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Abstract
Background: There are a number of methods (also called: measures) currently in use that quantify
codon usage in genes. These measures are often influenced by other sequence properties, such as
length. This can introduce strong methodological bias into measurements; therefore we attempted
to develop a method free from such dependencies. One of the common applications of codon
usage analyses is to quantitatively predict gene expressivity.

Results: We compared the performance of several commonly used measures and a novel method
we introduce in this paper – Measure Independent of Length and Composition (MILC). Large,
randomly generated sequence sets were used to test for dependence on (i) sequence length, (ii)
overall amount of codon bias and (iii) codon bias discrepancy in the sequences. A derivative of the
method, named MELP (MILC-based Expression Level Predictor) can be used to quantitatively
predict gene expression levels from genomic data. It was compared to other similar predictors by
examining their correlation with actual, experimentally obtained mRNA or protein abundances.

Conclusion: We have established that MILC is a generally applicable measure, being resistant to
changes in gene length and overall nucleotide composition, and introducing little noise into
measurements. Other methods, however, may also be appropriate in certain applications. Our
efforts to quantitatively predict gene expression levels in several prokaryotes and unicellular
eukaryotes met with varying levels of success, depending on the experimental dataset and predictor
used. Out of all methods, MELP and Rainer Merkl's GCB method had the most consistent
behaviour. A 'reference set' containing known ribosomal protein genes appears to be a valid
starting point for a codon usage-based expressivity prediction.

Background
As the numbers of sequenced genes grew, it became evi-
dent that synonymous codons are not used equally [1-3].
Codon frequencies were found to vary on 3 levels:
between genomes, between genes in the same genome,
and within a single gene [4]. Many factors have been
shown to influence codon usage patterns, the most

important being: (i) overall nucleotide composition of
the genome, reflecting mutational biases; (ii) selective
forces acting on highly expressed genes to improve effi-
ciency of translation [5]; and (iii) horizontal gene transfer,
with transferred genes retaining the codon frequencies of
their former host [6]. Connections have also been demon-
strated between codon usage and: (i) gene length [7]; (ii)
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location on the chromosome [8]; (iii) the strand it resides
on [9]; (iv) need for specific secondary structures in
mRNA [10]; and (v) characteristics of the gene's protein
product, such as its hydrophobicity [11] or secondary
structure elements [12].

Moreover, the relative influence of each of these factors
varies from genome to genome, and from gene to gene.
For example, selection for translation efficiency shapes
codon usage more in fast-growing microbes [13] than in
slow-growing ones [14]. In contrast, codon usage of
human genes depends largely on GC richness of the chro-
mosomal region (isochore) [15]. It is still unclear to what
extent other elements contribute to the genes' codon
usage patterns [16]. The multitude of influences on codon
preferences, as well as high dimensionality of codon usage
data, necessitated the development of various measures
(also called: statistics) of codon usage.

Many researchers in this field formulated their own meas-
ures, which led to a large number of available methods
[17,18] for codon usage analysis. Unfortunately, these
methods are not universally applicable, as their behaviour
tends to be context-dependant. They may exhibit strong
artefacts with varying (i) sequence length, (ii) overall
amount of codon bias and (iii) codon bias discrepancy
(see Results and Discussion for an explanation). Previous
works [19,20] discussed this issue and compared some of
the commonly used measures available at the time. Our
aim was to develop and test a measure that would be free
from dependence on the aforementioned contexts. Also,
we attempted to verify the usefulness of such a measure by
employing it to predict gene expressivity in microbial
genomes.

Results & discussion
The "Measure Independent of Length and Composition" 
(MILC)
Our primary motivation in developing this novel method
was to correct for possible artefacts due to sequence length
variability. The measure should be able to quantify the
distance in codon usage between a gene and some
expected distribution of codons. The codon distribution
could either be calculated from the background nucle-
otide composition, or derived from a single gene or a gene
group. Therefore, MILC is conceptually similar to Karlin
and Mrazek's B [21], Novembre's ENC' [19] or Urrutia
and Hurst's MCB method [22].

Mathematically, the measure is based on a log-likelihood
ratio score used in the statistical G-test for goodness-of-fit.
This methodology yields numerically similar results to the
more commonly used χ2 test, but may hold theoretical
advantages over it in statistical analyses [23]. Both of the

methods have been used in past examinations of codon
usage patterns [24,25].

The individual contribution Ma of each amino acid a to
the MILC statistic is calculated as

where Oc denotes the actual observed count of the codon
c in a gene, and Ec stands for the expected count of the
same codon. The Oc/Ec ratio is mathematically equal to,
and can be replaced by fc/gc, where fc is the frequency of
the codon c in a gene, and gc is the expected frequency of
the same codon. The sum of f or g over all codons for each
amino acid should equal 1. The total difference in codon
usage is then assessed by the following formula:

The sum of contributions of all amino acids (stop codons
are excluded from calculation) is divided by L, the gene
length in codons, in attempt to compensate for the
expected increase with total number of codons. This is
analogous to the procedure described in [25]. However,
such a „scaled χ2" statistic still depends on gene length
[20], greatly overestimating the overall amount of bias in
shorter sequences. The correction factor C in Equation 2
attempts to correct for this overestimation.

The cause for the abovementioned effect are sampling
errors: a relatively small number of observations (counted
codons) cannot exactly fit the expected distribution, lead-
ing to a higher perceived χ2 score. In order to demonstrate
the effect, let us presume that the expected codon frequen-
cies for two cysteine codons are g(UGU) = 0.5 and g(UGC)
= 0.5; and that our hypothetical gene complies with these
codon frequencies. However, a short gene might have
only a single codon for Cys, thus the observed counts can
be only OUGU = 1 and OUGC = 0, or vice versa. Either way,
instead of being equal to 0, the cysteine's contribution to
the χ2 score will be:

In case the gene has two cysteines, there is a 50% chance
that OUGU = OUGC = 1, which would yield a (correct) χ2

score of 0; and a 50% chance that one of them will be 2,
and the other 0, which gives a χ2 score of 2. The weighted
average of these scores will again be equal to 1. Moving on
to cases with 3, 4 or more cysteines we see that always
MCys = 1, and it can be shown that for each amino acid in
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this case Ma is equal to its degree of redundancy minus 1
(e.g. MIle = 2, MPro = 3). In fact, this is the expected value
of the χ2 statistic under the null hypothesis (observed fre-
quencies match the expected frequencies), which equals
the number of degrees of freedom. The calculation can be
generalized to cases when the observed frequencies do not
match the expected codon distribution, and is also appli-
cable to the G statistic MILC is based upon. Further exam-
ples to better illustrate this point are given in the material
accompanying this paper [see Additional file 1].

To reiterate, in a situation where the gene's codon usage
matches the expected distribution, with all amino acids
present, the sampling errors will increase the χ2 score by
41, and the „scaled χ2" by 41/L. The correction factor C is
therefore calculated as:

where ra is the number of possible codons for the amino
acid a – its degeneracy class. Only the amino acids actually
present at least once in the sequence contribute to C, e.g.
if a gene missed one of the four-fold amino acids, C would
be 38/L + 0.5. When the observed frequencies match the
expected codon distribution closely, MILC can assume
negative values. In order to compensate, a constant of 0.5
is added to the correction factor C (see Equation 4).
Regarding minimum sequence length, we recommend
that only sequences of 80 codons or longer be analysed
using MILC (or any other measure of codon usage); many
researchers set this threshold to even higher values, such
as 100.

Behaviour of codon usage measures under varying 
conditions
A multitude of methods to measure codon usage has been
published, including "scaled χ2" [25], "effective number
of codons" ENC [26], "codon bias index" CBI [27],
"intrinsic codon bias index" ICDI [28], two versions of
"codon bias" B [21,29], "maximum likelihood codon
bias" MCB [22], "effective number of codons prime" ENC'
[19], and "synonymous codon bias orderliness" SCUO
[30]. Among those, we chose to test the methods that have
been either frequently used in codon usage examinations,
or that are new and haven't been extensively tested [20].

ENC is an older, widely accepted measure that quantifies
the degree of deviation from equal use of synonymous
codons; ENC' gives results comparable to ENC but allows
comparison to any desired codon distribution; the 1998
version of Karlin and Mrazek's B has been used extensively
in later research of microbial genomes by the same
authors; MCB is a method conceptually similar to B, used

in examinations of human genes; and SCUO is a repre-
sentative of the information theory-based measures,
which have recently been used on several occasions
[31,32] to analyze codon usage. Finally, the method pro-
posed in this paper, MILC, is compared in performance to
the aforementioned methodologies.

Figure 1 demonstrates the behaviour of the methods
when examining genes of differing lengths. Pseudoran-
domly generated sequences (or 'genes') obtained using
INCA [33] were used for testing under varying conditions
(see Methods): Figures 1a, 1c and 1e show the perform-
ance (degree of misestimation) for chosen measures at 5
different lengths, with 1b, 1d and 1f showing the standard
deviations for the 10000 measurements performed at
each length. In this aspect, our testing conditions resem-
ble the ones previously used by Comeron and Aguade
[20] or Novembre [19], the essential difference being the
normalization and comparison of the results. Here, the
values are presented as percentages of the 'dynamic range'
of a measure (the largest difference between its high and
low values under realistic conditions, see Methods). We
feel this is more reasonable than e.g. normalizing a mean
of the sample at a certain length by simply dividing it by
the value at 2500 codons, which (i) unfairly penalizes
measures which approach zero as bias lessens, as opposed
to those approaching an arbitrary value, e.g. 61 for ENC
and ENC', and (ii) among the measures approaching zero,
favours those displaying larger values at 2500 codons, in
spite of this being an undesirable quality – the value
should be as close to zero as possible. For instance, both
B and MCB are meant to equal 0 when expected and
observed codon frequencies match, however in practice at
the length of 2500 codons B assumes the value of approx.
0.1, and MCB of 0.033 (Table 2, "None" dataset). Divid-
ing the misestimation of each measure by the above val-
ues would be unfairly advantageous for B; a more extreme
example is ENC with its baseline value of 60.9. These
issues are addressed by expressing the results as percent-
ages of the dynamic range – a simple linear transforma-
tion essential for objective comparison of the methods'
performances. However, when using a single measure to
compare genes (or gene groups), or to determine associa-
tion with other genomic data, it should not matter if the
normalization is performed or not. The relative distances
of codon usage in two genes (gene groups) would remain
equal in both cases, and the degree of correlation with
other genomic data would also not change.

We designed three experiments to determine to what
extent changing gene length affects each measure. In the
first experiment (Figures 1a and 1b) the expected distribu-
tion assumes equal codon frequencies ("None", see Meth-
ods) and the generated sets of genes attempt to mimic that
distribution. Therefore, the methods should ideally report
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a minimal distance between the observed and the
expected distribution. ENC, ENC', MILC and MCB are
generally well behaved under these conditions and tend
to somewhat overestimate the amounts of bias in short
sequences, MCB overestimates bias also in longer
sequences. In contrast, B and SCUO greatly overestimate
the bias in shorter genes (by "shorter" we assume a range
of gene lengths most frequent in genomes, e.g. 100–500
codons). For example, using B on sequences 250 and 500
codons long would result in the first sequence being
seemingly different twice as much from the expected dis-
tribution as the second one. Moreover, the overestimation
at 250 codons may amount to as much as a quarter of the
dynamic range of B. As anticipated, the variability of all
measures (Figure 1b) decreases with an increase in gene
length. It must be noted that MCB measurements intro-
duce significantly less noise than the rest of the methods,
particularly in short genes.

The second experiment, where the overall amount of bias
in both the generated sequences and the expected distri-
bution increases (Figure 1c) shows little change regarding
length dependence – all methods see a very modest
improvement in performance. ENC now tends to slightly
underestimate bias, however, the variability chart (Figure
1d) shows that here it becomes noticeably less reliable
than other methods, and so does SCUO. MCB is still the
best performer, followed by MILC and B for shorter
sequences, and ENC' for longer ones.

Figures 1e and 1f, representing the third experiment, dem-
onstrate what happens when a gene unbiased in codon
usage differs from the biased expected codon frequencies,
derived from the "Med-1" dataset (see Methods). This is,
in fact, a situation more likely to occur in real-life applica-
tions, as a gene would probably show at least some devi-
ation from the expected codon distribution. ENC and
SCUO expectedly behave precisely the same as in 1a and
1b, because they by definition always assume an unbiased
expected distribution. Interestingly, B improves signifi-
cantly and does not feel as much influence of gene length
when the observed and expected codon distributions dif-
fer. It now performs on par with ENC' and MCB, both of
which show a detrimental effect of increasing distance
between the observed and the expected distribution. This
factor also increases the amount of variation introduced
by measures (excluding ENC and SCUO), most of all
ENC', and causes MCB to lose its advantage over MILC
and B.

We have shown that ENC and ENC' display a drop in reli-
ability as the overall amount of bias (measured by ENC,
Figure 1d), or the difference in bias (measured by ENC',
1f) increases. The explanation is the cutoff value that both
measures introduce [19,26], causing the distribution of
the measurements to become asymmetrical and therefore
artificially reducing the measures' variance when the
observed codon distribution is close to the expected one.
Having such a threshold might, in theory, mask biologi-
cally relevant information; for an example, see the ENC'
plot in Figure 2

Table 1: Nucleotide composition of the generated sequences at silent sites

None Low-1 Low-2 Med-1 Med-2 High-1 High-2

f(A) 0.250 0.200 0.200 0.125 0.125 0.050 0.050
f(G) 0.250 0.300 0.200 0.375 0.125 0.450 0.050
f(C) 0.250 0.300 0.400 0.375 0.125 0.450 0.850
f(T) 0.250 0.200 0.200 0.125 0.125 0.050 0.050

Table 2: Determining the 'dynamic range' for measures of codon usage

dataset method max mean coef var dataset method min mean coef var dyn range

High-2 ENC 26.1757 0.3073 None ENC 60.9141 0.1390 -34.738
High-2 B | None 1.0250 0.0155 None B | None 0.0998 0.0118 0.925
High-2 MCB | None 3.0810 0.0783 None MCB | None 0.0330 0.0078 3.048
High-2 ENC' | None 26.1757 0.3073 None ENC' | None 60.9141 0.1390 -34.738
High-2 MILC | None 1.9410 0.0389 None MILC | None 0.5000 0.0037 1.441
High-2 SCUO 0.5470 0.0146 None SCUO 0.0068 0.0016 0.540
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Effect of sequence length on behaviour of codon usage measuresFigure 1
Effect of sequence length on behaviour of codon usage measures. Figure 1a, 1c and 1e illustrate the degree of misestimation of 
a measure at varying sequence lengths (x axis), compared to the values at 2500 codons.. The values were obtained by calculat-
ing means for 10000 randomly generated sequences per method per length, and are expressed as percentages of the measures' 
dynamic range (see Methods). Figures 1b, 1d and 1f display standard deviations of the same 10000 measurements, as percent-
age of the dynamic range; higher values mean a method is more 'noisy'. In Figures 1a and 1b we generated sequences unbiased 
in use of codons and compared them to a frequency table also assuming equal use ('None', see Methods'). In 1c and 1d both 
the sequences and the expected frequency were, on overall, biased ('Med-1'); in 1e and 1f the sequences were biased ('Med-1'), 
but were compared to an unbiased expected frequency table ('None').
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Measures of codon usage introduce different levels of sta-
tistical bias in shorter genes; however, it must be noted
that even if this influence were completely eliminated,
there might still exist a connection between codon bias
and length caused by the inherent properties of the
sequences. Selection might be acting to optimize codon
usage patterns (and therefore translational efficiency) in
energetically costly longer genes; on the other hand it
might also act to reduce the size of highly expressed (and
strongly biased) proteins [7]. The only way to nullify these

length effects – if this is desired – is to use regression,
while employing a length-insensitive measure.

In addition to being resistant to length variation, the
methods should ideally be invariant to both overall bias
and the relative difference in codon usage. Moreover, the
measures should be commutative with respect to proper-
ties of the observed and expected distributions. We
designed two experiments to investigate these issues.

Plots of the E. coli genome made using different measures of codon usageFigure 2
Plots of the E. coli genome made using different measures of codon usage. The four plots were made by using measures that 
allow an expected codon distribution to be specified: B, MCB, ENC' or MILC. The distance of codon usage of a gene from E. 
coli ribosomal genes was plotted on the x axis, and the distance of codon usage of a gene from the average codon usage of E. 
coli was plotted on the y axis. A characteristic 'crescent moon' shape is seen on all four plots. White square represent ribos-
omal protein genes, while all other genes are represented by grey squares.
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Effect of overall amount of bias on behaviour of codon usage measuresFigure 3
Effect of overall amount of bias on behaviour of codon usage measures. Figure 3a describes the change in behaviour of each 
measure as the overall bias increases from unbiased ('None') to a nucleotide composition noted on the x axis. The values were 
obtained from 10000 randomly generated sequences, 2500 codons long, per frequency table (None, Low-1, Low-2 etc.) per 
measure. Figure 3b demonstrates how the measures react when the nucleotide compositions of the generated sequences and 
the expected codon frequency table are interchanged (commutative property). See Results and Discussion for further explana-
tion. In both figures, the values on the y axis are expressed as percentages of the measures' dynamic ranges.
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Figure 3a shows the influence of overall amount of codon
bias ('background nucleotide composition') on
performance of the individual methods: we examined sets
of 10000 sequences generated to match the expected fre-
quencies at varying degrees of bias; the sequences were
2500 codons long to eliminate gene length effects. The
baseline value was determined by comparing unbiased
("None") genes to unbiased ("None") expected frequen-
cies. ENC and SCUO report higher differences from the
baseline as the overall bias increases, which is anticipated
since overall bias is exactly what the two methods attempt
to quantify. The other methods' results should not vary
between datasets. Indeed, ENC', MILC and MCB have
proven to be independent of this factor, while B only
slightly decreases as overall bias rises.

Furthermore, in order to test the commutative property,
using each measure we compared datasets with varying
levels of bias to the "None" expected distribution, and
vice versa. Theoretically, when using many long
sequences, comparing "None" genes to, for instance,
"Med-1" expected distribution should yield the same
result as comparing "Med-1" genes to the "None"
expected distribution. In Figure 3b we show that among
the measures that allow comparisons, the only one han-
dling this appropriately was Karlin and Mrazek's B. MILC
is less sensitive than ENC' and especially MCB, which dis-
plays a polar effect, being more strongly influenced by
changes in the overall bias in the expected frequencies.

In genomes, individual amino acids may vary in amount
of codon bias, an occurrence termed 'codon bias discrep-
ancy', best described by the phrase "some codons are
more optimal than others" in Fuglsang's paper [34]. For
instance, in E. coli the CGU and CGC codons for arginine
are strongly preferred over the other four codons, while six
codons for serine are chosen more uniformly, with a mild
preference for AGC over the others.

It has been implied that ENC may be dependant on the
strength of the codon biasdiscrepancy [35], and the same
limitations are expected to apply to the ENC' due to the
similarities in calculation of the two statistics. Based on
two frequency tables adopted from Fuglsang [35], repre-
senting examples of moderately biased codon distribu-
tions with and without discrepancy, we generated genes of
varying lengths and compared them to a uniform distribu-
tion of codons. Figure 4a demonstrates that this amount
of discrepancy causes most of the methods to moderately
overestimate overall bias (10–15% of the dynamic range),
while B is less affected by this change. Figure 4b illustrates
a similar situation, however this time we performed the
test using our own codon distribution, "Med-1d", that
preserves the GC3s content of the "Med-1" while intro-
ducing discrepancy (see Methods). All of the methods

again overestimated bias, although to a lesser degree; rela-
tions between methods remain similar. It is still
undetermined to which extent amino acids differ in
degree of bias in real genomes, and our tests do not indi-
cate too strong an influence of this issue on measures of
codon usage.

Improving prediction of microbial gene expressivity
Analogous to Karlin and Mrazek's method of predicting
expression levels of genes [36], we formulate a statistic
named MELP (MILC-based Expression Level Predictor),
computed simply as the ratio of respective distances of a
gene's codon usage from the genomic average, and a pre-
defined reference set:

This novel method of quantitatively predicting gene
expressivity is then compared to existing methods: CAI
[37], Fop [1], E [36] and GCB [38]. Instead of testing for
context-independence, as we did with general measures of
codon usage, we chose to rate the expression level predic-
tors by how well they approximate real-world observa-
tions. We have collected datasets, listed in Table 3
(Methods), which consist of either mRNA or protein
abundance data for unicellular organisms obtained by dif-
ferent methods – mostly cDNA microarrays, but also by
Affymetrix arrays (Pfa-2, and partly Sce-3 data), SAGE
(also partly in Sce-3), and a number of quantitative pro-
teomics techniques. This was done in order to assemble a
collection of heterogeneous data large enough to allow a
rough comparison of codon usage-based predictors of
gene expression. Since we wanted to avoid making any
assumptions about the distributions of data in each data-
set, we used a nonparametric statistic, Spearman's (rank)
correlation coefficient, to quantify agreement with pre-
dicted expression levels (Figure 5). We also tried calculat-
ing Pearson (linear) correlation coefficients for the data,
which in some cases showed significant improvement by
log-transforming the data, however this effect was not
observed consistently among datasets or expression pre-
dictors [see Additional file 1].

The agreement of predicted and actual protein/transcript
levels varied greatly between all examined combinations
of prediction method and dataset. The cause may lie in the
quality of experimental data; for instance, mRNA abun-
dances and protein 2D-PAGE data have been shown not
to agree well in certain cases [39]; 2D-PAGE as a method
may only be suitable for detection of abundant proteins
[40], while microarray data tends to suffer from noise
introduced at each step of different experimental proto-
cols [41]. The other probable reason for relatively incoher-
ent results is that a model for predicting gene expression

MELP
MILC genome

MILC ref set
= ( )

( . )
( )5
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Effect of codon bias discrepancy on behaviour of codon usage measuresFigure 4
Effect of codon bias discrepancy on behaviour of codon usage measures. The figure shows how the measures react to codon 
discrepancy, i.e. when the amino acids within a sequence differ in amounts of bias. The value on the y axis is the amount of 
overestimation (in % of the methods' dynamic ranges) that occurs as discrepancy is introduced; this was determined by exam-
ining 10000 generated sequences for each length (x axis) and method. Figure 4a uses frequency tables adopted from Fuglsang 
[35], and 4b uses the authors' own frequency tables.
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from genomic data, based solely on codon usage, is
oversimplified. Other factors, such as promoter strength
and gene copy number should also be taken into account.
Fortunately, optimal codon usage in genes seems to coin-
cide with factors enhancing transcription – this is why it is
possible to observe a correlation between codon usage
(acting at translation level) and transcript abundances.
Keeping these limitations in mind, it seems safe to say
that, in comparison to other predictors, GCB and MELP
behave more consistently throughout all datasets.

Transcript and/or protein levels in a cell are normally sub-
ject to regulation, as opposed to codon usage patterns,
which are 'hard-coded' in the genome sequence. If we sup-
pose the major force shaping gene-specific codon usage
patterns in microbes is selection for translation efficiency,
which operates in periods of fast competitive growth, it
follows that codon usage will be 'optimised' for genes
highly expressed in such periods. For that reason we chose
datasets of organisms harvested in exponential growth
phase, and without severe nutritional restrictions in the
medium. For instance, the Bsu-2 datasets describes Bacil-

Table 3: Transcript/protein abundance data used for validation of expression level predictors

name type N ref Web source Files / accessions medium

Saccharomyces cerevisiae

Sce-1 prot 2014 [51] http://bioinfo.mbb.yale.edu/expression/prot-v-mrna/ 1.ref-abund.xls, column G rich
Sce-2 prot 3960 [52] http://www.nature.com/nature/journal/v425/n6959/suppinfo/

nature02046.html
nature02046-s2.xls rich (YEPD)

Sce-3 mRNA 5432 [51] http://bioinfo.mbb.yale.edu/expression/prot-v-mrna/ 1.ref-abund.xls, column B combined data

Escherichia coli K-12 MG1655

Eco-1 prot 138 [46] http://arep.med.harvard.edu/labgc/proteom.html tables A1, A2, A3 minimal
Eco-2 prot [79] 47 ftp://ftp.ncbi.nlm.nih.gov/repository/ECO2DBASE/edition6/ columns AB, RIC rich
Eco-3 prot 69 [47] ftp://ftp.ncbi.nlm.nih.gov/repository/ECO2DBASE/edition6/ columns PHNppm, PSppm, 

NSppm
minimal (MOPS, 
glucose)

Eco-4 mRNA 2597 [53] http://www.pnas.org/cgi/content/full/112318199/DC1 3181Table6.xls, column D rich (LB)
Eco-5 mRNA 3685 [54] http://asap.ahabs.wisc.edu/annotation/php/logon.php EXPSET003: PALSP01-

PALSP11
minimal (MOPS, 
glucose)

Escherichia coli K-12 W3110

Ecj-6 mRNA 3788 [55] http://www.genome.jp/kegg/expression/ ex298 – ex320, ex328-
ex334

Bacillus subtilis

Bsu-1 mRNA 3581 [56] http://www.genome.jp/kegg/expression/ ex745 – ex749 rich (LB)
Bsu-2 mRNA 3590 [57] http://www.genome.jp/kegg/expression/ ex264, ex265, ex272, 

ex273, ex275, ex276, 
ex278 – ex286

rich (LB)

Bsu-3 mRNA 3577 [58] http://www.genome.jp/kegg/expression/ ex940 – ex945 DSM

Synechocystis sp. PCC6803

Syn-1 mRNA 2840 [59] http://www.genome.jp/kegg/expression/ ex832 – ex839 low light conditions
Syn-2 mRNA 2840 [60] http://www.genome.jp/kegg/expression/ ex22, 23, 24, 44

Plasmodium falciparum 3D7

Pfa-1 prot 1068 [61] http://www.nature.com/nature/journal/v419/n6906/suppinfo/
nature01107.html

nature01107-s1.xls average of 4 life 
stages

Pfa-2 mRNA 2081 [62] http://carrier.gnf.org/publications/CellCycle/ Table_1, columns I, K, Q, 
AB, AD, AJ, AO, AQ

average of 4 life 
stages
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Performance of codon usage-based expression level predictorsFigure 5
Performance of codon usage-based expression level predictors. Height of the columns shows the Spearman's (rank) correla-
tion coefficient for each gene expression dataset / predictor combination. Error bars illustrate the change in success of the pre-
diction when the default reference set (consisting of ribosomal protein genes >100 codons) is replaced by a computationally 
generated one [44].
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lus harvested at OD600 ≅ 0.4 – 0.6; an analogous dataset
[see Additional file 1] for bacteria harvested at OD600 ≅ 1.1
does not correlate so well with predicted expression levels
(Pearson's correlation coefficient for MELP = 0.234 vs.
0.187, for GCB = 0.277 vs. 0.185). In addition, the growth
conditions should match the organism's natural habitat.
For instance, E. coli grown in a rich medium has gene
expression levels closer to the predicted values than E. coli
in a defined medium; should the data in Eco-2 dataset be
replaced with data from MOPS+glucose grown cells [see
Additional file 1], the Pearson's correlation coefficient for
log-transformed data drops from 0.720 to 0.663 (MELP),
or from 0.708 to 0.642 (GCB). Furthermore, nitrogen or
phosphorus starvation of E. coli in the Eco-3 dataset
reduces the correlation with predicted values (data not
shown). Such connections between codon usage and gene
expression under different conditions can be used to
hypothesize about the exact 'natural' environment of a
microbe [42].

Any codon usage-based prediction of gene expression
relies on a prior definition of a 'reference set', consisting
of highly expressed genes. Our reference sets were defined
as all genes coding for ribosomal proteins, longer than
100 codons; other approaches to this issue exist. For
instance, the original definition for CAI [37] listed a set of
genes which have been empirically proven to be highly
expressed in yeast and E. coli; Karlin and Mrazek [36]
included transcription/translation related factors and
chaperones in the reference set, in addition to the ribos-
omal protein genes; attempts have been made to detect
major trends in codon usage by iterative computational
methods [38,43] and use the results to define a reference
set. We investigated to what extent reference set composi-
tion affects prediction of gene expression; the alternative
reference sets used were obtained from Merkl [44] and
generated by computationally detecting the major trend
in codon usage in a genome. The sets normally contained
ribosomal protein genes, elongation factors and energy
metabolism genes; also photosynthesis genes in Syne-
chocystis and histones in P. falciparum; such functional
assignments for reference set genes were not unexpected.
Under the assumption that the major trend is due to trans-
lational selection, the change in reference set composition
should have theoretically resulted in improved predic-
tion. However, the outcome was highly dependent on the
genome examined, and the predictor used (shown as error
bars in Figure 5). In some instances, the use of the alterna-
tive reference set resulted in poorer correlation. More
high-quality transcript/protein abundance data would be
required to reach a definite recommendation on forming
a reference set.

Conclusion
We introduce a novel method, based on a corrected log-
ratio chi-squared statistic, of measuring codon usage bias
in genes or gene groups – MILC. By comparing its per-
formance to other commonly used measures of codon
usage in a variety of contexts, we have established that
MILC is a generally applicable method, being resistant to
changes in gene length and overall nucleotide composi-
tion, and introducing little noise into measurements.
Other measures, however, may also be appropriate for
specific purposes: B, when comparing very long sequences
(groups of genes, whole genomes) which are expected to
differ significantly in codon usage and/or exhibit bias
discrepancy; or MCB, when comparing sequences of vary-
ing lengths but relatively similar in codon preferences. We
have also evaluated the methods' ability to estimate gene
expression levels by comparing them to actual mRNA/
protein abundance data from several species. Out of the
tested predictors, GCB and MELP exhibit the most consist-
ent behaviour. A reference set defined simply by including
ribosomal protein genes appears to be a valid starting
point for expression level predictions in examined
prokaryotes and unicellular eukaryotes, although one
should be cautious when interpreting the results of such
estimations. The MILC and MELP methods have been
implemented in the version 2 of the INCA software, avail-
able from the bioinfo-hr.org website [45].

Methods
Performance evaluation
The measures of codon usage ENC, B, MCB, ENC' and
SCUO were computed as in [26,21,22,19] and [30]
respectively. The test sets of randomly generated
sequences follow the nucleotide compositions proposed
in [20], and are reviewed in Table 1. The amino acid fre-
quencies were kept proportionate to their degeneracy class
(number of codons coding for it in the standard genetic
code), i.e. a 4-fold amino acid is used twice as often as a
2-fold amino acid. As a consequence of the imposed
restriction on amino acid composition, the nucleotide
ratios in Table 1 reflect the nucleotide composition at
silent sites only. For each combination of gene length
(100, 150, 250, 500, 1000 and 2500 codons) and nucle-
otide composition used, 10000 sequences were generated;
each sequence was compared, using all measures, to an
expected frequency table (derived from data in Table 1)
and the mean and standard deviation for all
measurements were determined. Generated sequences did
not contain stop codons.

Values in Figures 1, 3 and 4 are expressed as percentages
of the 'dynamic range' of a method, the largest difference
between its high and low values under realistic condi-
tions. This was assessed by comparing, using each
method, first a set of 10000 'None' sequences (2500
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codons long) to the 'None' frequency table, and then a set
of 10000 'High-2' sequences (2500 codons long) to the
'None' frequencies, and finally by subtracting the num-
bers; this process is summarized in Table 2. Because of this
normalization process, positive values of the mean always
signify overestimation of bias, even though, for instance,
a higher value of ENC' normally means less bias.

The codon frequency tables used to generate sequences,
derived from the None, Low, Med and High nucleotide
compositions, are available in the accompanying materi-
als [see Additional file 1], as well as the frequency tables
used to test for codon usage discrepancy effects.

Predictors of gene expression
The expression level predictors CAI, E, and GCB were
computed as in [37,36] and [38], respectively. When cal-
culating the 'frequency of optimal codons' Fop, a codon
with a relative adaptiveness (codon frequency divided by
the frequency of the most frequent codon) larger than 0.9
was considered optimal. Experimental datasets used to
investigate the performance of the predictors are listed in
Table 1. Datasets Sce-1, 2, 3, and Eco-4 were used 'as-is'
from the respective sources. Eco-1 dataset was created by
combining molar abundances (column "N-abd") from
Tables a1, a2 and a3 in [46]; if a gene occurred in more
than one table, its final abundance value was calculated as
an average of the two/three measurements. Eco-2 dataset
was created from the E. coli Gene-Protein Database [47] by
multiplying values in the "AB" column (abundances)
with values in the "RIC" column (rich media) and divid-
ing by the "MWc" column to obtain molar abundances.
Eco-3 dataset was created by averaging the "PHNppm",
"PSppm" and "NSppm" (control groups for phosphorus
and nitrogen starvation experiments), and by dividing by
the "MWc" column. Ecj-6, Bsu-1, 2, 3, Syn-1 and Syn-2
datasets were downloaded from the KEGG expression
data repository [48] and were processed in the following
manner: the local background ("Control-bkg") was sub-
tracted from the signal intensity ("Control-sig") for each
microarray spot in the control groups, and the resulting
values were normalised to the sum of 106 per experiment.
Finally, for each spot/gene a median value over all
experiments in a dataset was calculated. The Pfa-1 dataset
was created by averaging the sequence coverage of a pro-
tein over all four life stages; if a protein was not detected
in a P. falciparum stage, its sequence coverage was assumed
to equal 0. To create the Pfa-2 dataset, the columns I, K,
AB and AD were averaged to obtain an mRNA abundance
for the trophozoite, Q and AJ for the merozoite; column
AO provided values for the gametocyte, and column AQ
for the sporozoite. The final abundance values were again
obtained by averaging the four life stages. Files containing
coding regions of genes were downloaded from the NCBI

ftp site [49] for the Eco, Sce, Pfa and Syn datasets, and
from the KEGG ftp site [50] for the Ecj and Bsu datasets.

Authors' contributions
FS devised, tested and implemented the MILC and MELP
methods. KV supervised the project and contributed in
biological expertise. Both authors read and approved the
final manuscript.

Additional material

Acknowledgements
FS thanks Rainer Merkl for helpful discussion and data used in manuscript 
preparation.

References
1. Ikemura T: Correlation between the abundance of Escherichia

coli transfer RNAs and the occurrence of the respective
codons in its protein genes: a proposal for a synonymous
codon choice that is optimal for the E. coli translational
system.  J Mol Biol 1981, 151(3):389-409.

2. Grantham R, Gautier C, Gouy M, Jacobzone M, Mercier R: Codon
catalog usage is a genome strategy modulated for gene
expressivity.  Nucleic Acids Res 1981, 9(1):r43-74.

3. Gouy M, Gautier C: Codon usage in bacteria: correlation with
gene expressivity.  Nucleic Acids Res 1982, 10(22):7055-7074.

4. Hooper SD, Berg OG: Gradients in nucleotide and codon usage
along Escherichia coli genes.  Nucleic Acids Res 2000,
28(18):3517-3523.

5. Ikemura T: Codon usage and tRNA content in unicellular and
multicellular organisms.  Mol Biol Evol 1985, 2(1):13-34.

6. Lawrence JG, Ochman H: Molecular archaeology of the
Escherichia coli genome.  Proc Natl Acad Sci U S A 1998,
95(16):9413-9417.

7. Moriyama EN, Powell JR: Gene length and codon usage bias in
Drosophila melanogaster, Saccharomyces cerevisiae and
Escherichia coli.  Nucleic Acids Res 1998, 26(13):3188-3193.

8. Daubin V, Perriere G: G+C3 structuring along the genome: a
common feature in prokaryotes.  Mol Biol Evol 2003,
20(4):471-483.

9. Lafay B, Lloyd AT, McLean MJ, Devine KM, Sharp PM, Wolfe KH: Pro-
teome composition and codon usage in spirochaetes: spe-
cies-specific and DNA strand-specific mutational biases.
Nucleic Acids Res 1999, 27(7):1642-1649.

10. Seffens W, Digby D: mRNAs have greater negative folding free
energies than shuffled or codon choice randomized
sequences.  Nucleic Acids Res 1999, 27(7):1578-1584.

Additional File 1
Rationale behind the length correction of the MILC method, codon fre-
quencies used for testing of codon usage measures, and performance of the 
expression level predictors. Sheets 1a, 1b and 1c demonstrate, by example, 
how the chi-square and G scores for amino acids of different degeneracy 
classes behave when the observed codon counts are small. Sheet 2 contains 
the codon frequency tables used in testing of the codon usage measures. 
Sheet 3 describes the performance of the expression level predictors, 
expressed as Spearman (rank) and Pearson (linear) correlation coeffi-
cients of the predicted values and experimentally obtained mRNA/protein 
abundance data sets.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-182-S1.xls]
Page 13 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-6-182-S1.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6175758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6175758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6175758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7208352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7208352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7208352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6760125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6760125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10982871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10982871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3916708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3916708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9689094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9689094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9628917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9628917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9628917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10075995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10075995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10075987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10075987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10075987


BMC Bioinformatics 2005, 6:182 http://www.biomedcentral.com/1471-2105/6/182
11. D'Onofrio G, Jabbari K, Musto H, Bernardi G: The correlation of
protein hydropathy with the base composition of coding
sequences.  Gene 1999, 238(1):3-14.

12. Oresic M, Shalloway D: Specific correlations between relative
synonymous codon usage and protein secondary structure.  J
Mol Biol 1998, 281(1):31-48.

13. Karlin S, Mrazek J, Campbell A, Kaiser D: Characterizations of
highly expressed genes of four fast-growing bacteria.  J
Bacteriol 2001, 183(17):5025-5040.

14. Lafay B, Atherton JC, Sharp PM: Absence of translationally
selected synonymous codon usage bias in Helicobacter
pylori.  Microbiology 2000, 146 ( Pt 4):851-860.

15. Sharp PM, Averof M, Lloyd AT, Matassi G, Peden JF: DNA sequence
evolution: the sounds of silence.  Philos Trans R Soc Lond B Biol Sci
1995, 349(1329):241-247.

16. Urrutia AO, Hurst LD: The signature of selection mediated by
expression on human genes.  Genome Res 2003,
13(10):2260-2264.

17. Moriyama EN: Encyclopedia of the Human Genome: Codon
Usage.   [http://www.ehgonline.net ].

18. Ermolaeva MD: Synonymous codon usage in bacteria.  Curr
Issues Mol Biol 2001, 3(4):91-97.

19. Novembre JA: Accounting for background nucleotide compo-
sition when measuring codon usage bias.  Mol Biol Evol 2002,
19(8):1390-1394.

20. Comeron JM, Aguade M: An evaluation of measures of synony-
mous codon usage bias.  J Mol Evol 1998, 47(3):268-274.

21. Karlin S, Mrazek J, Campbell AM: Codon usages in different gene
classes of the Escherichia coli genome.  Mol Microbiol 1998,
29(6):1341-1355.

22. Urrutia AO, Hurst LD: Codon usage bias covaries with expres-
sion breadth and the rate of synonymous evolution in
humans, but this is not evidence for selection.  Genetics 2001,
159(3):1191-1199.

23. Rohlf FJ, Sokal RR: Biometry.   W. H. Freeman; 1994. 
24. Sharp PM, Tuohy TM, Mosurski KR: Codon usage in yeast: cluster

analysis clearly differentiates highly and lowly expressed
genes.  Nucleic Acids Res 1986, 14(13):5125-5143.

25. Shields DC, Sharp PM: Synonymous codon usage in Bacillus sub-
tilis reflects both translational selection and mutational
biases.  Nucleic Acids Res 1987, 15(19):8023-8040.

26. Wright F: The 'effective number of codons' used in a gene.
Gene 1990, 87(1):23-29.

27. Morton BR: Codon use and the rate of divergence of land plant
chloroplast genes.  Mol Biol Evol 1994, 11(2):231-238.

28. Freire-Picos MA, Gonzalez-Siso MI, Rodriguez-Belmonte E, Rod-
riguez-Torres AM, Ramil E, Cerdan ME: Codon usage in Kluyvero-
myces lactis and in yeast cytochrome c-encoding genes.  Gene
1994, 139(1):43-49.

29. Karlin S, Mrazek J: What drives codon choices in human genes?
J Mol Biol 1996, 262(4):459-472.

30. Wan XF, Xu D, Kleinhofs A, Zhou J: Quantitative relationship
between synonymous codon usage bias and GC composition
across unicellular genomes.  BMC Evol Biol 2004, 4(1):19.

31. Wang HC, Badger J, Kearney P, Li M: Analysis of codon usage pat-
terns of bacterial genomes using the self-organizing map.
Mol Biol Evol 2001, 18(5):792-800.

32. Zeeberg B: Shannon information theoretic computation of
synonymous codon usage biases in coding regions of human
and mouse genomes.  Genome Res 2002, 12(6):944-955.

33. Supek F, Vlahovicek K: INCA: synonymous codon usage analysis
and clustering by means of self-organizing map.  Bioinformatics
2004, 20(14):2329-2330.

34. Fuglsang A: The effective number of codons for individual
amino acids: some codons are more optimal than others.
Gene 2003, 320:185-190.

35. Fuglsang A: The 'effective number of codons' revisited.  Biochem
Biophys Res Commun 2004, 317(3):957-964.

36. Karlin S, Mrazek J: Predicted highly expressed genes of diverse
prokaryotic genomes.  J Bacteriol 2000, 182(18):5238-5250.

37. Sharp PM, Li WH: The codon Adaptation Index--a measure of
directional synonymous codon usage bias, and its potential
applications.  Nucleic Acids Res 1987, 15(3):1281-1295.

38. Merkl R: A survey of codon and amino acid frequency bias in
microbial genomes focusing on translational efficiency.  J Mol
Evol 2003, 57(4):453-466.

39. Gygi SP, Rochon Y, Franza BR, Aebersold R: Correlation between
protein and mRNA abundance in yeast.  Mol Cell Biol 1999,
19(3):1720-1730.

40. Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R: Evaluation
of two-dimensional gel electrophoresis-based proteome
analysis technology.  Proc Natl Acad Sci U S A 2000,
97(17):9390-9395.

41. Schuchhardt J, Beule D, Malik A, Wolski E, Eickhoff H, Lehrach H,
Herzel H: Normalization strategies for cDNA microarrays.
Nucleic Acids Res 2000, 28(10):E47.

42. Wagner A: Inferring lifestyle from gene expression patterns.
Mol Biol Evol 2000, 17(12):1985-1987.

43. Jansen R, Bussemaker HJ, Gerstein M: Revisiting the codon adap-
tation index from a whole-genome perspective: analyzing
the relationship between gene expression and codon occur-
rence in yeast using a variety of models.  Nucleic Acids Res 2003,
31(8):2242-2251.

44. Merkl R: Personal communication.  2004.
45. Bioinfo-hr.org website   [http://www.bioinfo-hr.org/inca ]
46. Link AJ, Robison K, Church GM: Comparing the predicted and

observed properties of proteins encoded in the genome of
Escherichia coli K-12.  Electrophoresis 1997, 18(8):1259-1313.

47. VanBogelen RA, Abshire KZ, Moldover B, Olson ER, Neidhardt FC:
Escherichia coli proteome analysis using the gene-protein
database.  Electrophoresis 1997, 18(8):1243-1251.

48. Nakao M, Bono H, Kawashima S, Kamiya T, Sato K, Goto S, Kanehisa
M: Genome-scale Gene Expression Analysis and Pathway
Reconstruction in KEGG.  Genome Inform Ser Workshop Genome
Inform 1999, 10:94-103.

49. NCBI Genomes FTP site   [ftp://ftp.ncbi.nlm.nih.gov/genomes/ ]
50. KEGG Genomes FTP site   [ftp://ftp.genome.jp/kegg/genomes/

genes ]
51. Greenbaum D, Colangelo C, Williams K, Gerstein M: Comparing

protein abundance and mRNA expression levels on a
genomic scale.  Genome Biol 2003, 4(9):117.

52. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A,
Dephoure N, O'Shea EK, Weissman JS: Global analysis of protein
expression in yeast.  Nature 2003, 425(6959):737-741.

53. Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN: Global
analysis of mRNA decay and abundance in Escherichia coli at
single-gene resolution using two-color fluorescent DNA
microarrays.  Proc Natl Acad Sci U S A 2002, 99(15):9697-9702.

54. Allen TE, Herrgard MJ, Liu M, Qiu Y, Glasner JD, Blattner FR, Palsson
BO: Genome-scale analysis of the uses of the Escherichia coli
genome: model-driven analysis of heterogeneous data sets.
J Bacteriol 2003, 185(21):6392-6399.

55. Mori H, Horiuchi T, Isono K, Wada C, Kanaya S, Kitagawa M, Ara T,
Ohshima H: [Post sequence genome analysis of Escherichia
coli].  Tanpakushitsu Kakusan Koso 2001, 46(13):1977-1985.

56. Asai K, Yamaguchi H, Kang CM, Yoshida K, Fujita Y, Sadaie Y: DNA
microarray analysis of Bacillus subtilis sigma factors of extra-
cytoplasmic function family.  FEMS Microbiol Lett 2003,
220(1):155-160.

57. Kobayashi K, Ogura M, Yamaguchi H, Yoshida K, Ogasawara N, Tan-
aka T, Fujita Y: Comprehensive DNA microarray analysis of
Bacillus subtilis two-component regulatory systems.  J
Bacteriol 2001, 183(24):7365-7370.

58. Serizawa M, Yamamoto H, Yamaguchi H, Fujita Y, Kobayashi K,
Ogasawara N, Sekiguchi J: Systematic analysis of SigD-regulated
genes in Bacillus subtilis by DNA microarray and Northern
blotting analyses.  Gene 2004, 329:125-136.

59. Hihara Y, Sonoike K, Kanehisa M, Ikeuchi M: DNA microarray
analysis of redox-responsive genes in the genome of the
cyanobacterium Synechocystis sp. strain PCC 6803.  J Bacteriol
2003, 185(5):1719-1725.

60. Yoshimura H, Yanagisawa S, Kanehisa M, Ohmori M: Screening for
the target gene of cyanobacterial cAMP receptor protein
SYCRP1.  Mol Microbiol 2002, 43(4):843-853.

61. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes
JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D,
Wu Y, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ: A
proteomic view of the Plasmodium falciparum life cycle.
Nature 2002, 419(6906):520-526.

62. Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, De
La Vega P, Holder AA, Batalov S, Carucci DJ, Winzeler EA: Discov-
Page 14 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10570978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10570978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10570978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9680473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9680473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11489855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11489855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10784043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10784043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10784043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8577834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8577834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12975314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12975314
http://www.ehgonline.net 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12140252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12140252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9732453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9732453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9781873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9781873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11729162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11729162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11729162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3526280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3526280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3526280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3118331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3118331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3118331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2110097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8170364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8170364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8112587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8112587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8893856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15222899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15222899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15222899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12045147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12045147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12045147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15059815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15059815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15081433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10960111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10960111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3547335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3547335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3547335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14708578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14708578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10022859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10022859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10920198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10920198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10920198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10773095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11110914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12682375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12682375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12682375
http://www.bioinfo-hr.org/inca 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9298646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9298646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9298646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9298644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9298644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9298644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11072346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11072346
ftp://ftp.ncbi.nlm.nih.gov/genomes/ 
ftp://ftp.genome.jp/kegg/genomes/genes 
ftp://ftp.genome.jp/kegg/genomes/genes 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12952525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12952525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12952525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14562106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14562106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12119387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12119387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12119387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14563874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14563874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11593750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11593750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12644242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12644242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12644242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11717295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11717295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15033535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15033535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15033535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12591891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12591891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12591891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12085767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12085767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12085767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12893887


BMC Bioinformatics 2005, 6:182 http://www.biomedcentral.com/1471-2105/6/182
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

ery of gene function by expression profiling of the malaria
parasite life cycle.  Science 2003, 301(5639):1503-1508.
Page 15 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12893887
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12893887
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results & discussion
	The "Measure Independent of Length and Composition" (MILC)
	Behaviour of codon usage measures under varying conditions
	Table 1
	Table 2

	Improving prediction of microbial gene expressivity
	Table 3


	Conclusion
	Methods
	Performance evaluation
	Predictors of gene expression

	Authors' contributions
	Additional material
	Acknowledgements
	References

