds are not further characterized, e.g.
it is not obvious whether the difference of a gene's
response between the two backgrounds is due to the "reg-
ulated/non-regulated" or "up-regulated/down-regulated"”
effect. More sophisticated statistical techniques have been
used to approach this issue (e.g. ANOVA [10], Principle
Component Analysis [11], Singular Value Decomposition
[12], Linear Factor Models [13], or Integrative Correlation
Analysis [14]). Each of these successfully addresses certain
aspects of the problem, by reducing the dimensionality of
the data or identifying consistent patterns of behavior
across conditions. However, they all lack the intuitive
appeal and simplicity of Venn diagram visualization. Here
we present a simple alternative to Venn diagrams that is
based on similar concepts but provides more flexibility
and an added degree of objectivity of the results.
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Principle of determining the consistency of the observed behavior pattern. The gene in panel (A) shows highly consistent reg-
ulation among the various pairwise comparisons of replicates. Hence the corresponding unit vectors add to a long sum vector.
The gene in panel (B) is noisier and slightly inconsistent in its response pattern among replicates. Its vectors add to a shorter

sum vector.

Results and discussion

The main underlying principle of our method (Vector
Analysis, VA) is the idea that expression changes in two
backgrounds can be represented by a vector in a Cartesian
plane (Fig. 1A). Various sectors of the plane will corre-
spond to various prototypical behaviors of genes: genes
that respond the same in both backgrounds, genes that
react in opposite directions, or genes that are changed
only in one of the backgrounds (Fig. 1B). Like Venn dia-
grams, VA is not a method to detect differentially
expressed genes, but rather a technique that arranges
response patterns in an informative way for further study.

If there are replicate experiments, as is generally the case
in microarray studies, we calculate the representative
"average" vector vppp by (1) determining the individual
vectors vlil, where the vector vlil represents the comparison
of the i-th pair of experiments (if there are N replicates in
background A and M replicates in background B, there
willben=Nx M| 180 -ulating the average length
of these vectors, = —z il where |vlll] denotes the

length of thevectc ™ i=1 alating the sum of the unit

vectors pointing | n Ji] ction as the individual
o v

pairwise vectors, vg = ZT, and finally (4) deter-
1

mining the representative vectorby cc ™" ° v‘ " agth
(1) and direction information (vg;,,), Vgpp = | —uM- .
|VSUM|
The length of the vector (!) indicates the average strength
of the response and can be used to filter out genes that
show little response in either background. The direction
of the vector describes which prototypical behavior comes
closest to the behavior of this particular gene. To decide
on the assignment of a particular gene to a response pro-
totype, one can calculate the angle between the represent-
ative vector and the various possible prototype vectors
1 -1
Or VdowninA =

(eg. Vup inboth = ) as coso. =
Vrep* vPrototype/( |vREP| |vprototype|)' 0 < a < 180°, where
VRep Vprototype 18 the scalar product of the two vectors and
|vgep| # 0. The gene is then assigned to the prototype clos-
est to it (minimal o).

The length of the sum vector (|vg,,|) indicates the level of
consistency with which the gene shows the assigned
behavior type (Fig. 2). If in the individual pairwise com-
parisons the vectors point in widely varying directions,
they will cancel out and the sum vector will be relatively
short (the most probable length will approach 0 as the
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number of replicates increases to infinity). If, however, the
behavior is fully consistent, the length of the vector will be
maximal.

It is clear that the vector approach generalizes to multi-
dimensional cases, i.e. to comparisons between more
than two backgrounds. However, the number of possible
prototype behaviors increases rapidly, as N = 3%- 1, where
k is the number of dimensions.

By randomly sampling from the measured expression val-
ues and calculating the sum vector lengths for these ran-
dom data (which should not show consistent behavior)
one can estimate the null distribution of the sum vector
length. This is done by randomly assigning the original
expression values within each replicate to other genes. All
consistency between replicates and, thus, between experi-
mental backgrounds should then be lost and the resulting
|vsuml| values will be those that are expected if no consist-
ency is present. This can be used to assign a p-value to the
assignment of genes to behavior prototypes (consistency p-
value). This value, calculated by the procedure described
above, will be a non-parametric estimate of the real p-
value, and the exact value will vary slightly in each run of
the method, unless the same random sampling is used
each time.

Additional file 6 shows the results of vector analysis
applied to a simulated dataset, where the response type of
each gene is known [see Additional file 6]. Three replicates
for each experimental background were created by draw-
ing random expression values from normal distributions
with variance 1 and a mean of 0, -2, and 2 for unchanged,
down-regulated and up-regulated genes, respectively. In
this small illustrative example, 87.5% of regulated genes
are assigned the correct response type. The remaining
genes are assigned one of the neighboring types. Genes
that are unchanged in both conditions are also assigned to
the closest response prototype, but none of these achieves
a significant consistency p-value. Of course, in a real-
world application unchanged genes would usually be fil-
tered before applying vector analysis, because otherwise
they will be assigned arbitrary angular and location values
that add noise to the results. If VA is applied to genes that
are not changed at all, it will always assign these genes to
"incorrect” response classes, and even when the consist-
ency p-value of VA is used, some of these genes will reach
significance simply due to multiple testing. Therefore, VA
is usually applied only to genes that are significantly
changed in at least one experimental background, based
on any of the standard methods for the detection of differ-
entially expressed genes. However, the filtering does not
have to be very strict and the results of VA may still yield
interesting trends for borderline cases, as shown in the
example below.

http://www.biomedcentral.com/1471-2105/6/181
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Figure 3

Vector analysis of gene expression responses in two genetic
backgrounds in Arabidopsis plants. Each dot corresponds to a
single sum vector from four pairwise comparisons (two repli-
cates per background). Genes towards the periphery of the
circle show the most consistent behavior among replicates.
Two behavior prototypes are highlighted (corresponding to
Gene | and 2 in Fig. 1), mutant-specific down-regulation
(purple) and WT/Mutant-consistent up-regulation (orange).
It can be seen that inconsistent genes (close to the center)
are generally showing background-specific responses, i.e.
they are enriched along the axes of the plot. Their behavior
is most likely the result of spurious noise in a single replicate.

Table I: Number of genes showing the various types of
prototypic behavior in two genetic backgrounds of Arabidopsis
plants as identified by vector analysis.

Mutant specific up 162 Background-specific changes

Mutant specific down 189

WT specific up 137

WT specific down 122

WT and Mutant up 133 Same-direction changes
WT and Mutant down 131

Mutant up, WT down 54 Opposite changes
Mutant down, WT up 72

Table 1 and Fig. 3 show the results of an application of
vector analysis to a real experimental dataset. The data
used are a subset of a larger study examining the response
of wild-type and mutant Arabidopsis thaliana plants to
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mutant

putative protein; At4g19390.1
abscisic acid-insensitive protein 3
putative protein; At59g52940.1
unknown protein; At1g61740.1
GH3-like auxin-regulated protein
hypothetical protein; At3g21910.1
nuclear antigen homolog
putative protein; At5g38640.1
putative protein; At5g41300.1

putative tropinone reductase

auxin response factor-like protein

expressed protein; At1g49500.1
AtHVA22b-like protein
fibrillarin 2 (AtFib2)

myrosinase-associated protein
neutral invertase, putative

hypothetical protein; At2g11480.1

polygalacturonase, putative

polygalacturonase, putative

Figure 4
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Expression change profile of the top 19 genes detected by vector analysis of starvation responses in wild type and mutant Ara-
bidopsis plants. The genes have been filtered for vector lengths larger than 0.5 and p-values smaller than 0.1.

potassium starvation (Armengaud et al.,, unpublished
data). The mutant plants (coil) lack a critical component
of the jasmonate signaling pathway [15], which was
shown to be central for the response of plants to potas-
sium starvation [16]. Seedling plants were grown on
potassium-free agar plates for two weeks and then re-sup-
plied with either potassium-containing or fresh deficient
medium. Labeled cDNA from both conditions was pre-
pared and analyzed on two-color whole-genome microar-
rays. All data were normalized by quantile normalization
and log-fold changes calculated for two replicate measure-
ments in each genetic background. A total of 1000 genes
are considered in this example, which is also available as
a supplementary material for further analysis.

One of the properties of this dataset is that very few genes
show a strong expression response in any background.
Only one out of 1000 genes has an l-value larger than 1
(roughly corresponding to a two-fold expression change),
and only 35 genes have l-values larger than 0.5. Thus, a
Venn analysis based on significantly changed genes would
be all but impossible. The vector analysis, in contrast,

identifies 32 genes with consistency p-values smaller than
0.01 (expected 10) and 258 genes with p-values smaller
than 0.1 (expected 100). It thus reveals the presence of
consistent response patterns even among genes with very
slight absolute expression changes.

Among the 19 most significant genes, with p-values < 0.1
and vector lengths > 0.5, more than half (10 out of 19) are
up-regulated in both mutant and wild-type (Fig. 4). The
remaining 9 genes show various background-specific
responses. None of them shows an "opposite" response
pattern, an observation that is highly significant (p =
0.0042). This is in agreement with the known biology of
the coil mutant, which will lose certain regulatory mecha-
nisms that are important in nutrient starvation, but will
not to reverse existing pathways. It is also in agreement
with the overall correlation between the average expres-
sion pattern in the two backgrounds (Spearman's rank
correlation r, = 0.310; p < 0.001). Importantly, the same
pattern is already evident in the complete dataset (Tab. 1),
where genes assigned the "opposite" prototypes are clearly
depleted. The presence of a detectable signal is also
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Figure 5

Sum vector length (|vgyul|) distribution for the Arabidopsis
experiment and randomly permuted datasets. The real data
(red) are enriched for longer sum vectors compared to ran-
dom data (blue), indicating the presence of consistent
response patterns.

confirmed by the distribution of sum vector lengths in the
real data compared to randomly sampled data (Fig. 5).
This indicates that even for very noisy data vector analysis
is able to make meaningful assignments to response
patterns.

Using the two parameters of the method (vector length =
overall response intensity, and p-value = response pattern
consistency) allows the flexible dissection of the observed
expression in the two experimental backgrounds. At the
same time it is possible to assign the most likely response
pattern even to genes that show little absolute expression
change.

In contrast to Venn diagrams, which can only be used to
compare genes that are reliably identified as responsive,
vector analysis assigns all genes to behavioral categories.
Also note that these categories are not fixed, but can be
adjusted as appropriate for any experiment, by simply
changing the boundaries of the sectors. Also, genes can be
sorted by their angular distance from any reference gene
(or reference behavior), to generate lists that are sorted by
closeness of genes to a particular response pattern.

Conclusion

Vector analysis provides a flexible, easy-to-use, and intui-
tive approach to the comparison of gene expression pat-
terns in different experimental backgrounds. While it does
not supply the detailed statistical insights available by

http://www.biomedcentral.com/1471-2105/6/181

alternative classical statistics approaches such as ANOVA,
it excels in terms of simplicity and straight-forward inter-
pretation. In this respect vector analysis compares favora-
bly with the Venn diagram technique which is currently in
wide-spread use for this common and ubiquitous task,
but lacks the flexibility of vector analysis, in particular for
noisy data.

Methods

For small datasets with few replicates, vector analysis is
straightforward enough to be carried out manually, e.g. in
Excel or OpenOffice spreadsheets. It uses only the most
basic vector algebra. The Excel file in the supplementary
material [see Additional file 1] demonstrates how I, vg,,,
and vggp are calculated and used to automatically assign
genes to the various response prototypes. A second sheet
in the same file is used to randomly permute the experi-
mental measurements by sorting them along a vector of
random numbers, so that within each replicate (column)
the original expression values are randomly assigned to
new genes and all consistencies between columns are lost.
The vector lengths calculated from these random data are
then used in a third sheet to estimate the p-values
associated with the observed response patterns (for details
of the procedure [see Additional file 2]). For larger num-
bers of replicates, the manual procedure becomes quite
tedious and a Perl script [see Additional file 3] is provided
that performs vector analysis and p-value estimation auto-
matically, taking a tab-delimited text file of log-fold
changes in all replicates [see Additional file 4] as its input.
The obtained results [see Additional file 5] can then be
sorted, filtered and explored in various ways to dissect the
details of comparative expression behavior.
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Additional material

Additional File 6

Output generated by vector analysis script on a set of simulated expression
data with known response type for each gene.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-6-181-86.txt]

Additional File 1

Excel file demonstrating the manual performance of vector analysis
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-181-S1.xls]
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Additional File 2

Word document describing the implementation of Vector Analysis in Excel
and presenting the details of the equations used.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-6-181-S2.doc]

Additional File 3

Perl script performing vector analysis

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-6-181-S3.pl]

Additional File 4

Tab-delimited text file as input file for vector analysis script

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-6-181-S4.txt]

Additional File 5

Output generated by vector analysis script

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-6-181-S5.txt]
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