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Abstract
Background: Life processes are determined by the organism's genetic profile and multiple
environmental variables. However the interaction between these factors is inherently non-linear
[1]. Microarray data is one representation of the nonlinear interactions among genes and genes and
environmental factors. Still most microarray studies use linear methods for the interpretation of
nonlinear data. In this study, we apply Isomap, a nonlinear method of dimensionality reduction, to
analyze three independent large Affymetrix high-density oligonucleotide microarray data sets.

Results: Isomap discovered low-dimensional structures embedded in the Affymetrix microarray
data sets. These structures correspond to and help to interpret biological phenomena present in
the data. This analysis provides examples of temporal, spatial, and functional processes revealed by
the Isomap algorithm. In a spinal cord injury data set, Isomap discovers the three main modalities
of the experiment – location and severity of the injury and the time elapsed after the injury. In a
multiple tissue data set, Isomap discovers a low-dimensional structure that corresponds to
anatomical locations of the source tissues. This model is capable of describing low- and high-
resolution differences in the same model, such as kidney-vs.-brain and differences between the
nuclei of the amygdala, respectively. In a high-throughput drug screening data set, Isomap discovers
the monocytic and granulocytic differentiation of myeloid cells and maps several chemical
compounds on the two-dimensional model.

Conclusion: Visualization of Isomap models provides useful tools for exploratory analysis of
microarray data sets. In most instances, Isomap models explain more of the variance present in the
microarray data than PCA or MDS. Finally, Isomap is a promising new algorithm for class discovery
and class prediction in high-density oligonucleotide data sets.

Background
The gene expression microarray is an assay that measures
expression levels of tens of thousands of genes in parallel
on a single chip. Microarrays can be performed from a

very small amount of a biological sample, thus allowing
for an experimental design involving many sample
groups, repeats, dense time series, and samples collected
at high-granularity from various anatomic locations.
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Today, the cost of microarrays is the principal factor lim-
iting the number of samples that can be examined in a
particular experiment. In spite of the high cost of microar-
rays, two thirds of those surveyed by GenomeWeb said
they performed more than 200 microarrays and 57%
spent more than $100,000 on microarrays in 2003 [2].
Sixty eight percent of these chips were oligonucleotide
arrays, mostly Affymetrix chips. With the widespread use
of microarrays in basic research and their increasing use in
medical diagnostics, biomedical researchers can antici-
pate lower costs for chips that will lead to more studies
utilizing hundreds, if not thousands, of samples. This
expansion in sample size will provide researchers with
higher resolution insights into biological processes as they
are reflected in temporal, spatial, and functional patterns
in microarray data sets. To reveal these patterns, several
types of pattern recognition and clustering techniques
have been developed and applied to microarray data.

A common task in the analysis of large microarray data
sets is sample classification based on gene expression pat-
terns. This process can be divided into two steps: class pre-
diction and class discovery. During class prediction
samples are assigned to predefined sample classes;
whereas class discovery is the process of establishing new
sample classes. For example, when gene expression arrays
are used for cancer classification, class prediction assigns
tumor samples into pre-existing groups of malignancies,
while class discovery reveals previously unknown cancer
subtypes [3]. The newly discovered tumor subtypes may
have different clinical patterns, respond differently to cer-
tain drugs, and require more or less aggressive surgical and
radiological treatment. Class discovery may also reveal
previously unknown processes in cancer biology and
define more specific indications for certain drugs. Specific
drugs may be used to target newly discovered tumor sub-
types, thus facilitating pharmacogenomic drug design and
development. These goals will soon become achievable
with the results from microarray studies using large sam-
ples. Class prediction and class discovery using large data
sets will require the evaluation, adaptation, and develop-
ment of robust mathematical, statistical, and computa-
tional tools.

Several mathematical algorithms and computational
methods have been applied to class prediction and class
discovery in large gene expression data sets. The methods
most frequently used are based on clustering techniques
such as hierarchical clustering (HC) [4]. HC was used for
temporal classification in conjunction with Fourier analy-
sis to detect genes that correlate with periodic changes in
synchronized S. cerevisiae cells [5]. HC was also applied to
cancer classification, for example breast cancer classifica-
tion [6]. Other clustering techniques applied to microar-
ray data are the unstructured k-means clustering [7],

cluster affinity search (CAST) [8], fuzzy c-means clustering
[9], and two-way clustering [10] that was used for the
analysis of drug-tumor interactions [11]. Self-organizing
maps (SOM) is another technique that is particularly well
suited for exploratory data analysis. Unlike HC, SOM does
not impose a rigid structure to the data [12]. The utility of
SOM was demonstrated in leukemia classification using a
weighted voting procedure [3]. Weighted voting classifica-
tion was also used for predicting chemosensitivity of the
NCI-60 tumor collection [13] and human breast cancers
[6]. Supervised methods, such as Fisher's linear discrimi-
nant analysis, artificial neural networks (ANN), support
vector machines (SVM), and boosting, have the advantage
that the sample classes are usually defined by another
"gold standard" method (e.g., histology, clinical outcome,
length of survival, etc). In supervised classification, the
choice of classifiers is frequently based on other consider-
ations, e.g., genes that play a role in the pathomechanism
of a certain disease or are expressed in a particular tissue.
These "enrichment" methods can improve the prediction
strength of a classification and decrease the sample
number necessary for developing a prediction model.
However they also introduce bias that may lead to over-
training or lack of discovery of unexpected sample classes.
One of the supervised methods, support vector machines
(SVM), has the advantage that it does not make assump-
tions about the distribution of the data [14]. SVM was
tested on ovarian cancer, leukemia, and colon tumor data
sets [15] and was also demonstrated to be useful for
multi-class cancer classification [16-18]. Artificial neural
networks (ANN), another machine learning method, was
shown to classify small, round blue-cell tumors (SRBCT)
[19]. Tree harvesting, a new method of supervised learn-
ing was recently applied for gene expression data [20]. In
contrast to these complex procedures, much simpler clas-
sifiers may also perform equally well on some data sets.
For example, nearest shrunken centroids were applied to
SRBCT cells and leukemias [21].

Dimensionality reduction methods are useful in predict-
ing the underlying true dimensionality of a microarray
data set and reduce the number of variables applied as
inputs to any of the classification procedures. Multi-
dimensional scaling (MDS), a linear method, was used for
classifying alveolar rhabdomyosarcomas [22], cutaneous
malignant melanomas [23], and breast cancers [24]. Prin-
cipal component analysis (PCA), another dimensionality
reduction method, was used for visualizing gene expres-
sion maps of central nervous system (CNS) development
[25] and classifying embryonal CNS tumors [26]. Proba-
bilistic PCA, a method incorporating biological assump-
tions in linear factor models, was recently applied to two
yeast microarray datasets [27]. Another method, singular
value decomposition (SVD), was applied to soft tissue
tumors [28], S. cerevisiae cell cycle, and serum-induced
Page 2 of 17
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:195 http://www.biomedcentral.com/1471-2105/6/195
fibroblast data sets [29,30]. Generalized SVD (GSVD) was
developed to extract conserved gene expression patterns
comparable between two different organisms [31]. All
these linear methods are inherently sensitive to outliers,
missing values, and non-normal distribution. A variant of
SVD, robust SVD (rSVD), was recently developed to min-
imize the effect of these corruptions in the data set [32].
Sammon mapping, a nonlinear mapping algorithm [33]
was incorporated in the R multiv package as well as gene
expression data processing and exploratory analysis soft-
ware, such as ENGENE [34]. To address similar issues, Iso-
map [35] a nonlinear technique of dimensionality
reduction originally designed for solving classical prob-
lems of pattern recognition, such as visual perception and
handwriting recognition, was applied recently to discov-
ery biologically relevant structures in cDNA microarrays
[36,37].

We have applied Isomap to the analysis of both breast
cancer microarray data sets and prostate cancer proteom-
ics spectra [36] and showed that it consistently outper-
formed PCA in revealing biologically relevant low-
dimensional structures in high-dimensional data sets.
Nilsson et al. independently demonstrated the utility of
Isomap using a lymphoma and a lung adenocarcinoma
cDNA microarray data set [37]. We report here the appli-
cation of Isomap to three independent Affymetrix Gene-
Chip® data sets. We show that Isomap is capable of
discovering temporally, spatially, and functionally rele-
vant structures in gene expression data. To avoid any kind
of bias that may be introduced with gene selection or feature
enrichment methods, we did not apply any data scrubbing, fil-
tering, or feature enrichment techniques. We also show that
Isomap can successfully detect biologically relevant struc-
tures even in the background noise of tens of thousands of
genes present.

Results
Spinal cord injury data set
The Isomap algorithm was first evaluated on a large data
set consisting of 170 rat U34A high density oligonucle-
otide arrays with 8,799 genes on each array [38]. These
data were originally collected for a study on spinal cord
injury that illustrated the role of cell cycle in trauma-
induced neuronal death [38]. Compared to earlier micro-
array studies on experimental spinal cord damage, this
study applied a lower level spinal cord injury, used indi-
vidual rat samples rather than pooled spinal cord tissues,
evaluated several time points, employed larger Affymetrix
arrays, and used both sham-injured and naïve controls.

Unlike this original study, we do not make the assump-
tion that only those genes "consistently expressed above
background" are important for further consideration. The
DiGiovanni et al. study used a stringent inclusion thresh-

old that included only those genes present in at least 40%
of all the samples. In addition to this first filter, a second
filter was also applied that eliminated genes that did not
have a change in expression level of at least two-fold com-
pared to that of the sham controls, which was determined
with Welch ANOVA t-test. Unlike the DiGiovanni et al.
study, our analysis considers all 8,799 genes, thus elimi-
nating an important source of potential selection bias. We
do not use stringent selection criteria at the level of data
scrubbing, because these filters may introduce confound-
ing into the data set, which can lead to separation between
sample classes based on subjective filtering criteria rather
than existing biological phenomena.

One hundred seventy samples were collected from spinal
cords of naïve rats, after sham operations, as well as mild,
moderate, and severe injuries. In addition to these five
severity classes, samples are also classified into one of
three locations, such as below, above, and at the position
of the spinal cord injury. The third classification category
is the time interval from the injury to the sample collec-
tion. These time points are: 0 min, 30 min, 4 h, 24 h, 2
days, 3 days, 7 days, 14 days, and 28 days. All the 170
samples were subjected to Isomap analysis in a com-
pletely unsupervised fashion without the a priori knowl-
edge of which classes the sample belongs to. Isomap fits a
nonlinear manifold on the 170 samples. This manifold is
used to express sample-to-sample distances as path dis-
tances on the surface of the manifold rather than the
direct Euclidean distance without considering the exist-
ence of the manifold. Distances are computed for all pairs
of the 170 samples and subjected to multi-dimensional
scaling. The result of this procedure is presented in Figure
2 in a three dimensional coordinate system where each
sphere represents one sample.

Figure 2 shows the 170 samples in a three-dimensional
model that was generated by Isomap. Samples are classi-
fied and colored according to one of three major attributes
– time, location, and severity of the injury. The sphere
diameters express the compactness of the sample classes;
the more compact the class, the smaller the diameter of
the sphere. If members of a class spread out in a larger
space then larger size spheres are displayed. The sphere
diameter is determined as the 95 percentile of the distance
distribution from the nearest neighbor within the class.
The Isomap model successfully clusters similar samples
into groups that are at well-defined locations of the three-
dimensional model. The least affected sham-operated
samples are shown at the very central core location of the
model. By contrast, the most affected samples after mod-
erate to severe injury at 24 h (that is, the most active phase
of spinal cord injury) are shown at the peripheries of the
model.
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The location panel (Fig. 2A) shows that samples from
regions below and above the injury are at the central core
of the model. At the same time, samples from the injury
itself are displayed in the peripheral lobes of the model.
There is no visible separation between the unaffected sam-
ples and those originating from locations other than the
injury itself.

The time panel (Fig. 2B) shows a clear-cut time-dependent
separation of the samples along the x-axis. The right-side
lobe of the model shows samples at 30 min, 4 h, and 24
h after injury. The earlier samples are at the core of the

model. Conversely, samples from later time points are
found at more distal locations in the right-side lobe of the
model. This time-pattern is in agreement with Di Gio-
vanni et al. [38] who found with temporal clustering that
the immediate early genes are over-expressed at 30 min
after spinal cord injury. This is followed by genes associ-
ated with inflammatory and oxidative stress plateauing at
4 h after injury, as well as cell cycle and neuronal apopto-
sis-regulating genes at 4–24 h. Isomap effectively sepa-
rates this early active phase of post-injury damage from
the later phase of regeneration that takes place at 48 h –
28 days. Samples from this later regenerative phase, at

Isomap analysis of the spinal cord injury data setFigure 2
Isomap analysis of the spinal cord injury data set. Three-dimensional Isomap models were generated from 170 rat high 
density oligonucleotide arrays with 8,799 genes on each array as described in Systems and Methods. Samples were classified 
based on the A: time, B:location, and C:severity of the spinal cord injury. Sphere diameters express the 95 percentile distance 
from the nearest neighbor within the group. Neighborhood size: k = 3. D: Residual variance after the application of Isomap, 
MDS, and PCA models. See text for more detail. Animated images are presented in Additional Files 1, 2, 3.
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time points of 2, 3, 7, 14, and 28 days, are displayed in the
left-side lobe of the Isomap model. During regeneration,
the earlier samples are shown in the more peripheral loca-
tions and the later samples are closer to the central core of
the model. It is noteworthy that some samples are at the
peripheral locations of the model even 28 days after the
injury, which is explained by incomplete regeneration and
permanent damage caused by a more severe spinal cord
injury as will be demonstrated later. In the time panel, Iso-
map shows the most striking separation between the early
and later phases of post-injury events. The right-side lobe
of the model contains samples from the early 30 min – 24
h phase of the post-injury damage. In these samples, the
dominant events are the spinal cord injury, the secondary
biochemical changes, and the endogenous autodestruc-
tive events. On the other hand, the left-side lobe of the
Isomap model contains samples from the later 48 h-28
day phase when the neuroprotective and recovery pro-
moting phenomena overcome the earlier autodestructive
events.

The severity panel (Fig. 2C) shows that samples taken after
incremental levels of spinal cord injury appear at increas-
ingly distal locations in the Isomap model. The sham-
operated samples are located in the central core of the
model surrounded by a shell of samples from rats with
mild spinal cord injury. The most peripheral samples in
both lobes of the model are those representing moderate
to severe injury. In the right lobe of the model, which rep-
resents the 30 min – 24 h time points, there is no clear
separation between moderate injury samples and those
with severe injury. Unexpectedly, in the left lobe that rep-
resents the later time points, the samples with moderate
injury are more distal than those with severe injury.
Although this separation between the moderate and
severe injury was not anticipated, the separation between
mild and moderate to severe injury is very clear. This sep-
aration also answers a question we raised on the time
panel. In the left lobe of the model, six samples are visible
at 28 days after injury. Three of these samples are in a clus-
ter that is closer to the periphery and the other three sam-
ples are closer to the core of the model. The severity panel
clearly shows that the three distal samples are those that
underwent moderate injury and the more central three
samples are those with only mild injury. This finding is
consistent with our interpretation that the left lobe of the
model represents the regeneration process. While three
rats were able to partially recover from a mild injury after
28 days, the other three animals with moderate spinal
cord injury did not recover by this time.

For comparison, in addition to Isomap analysis we also
used hierarchical clustering [4] to cluster the 170 samples
based on their gene expression patterns (Fig. 1). After clus-
tering, the orientation of the branches of the clustering

tree is undefined. Therefore, we used SOM to fold the
leaves in an order that places the more similar samples
closer to each other [12]. Although hierarchical clustering
and SOM clusters similar samples into well-defined
groups, the result is inferior to the Isomap model because
the tree structure can display only one-dimensional struc-
tures, which is inadequate for displaying complex multi-
dimensional phenomena such as spinal cord injury. In
this experiment, several modalities are present, such as
location and severity of the injury and the elapsed time
after injury. Unlike clustering, Isomap analysis discovers
these three major modalities and presents the 170 sam-
ples in a fashion that the underlying biological processes
can be interpreted based on these three modalities.

Rat multiple tissue gene expression data set
Isomap was applied to another data set containing 122
samples from 11 peripheral tissues and 15 brain regions
from three common outbred rat strains, such as Wistar,
Wistar Kyoto, and Sprague Dawley. The original study was
performed to characterize physiological expression levels
in these anatomical locations, to find genes that are
important in certain brain regions, and to explain the phe-
notypic variations between rat strains [39]. This data set
consists of 122 Affymetrix rat U34A arrays with 8,799
genes on each array.

Using Affymetrix MAS5, Walker et al. applied several fil-
ters on the genes, such as t-test p-value less than 0.05, at
least two-fold change of expression levels, and minimum
expression thresholds. Additionally, they used Rosetta
Resolver with two filters such as Resolver ANOVA p-value
less than 0.05 and at least two-fold change of expression
levels. Our Isomap analysis of this data set used all genes
to compute sample-to-sample differences without the use
of input filters. Although our approach may increase the
noise in the data set, it also eliminates any potential
source of selection bias. We also avoided using any tissue-
enrichment techniques based on a priori knowledge. Iso-
map analysis was carried out in a completely unsuper-
vised fashion.

We were surprised by the ability of Isomap to sort several
rat tissue samples in a fashion that reflects the topological
anatomy of the source tissues (Fig. 2A). It is apparent in
this figure that duplicate samples from the same tissue are
displayed at almost identical locations on the Isomap
map. For example, on the top left side of the figure, dupli-
cates from small intestine, large intestine, and endothelial
samples are presented as three dots. These three tissues are
displayed close to each other, which is expected since the
primary components of all three are epithelial cells.
Nearby is displayed the kidney, a large part of which is
also derived from epithelial cells. Below these samples on
the mid left part of the figure close to each other are the
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Hierarchical clustering of samples in the spinal cord injury data setFigure 1
Hierarchical clustering of samples in the spinal cord injury data set. One hundred seventy rat high density oligonucle-
otide arrays were clustered with hierarchical clustering as described in Systems and Methods. The samples are annotated on 
time, location, and severity of the injury.
Page 6 of 17
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:195 http://www.biomedcentral.com/1471-2105/6/195
spleen and thymus samples, two organs of the immune
system. On their right is the bone marrow which is the
primary site of blood cell generation and therefore func-
tionally related to the spleen and thymus. On the bottom
left part of the figure, close to each other are the two major
muscle tissues, such as the skeletal muscle and the heart
muscle. At the bottom of the figure is the cornea that is an
ectodermal tissue close to the brain samples that are also
ectodermal in origin and farther away from the endoder-
mal and mesodermal tissues mentioned above. The two
endocrine glands of the brain, such as the pineal and pitu-
itary glands, are somewhat separate from the other parts
of the brain.

Figure 3D is a three-dimensional Isomap model of an
enlarged region of panel A. The bottom left corner of this
figure is the cornea below the primary cortical neurons
(PCN). Right of the PCN is the dorsal striatum (DS) and
the nucleus accumbens. Walker et al. were specifically
interested in studying drug-seeking behavior; therefore
separate samples were collected from the core and shell
regions of the nucleus accumbens. In our Isomap model,
these samples are displayed very close to each other.
Above the nucleus accumbens is displayed the ventral teg-
mental area (VTA) and the amygdala (A). Near to the top
of the figure are the dorsal raphe (DR) and the hypothala-
mus (H). Left of the hypothalamus is the pituitary, an
endocrine gland under the control of the hypothalamus.
Even farther left is the pineal gland, another endocrine
organ related to the pituitary gland. On the right middle
part of panel D, are two samples from the locus ceruleus
presented at almost identical locations in the Isomap
model. In the top right portion of panel D are cortical
locations that are displayed in panel E in a two-dimen-
sional Isomap model.

Figure 3E is a two-dimensional Isomap model of another
enlarged region of panel A. This panel shows the neigh-
borhood graphs used for building the Isomap model. On
the left side of this panel is represented the prefrontal cor-
tex (PFC) that is connected to the temporal/parietal/
occipital cortex (cortex minus frontal cortex, CMFC). At
the bottom of this panel are the samples from the frontal
cortex (FC) below two hypothalamus (H) samples. Above
these are samples from the amygdala (A), the amygdala
central nucleus (ACN), which is a part of the amygdala,
the ventral striatum (VS), and the dorsal striatum (DS).
Not circled are two samples from the Fisher dorsal root
ganglia (DRGF). Figure 3E also shows that most of the
amygdala samples are close to the ACN. Unexpectedly,
two other amygdala samples are in a very different loca-
tion showed on panel D close to the VTA. Similar to the
amygdala, the hypothalamus (H) is also shown at two dif-
ferent locations; two hypothalamus samples are shown in

panel E below the amygdala, and two other samples are in
panel D close to the dorsal raphe (DR).

Isomap analysis projects the hypothalamic samples onto
two different well-defined locations in the Isomap model.
This separation of the hypothalamus samples may reflect
an unequal contribution of the different hypothalamic
regions to the four hypothalamic samples and provides an
example of class discovery. The hypothalamus has several
anatomic regions, one of which is the periventricular
hypothalamus that is functionally related to the pituitary
as well as to the autonomic areas in the brain stem and the
spinal cord. Another hypothalamic region, the medial
hypothalamus has several connections with the medial
division of the amygdala. The third hypothalamic region,
the lateral preoptic hypothalamus, has a very complex
anatomy with many fibers passing through this region.
These subclasses may be explained by spatial or temporal
differences. The hypothalamus samples on panel D close
to the pituitary samples may originate from samples that
are rich in periventricular hypothalamus. On the other
hand, samples on panel E close to the amygdala samples
may be richer in medial hypothalamus. The separation of
the hypothalamus samples into two well defined classes
may be explained by not only anatomical but temporal
differences. Many of the hypothalamic nuclei synthesize
several neurotransmitters and hormones, such as cortico-
tropin-releasing hormone (CRH) and other related releas-
ing hormones. The levels of these molecules and the
activity of particular hypothalamic neurons may vary by
time depending on the circadian rhythm, stress, food
intake, emotional state, estrus cycle, and other factors. The
two hypothalamic subclasses discovered by Isomap may
be different because of these temporal variations.

Most of the amygdala (A) samples are projected on the
Isomap map at a location between the cortical regions and
the ventral striatum (Fig. 3E). Two samples, on the other
hand, are projected at the ventral tegmental area (VTA)
and the nucleus accumbens (panel E). These two
amygdala samples are clearly different from the rest of the
amygdala samples. This separation is consistent with ana-
tomical dissimilarities between different parts of the amy-
gdala. The largest portion of the amygdala, the basolateral
nuclear complex, primarily consists of pyramidal and stel-
late neurons similar to those in the cerebral cortex. In fact,
Isomap found most of the amygdala samples in the prox-
imity of the cerebral cortex. Another part of the amygdala,
the centromedial group, including the central nucleus
(ACN), is connected to the bed nucleus through fibers
called the stria terminalis. Although the bed nucleus is
anatomically closer to the hypothalamus, it is histologi-
cally very similar to the amygdala. This separation demon-
strates a potential class discovery by Isomap, where the
discovered classes are in agreement with anatomically,
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Isomap analysis of the rat multiple tissue gene expression data setFigure 3
Isomap analysis of the rat multiple tissue gene expression data set. Three- and two-dimensional Isomap models were 
generated from a data set containing 122 samples from 11 peripheral tissues, 15 brain regions of three common out-bred rat 
strains, such as Wistar, Wistar Kyoto, and Sprague Dawley as described in Systems and Methods. Panel A shows an overview of 
a two-dimensional model using k = 3 nearest neighbors. Panel B shows the residual variance after the application of Isomap, 
MDS, and PCA models. Panel C shows a 2-dimensional comparison map generated by Principal Component Analysis. This 
panel demonstrates that PCA, unlike Isomap, is less accurate in mapping the different tissues correctly. Arrows show that (1) 
the skeletal muscle and kidney samples are overlapping the forebrain samples, (2) the thymus and spleen samples overlap the 
nucleus accumbens samples, and (3) the small intestine samples are mapped at a distance from the (4) large intestine samples. 
Panel D shows a portion of panel A with a three-dimensional model with k = 4. Panel E presents another region of the over-
view map representing the central brain structures. The neighborhood graphs demonstrate the k = 3 nearest neighbors. Panel 
F presents the anatomic locations of the samples on brain slice images from the Neuroscience Division, Regional Primate 
Research Center, University of Washington: BrainInfo (2000) http://braininfo.rprc.washington.edu. The abbreviations are: A, 
amygdala; ACN, amygdala central nucleus; CMFC, cortex minus frontal cortex; DR, dorsal raphe; DRGF, Fisher dorsal root gan-
glia; DS, dorsal striatum; endoth, endothel; FC, frontal cortex; H, hypothalamus; LIntestine, large intestine; LocCer, locus ceruleus; 
NAccumb, nucleus accumbens; PCN, primary cortical neurons; PFC, prefrontal cortex; Pineal, pineal gland; Pituit, pituitary gland; 
SIntestine, small intestine; SkelMusc, skeletal muscle; Thym, thymus; VS, ventral striatum; and VTA, ventral tegmental area. See 
text for more detail.
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histologically, and functionally well defined structures
within the hypothalamus and the amygdala. Some of the
hypothalamus and amygdala samples potentially contain
more or less tissue from different parts of these anatomi-
cally heterogeneous brain structures, which leads to differ-
ent classifications based on the major constituent.

As a comparison, we analyzed the multiple tissue dataset
also with Principal Component Analysis (PCA) (Fig. 3C).
Unlike Isomap, PCA was unable to separate the skeletal
muscle, kidney, and bone marrow samples from each
other (arrow 1). With PCA, the thymus and spleen sam-
ples overlap the nucleus accumbens samples (arrow 2);
and the small intestine (arrow 3) and large intestine
(arrow4) samples are mapped at a distance from each
other. This comparison demonstrates that Isomap outper-
forms PCA in mapping the different tissue samples on a 2-
dimensional space. This difference in performance of the
two methods is also supported by the higher residual var-
iance of the PCA model compared to that of the Isomap
model (Fig. 3B).

High throughput drug screening data set
The Isomap algorithm was also applied to a high through-
put drug screening data set [40]. The goal of this study was
to develop a general approach for identifying gene expres-
sion signatures as surrogates for cellular states in high
throughput drug screening experiments. Particularly, Steg-
maier et al. screened 1,739 chemical compounds to iden-
tify those capable of inducing terminal differentiation of
acute myeloid leukemia (AML) cells. They exposed undif-
ferentiated HL-60 samples (undiff) to several chemical
compounds. The names and abbreviations of the chemi-
cal compounds selected for microarray analysis are listed
in Table 1. In addition to the HL-60 samples, Stegmaier et
al. also included primary acute promyelocytic leukemia
(APL), primary patient AML, normal human neutrophil
(poly), and normal human monocyte (mono) cells (Table
2). This gene expression data set consists of 86 human
genomic U133A Affymetrix arrays with 18,400 transcripts
and variants on each array and 30 human 6800 arrays
with 7,129 genes on each array.

Figure 4 shows a two dimensional Isomap model built
from 86 human U133A microarrays. Panel A presents a
low resolution overview of this model. The 86 samples are
distributed in a Y-shape with the untreated patient AML
samples and normal neutrophils clustered at one end of
the Y and the normal monocytes at the other. The two
perpendicular arrows on this panel represent the granulo-
cytic and monocytic differentiation. The former arrow
points from the HL-60 cells (undiff) to the normal neu-
trophils (poly) and the latter one points to the normal
monocytes (mono). As expected, HL-60 cells treated with
PMA, a well characterized inducer of monocytic differen-

tiation, are clustered close to the normal monocytes. It is
noteworthy that the gene expression patterns of the pri-
mary patient AML cells are very different from that of the
HL-60 cell line.

Figure 4B, an enlarged portion of panel A, focuses on the
monocytic end of the Y distribution showing HL-60 cells
treated with several chemical compounds. These com-
pounds, Apo, Keto, Cyc7p5, Sulma, Erythro, DMSO, Methyl,
Phen, EGFR, and PMA (Table 1) change the gene expres-
sion pattern of HL-60 cells to become more or less similar
to normal monocytes; therefore these compounds are
potential inducers of monocytic differentiation. ATRA is
displayed on the left side of this panel and represents an
effect that is more similar to granulocytic than monocytic
differentiation.

Figure 4C, another enlarged portion of panel A, shows an
area of the Y-distribution around the normal granulocytes
(poly). In addition to the granulocytes, this area also con-
tains duplicates of APL samples before and after several
drug treatments. The effect of drugs on APL, as measured
by the change of gene expression levels, is less compared
to the effect of the same drugs on the HL-60 cells. The

Table 1: Chemical compounds and their abbreviations used in 
the high throughput screening dataset

Apo (R)-(-)-apomorphine HCl
ATRA all trans retinoic acid
Caff 8-(3-chlorostyryl) caffeine
Cyc7p5 cyclazosin HCl
DMSO dimethyl sulfoxide
EGFR 4,5-dianilinophthalimide
Erythro erythro-9-(2-hydroxy-3-nonyl)adenine HCl
Keto 16-ketoestradiol
Methyl α-methyl-L-p-tyrosine
Perg pergolide methanesulfonate
Phen 1,10-phenanthroline
PMA phorbol-12-myristate-13-acetate
Scop (-) scopolamine methyl bromide
Sulma sulmazole
VitD calcitriol
5FU 5-fluorouracil
5FUD 5-fluorouridine

Table 2: Cells and their abbreviations included in the high 
throughput screening dataset

AML primary patient acute myeloid leukemia cells
APL primary acute promyelocytic leukemia cells
undiff HL-60 cell line
mono normal human monocytes
poly normal human neutrophils
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Isomap analysis of the high throughput screening data set U133A arraysFigure 4
Isomap analysis of the high throughput screening data set U133A arrays.Two-dimensional Isomap models were gen-
erated from 86 human U133A high density oligonucleotide arrays with 22,283 genes on each array as described in Systems and 
Methods. Panel A shows an overview map of the Isomap model. Arrows point to the directions of the monocytic and granulo-
cytic differentiation. Panels B, C,and D are zoomed in regions of panel A. Panel E shows Isomap analysis of the monocytic and 
neutrophilic differentiation markers as described in Systems and Methods. Neighborhood size k: = 4. Panel Fshows the residual 
variance after the application of Isomap, MDS, and PCA models. Abbreviations of compounds and cell types are listed in Table 
1 and 2, respectively. See text for more detail.
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result of Keto- and Phen-treatment on APL cells is different
from that of ATRA; while EGFR and Erythro causes only a
minor change in the expression pattern of APL cells.

Figure 4D zooms in the area of the Y-distribution that is
surrounding the undifferentiated HL-60 cells (undiff) at
the third end of the Y. Two compounds, 5-FU, and 5-FUD,
cause a change in the gene expression pattern that is dif-
ferent from monocytic and granulocytic differentiation.
The Scop- and Caff-treated samples are very similar to each
other and represent only a small change from the
untreated HL-60 cells. The effect of two other compounds,
Apo and Perg on HL-60 cells is unique and cannot be clas-
sified as only monocytic or granulocytic. At the same time,
VitD is displayed close to the ATRA-treated samples in the
left upper corner of panel D, which suggests that calci-
triol's effect on HL-60 cells is similar to that of ATRA. This
functional similarity is supported by the known similari-
ties of action between these two compounds. Both chem-
icals bind to nuclear receptors, VitD binds to vitamin D
receptors (VDR) and ATRA binds to retinoic acid receptors
(RAR). Both of these receptors heterodimerize with retin-
oid X receptor (RXR) and act as hormone-dependent tran-
scription factors.

Stegmaier et al. computed "monocyte and neutrophil
scores" based on four parameters: interleukin 1 receptor
antagonist (IL1RN) and secreted phosphoprotein 1 (SPP1) for
the monocyte signature genes and autosomal chronic gran-
ulomatous disease protein (NCF1) and orosomucoid 1
(ORM1) for the neutrophil signature genes. In a supple-
mentary table, these four values were presented for undif-
ferentiated HL-60 cells and cells treated with one of 16
compounds. In Figure 4E, we present a two dimensional
Isomap model built only from these four parameters.
Arrows point to the directions of the granulocytic (left)
and monocytic (right) differentiation. It is noteworthy
that our unbiased model, using the expression levels of all
the 18,400 transcripts and variants as input, offers a very
similar result to the model using only four signature
genes. In both models, the monocytic and granulocytic
differentiations are revealed and the various chemical
treatments cause similar changes relative to the two main
dimensions. In both maps, Caff and Scop are proximal and
represent only a small change compared to the undiffer-
entiated HL-60 cells (undiff). Perg, 5-FU, and 5-FUD cause
more change and Erythro, Apo, EGFR, Phen, ATRA, and
VitD are all mapped in similar relative locations in panel
A and E. The only major difference between the two mod-
els is in the location of Sulma and Methyl. However, in
both cases these two compounds are mapped close to
each other. All these similarities underscore Isomap's abil-
ity to recognize treatment-related changes in gene expres-
sion patterns even when no a priori information is
available about which genes are good predictors of a bio-

logical process or difference. Isomap can detect changes in
gene expression signals in the background noise of tens of
thousands of other genes.

Figure 5 presents the two- and three-dimensional Isomap
models built from 30 Affymetrix human 6800 arrays.
Panel B is shown to demonstrate the individual samples
and the separation between sample classes. Although the
sample number is relatively low, Isomap detects good sep-
aration between the patient AML, normal monocyte
(mono), neutrophil (poly), PMA-treated, and untreated
undifferentiated HL-60 sample classes. The ATRA-treated
HL-60 class partially overlaps with the untreated HL-60
class. This is in agreement with the result of the U133A
arrays that showed that ATRA has less effect than PMA on
the gene expression levels in HL-60 cells. Any of these
changes is less than the difference between the cell types,
such as HL-60, AML, neutrophils, and monocytes. In the
6800 arrays, similar to the U133A arrays, the PMA-treated
cells are on the monocytic differentiation axis and the
AML samples are mapped on the granulocytic differentia-
tion axis. Within the PMA-treated group, samples after 4
h, 12 h, and 24 h treatment are grouped together. As
expected, the 4 h group is located at the right side of the
PMA cluster closer to the untreated HL-60 cells and the 24
h group is located at the left side of the PMA cluster closer
to the normal monocytes.

Discussion
In this study, we use three Affymetrix high density oligo-
nucleotide microarray data sets to demonstrate Isomap's
ability to discover relevant structures in an unbiased fash-
ion. In the rat multiple tissue gene expression data set, the
structures revealed correspond to the anatomical topology
of the source organs and tissues [39]. Similarly, in the
high-throughput drug screening data set, the structures
match the monocytic and granulocytic differentiation pat-
terns of myeloid leukemia cells treated with various chem-
ical compounds [40]. We also demonstrate with a
complex spinal cord injury data set that Isomap reveals
the three main modalities (e.g., location, time, and sever-
ity of the injury) of the experimental design [38]. This Iso-
map model (Fig. 2) is superior to hierarchical clustering
(Fig. 1) because Isomap can model structures of higher
dimensionality while hierarchical clustering is limited to
the discovery of only one-dimensional structures. Cluster-
ing is limited in two significant ways; it requires well-sep-
arated data and linear correlation. The only relationship
clustering can detect is a one-on-one relationship when
pair-wise linear comparisons are made [41]. Isomap is a
nonlinear algorithm capable of analyzing microarray data
sets that are nonlinear in nature. The sources of these non-
linearities may originate from outliers, missing values,
and non-normal distribution; all common events for
measurements in biological systems.
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Isomap analysis of the high throughput screening data set human 6800 arraysFigure 5
Isomap analysis of the high throughput screening data set human 6800 arrays. Isomap models were generated from 
30 human 6800 high density oligonucleotide arrays with 7,129 genes on each array as described in Systems and Methods. Panel 
A shows a three-dimensional Isomap model. Panel B shows a two-dimensional Isomap model. Arrows point to the directions 
of the monocytic and granulocytic differentiation. Panel C shows the residual variance after the application of Isomap, MDS, 
and PCA models. Neighborhood size: k = 5. See text for more detail. Animated image is presented in Additional file 4.
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In all of our examples, Isomap is applied to the expression
level values of all of the genes in the microarray data set.
To avoid any kind of selection bias, no filtering or data
scrubbing procedures were applied. Even under these con-
ditions, we demonstrate that Isomap is capable of finding
the biologically relevant structures within noisy data sets.
The experimental noise may come from the measurement
error and the variations of expression levels of tens thou-
sands of genes. When Isomap is used in production mode,
the experimental noise may be decreased by eliminating
the genes that are not expressed in the studied tissues and
those which have very stable and unchanging expression
levels in all of the samples. These procedures will further
improve the resolution of the Isomap models and facili-
tate class discovery by Isomap. The classification power of
Isomap may be improved when it is used in combination
with enrichment procedures that weight the gene expres-
sion levels of different genes dependent on other surro-
gate information coming from the knowledge of chemical
pathways in which the gene plays a role, the tissues in
which the gene is expressed [42], and the gene expression
patterns that are evolutionarily conserved between differ-
ent organisms [39,43].

In addition to Isomap, all the three datasets were also ana-
lyzed with PCA and MDS. Residual variance curves are
presented for all the three datasets. In all instances, PCA
and Isomap outperformed MDS and in most instances,
Isomap worked the best out of the three methods. In the
spinal cord injury dataset, PCA and Isomap give compara-
ble results (Fig. 2D). However with 3–4-dimensional
models, Isomap performs better than PCA; and at dimen-
sions over 9, PCA worked better. In the multiple tissue
dataset, Isomap outperforms PCA in the range of 2–20
dimensions (Fig. 3B). Similarly, in the two drug screening
datasets, Isomap outperforms PCA at dimension 3 and
over (Fig. 4F) and at every dimension (Fig. 5C). Typically,
Isomap has a better performance in explaining the vari-
ance of microarray data at lower dimensions (Fig. 6). This
advantage of Isomap is eliminated at higher (over 10)
dimensions. The presented examples show that Isomap
works well for datasets with several samples that present
gradual changes from one another. However, when a few
very distinct classes of samples exist then the more classi-
cal methods, e.g., PCA work better. Isomap needs samples
to be present along the geodesic surface of the manifold.
In our examples, many severity levels of spinal cord injury
were considered, as well as multiple tissues and multiple
chemical compounds, which was the source of Isomap's
success. Another prerequisite for a successful application
of Isomap is a large enough number of samples. Isomap
will become really useful when datasets with hundreds or
thousands of microarrays need to be analyzed.

The structures discovered by Isomap help to understand
biological phenomena underlying these structures.
Visualization tools of Isomap models may be applied as
data mining tools for microarray data sets. Similar tools
were used for modeling co-regulated genes in C. elegans
with VxInsight [44] and generating high-resolution tem-
poral models of CNS development [25]. Moreover, Iso-
map is a promising tool of unbiased class discovery
because it is performed in a completely unsupervised
manner. This is a key advantage of the Isomap algorithm
considering the limited number of class discovery tools
[23,45,46] compared to the abundance of class prediction
methods. The Isomap algorithm is capable of revealing
structures in microarray data sets, which may provide
insight into underlying biological networks
[4,5,7,22,25,29,30,42,43,47].

Another application of the Isomap algorithm is predicting
class membership. We previously demonstrated the use of
Isomap for class prediction in a breast cancer outcome
microarray data set [36]. The selection of good classifiers
that are robust, insensitive to outliers, medically
interpretable, having high generalization power, and
based on the smallest possible subset with the maximal
discriminatory features [48] is important and should be
evaluated for Isomap in the future. Aclass prediction
model using the Isomap algorithm does not need to use
all the genes in the microarray. Somorjai et al. argue that
no matter what feature selection approach is used to the
microarray data, generally 50 or more features are needed
for classification [48]. In this paper, we show that only
four genes are used as input for an Isomap model (Fig.
4E). Isomap is a type of dimensionality reduction method
and may be evaluated as input to supervised machine
learning techniques, such as ANN and SVM. Besides gene
expression microarrays, Isomap can be used on other
types of biological data, such as genomic, proteomic, and
metabolomic data sets to reveal low dimensional struc-
tures related to diet-genome interactions, genotype-dis-
ease associations, and drug-gene-disease relationships.

Conclusion
Isomap, a nonlinear dimensionality reduction algorithm,
discovers low-dimensional structures embedded in high-
dimensional Affymetrix high-density oligonucleotide
microarray data sets. These structures correspond to and
help to interpret underlying biological phenomena
present in these data. Our work provides examples of
three experiments with temporal, spatial, and functional
processes revealed by the Isomap algorithm. Visualization
of Isomap models helps to understand these processes
and provides means of data mining from gene expression
data sets. The low-dimensional models generated by Iso-
map help to reveal new sample classes and are potentially
useful for class prediction. In summary, Isomap is a prom-
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ising new algorithm for the unbiased analysis of high-
density oligonucleotide microarray data sets.

Methods
Datasets
Spinal cord injury data set: A large data set consisting of
170 Affymetrix rat U34A high density oligonucleotide
arrays with 8,799 genes on each array was accessed at the
Gene Expression Omnibus (GEO) GSE 464. Rat multiple
tissue data set: Another data set consisting of 122 Affyme-
trix rat U34A arrays with 8,799 genes on each array was
accessed at the GEO GSE 952. High throughput screen-
ing data set: A gene expression data set based on high

throughput screening (GE-HST) was accessed at the GEO
GSE 995. This series is a combination of three other series:
GSE 976, 982, and 985. The accessed data set contains 86
human genomic U133A Affymetrix arrays with 18,400
transcripts and variants on each array and 30 human 6800
arrays with 7,129 genes on each array.

Probe-level microarray data analysis
All microarray data sets were downloaded to a local com-
puter in Affymetrix CEL file format. Some of these files
were text files, others were binary CEL files. Probe-level
data analysis was carried out with Bioconductor 1.3.28
libraries [49] in the R 1.8.0 environment on a dual proc-

Residual variance differences between PCA and Isomap modelsFigure 6
Residual variance differences between PCA and Isomap models.Typically, Isomap has a better performance explaining 
the variance in microarray datasets at lower dimensions. By increasing the number of dimensions being considered, this advan-
tage will be eliminated.
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essor PC with RedHat 8.0 operating system installed. Raw
data were first normalized with quantile normalization;
background correction and gene expression levels were
then computed with Robust Multichip Average (RMA)
[50].

Hierarchical clustering
Gene expression levels were expressed as RMA values and
imported into Gene Cluster 3.0 [4]. Genes were centered
to the mean and filtered with the criteria of genes with
expression levels ≥ 1.0 in at least 10% of the samples.
Since the RMA values are base-two logarithm-converted
values, this statement is equivalent to a requirement that
the expression levels of the selected genes be ≥ 2-fold or ≤
1/2 of the mean expression level of that gene in at least
10% of the samples. In case of the spinal cord injury data
set, 397 of 8,799 genes passed these filtering criteria. The
selected genes and all the samples were clustered using
centroid linkage hierarchical clustering based on uncen-
tered correlation similarity metric. Branches of the cluster-
ing trees were then folded using SOM and visualized using
Java TreeView 1.0.1. The result of this analysis with the
spinal cord injury data set is presented in Figure 1.

Isomap analysis of the microarray data sets
Gene expression levels of all genes were expressed as RMA
values and the result table was imported into the Matlab
environment. Sample-to-sample differences between all
pairs of genes were expressed as Euclidean distances of
RMA values. Isomap was carried out in Matlab with the
algorithm provided by Joshua Tenenbaum et al. [35]. We
used the nearest neighbor method with k = 2, 3, or 4
dependent on which value of k generated the minimal
residual variance. Other data processing and visualization
steps with the Isomap models were carried out with cus-
tom written Matlab functions. Source code is presented in
Additional Files 5, 6, 7, 8.

Isomap analysis of the monocytic and neutrophilic 
differentiation markers
Stegmaier et al. computed "monocyte and neutrophil
scores" based on four parameters: interleukin 1 receptor
antagonist (IL1RN) and secreted phosphoprotein 1 (SPP1) for
the monocyte signature genes and autosomal chronic gran-
ulomatous disease protein (NCF1) and orosomucoid 1
(ORM1) for the neutrophil signature genes [40]. In a sup-
plementary table of their paper, these four variables were
presented for undifferentiated HL-60 cells as well as for
cells treated with one of 16 chemical compounds. In this
study, we expressed sample-to-sample differences as
Euclidean distances of the base-two logarithm-converted
mean values of the four marker genes. An Isomap model
using the nearest neighbor method with k = 2 was per-
formed with the algorithm provided by Joshua Tenen-
baum [35]. All other data processing and visualization

steps were carried out with custom written Matlab func-
tions. The result of this analysis is presented in Figure 4E.
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Additional material

Additional File 1
Animated Isomap model of Fig. 2A.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-195-S1.gif]

Additional File 2
Animated Isomap model of Fig. 2B.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-195-S2.gif]

Additional File 3
Animated Isomap model of Fig. 2C.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-195-S3.gif]

Additional File 4
Animated Isomap model of Fig. 5A.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-195-S4.gif]

Additional File 5
Matlab code. Gene expression values are stored in a matrix (M) with var-
iables (genes) in the rows and observations (samples) in the columns. A 
vector (samples) contains the sample names. Another vector (pheno) con-
tains the classification of each sample. The gene names are stored in 
another vector (genes). Euclidean distances may be computed as D = 
L2_distance(M, M); If we want to perform Isomap at dimensions 1 
through 20 then we store this range in: options.dims = 1:20; The Isomap 
algorithm can be executed with a neighborhood size of 5 as follows: [Y, R] 
= Isomap(D,'k',5, options); 1 through 20 dimensional coordinates are 
stored in Y. coords and the residual variances are stored in R. The results 
can be wrapped around to create a 3D 'model' structure, using make-
model: model = makemodel(M, Y, options, samples, pheno,'i',3,5);
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-195-S5.m]
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