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Abstract
Background: Genomic sequence data cannot be fully appreciated in isolation. Comparative
genomics – the practice of comparing genomic sequences from different species – plays an
increasingly important role in understanding the genotypic differences between species that result
in phenotypic differences as well as in revealing patterns of evolutionary relationships. One of the
major challenges in comparative genomics is producing a high-quality alignment between two or
more related genomic sequences. In recent years, a number of tools have been developed for
aligning large genomic sequences. Most utilize heuristic strategies to identify a series of strong
sequence similarities, which are then used as anchors to align the regions between the anchor
points. The resulting alignment is globally correct, but in many cases is suboptimal locally. We
describe a new program, GenAlignRefine, which improves the overall quality of global multiple
alignments by using a genetic algorithm to improve local regions of alignment. Regions of low quality
are identified, realigned using the program T-Coffee, and then refined using a genetic algorithm.
Because a better COFFEE (Consistency based Objective Function For alignmEnt Evaluation) score
generally reflects greater alignment quality, the algorithm searches for an alignment that yields a
better COFFEE score. To improve the intrinsic slowness of the genetic algorithm, GenAlignRefine
was implemented as a parallel, cluster-based program.

Results: We tested the GenAlignRefine algorithm by running it on a Linux cluster to refine
sequences from a simulation, as well as refine a multiple alignment of 15 Orthopoxvirus genomic
sequences approximately 260,000 nucleotides in length that initially had been aligned by Multi-
LAGAN. It took approximately 150 minutes for a 40-processor Linux cluster to optimize some 200
fuzzy (poorly aligned) regions of the orthopoxvirus alignment. Overall sequence identity increased
only slightly; but significantly, this occurred at the same time that the overall alignment length
decreased – through the removal of gaps – by approximately 200 gapped regions representing
roughly 1,300 gaps.

Conclusion: We have implemented a genetic algorithm in parallel mode to optimize multiple
genomic sequence alignments initially generated by various alignment tools. Benchmarking
experiments showed that the refinement algorithm improved genomic sequence alignments within
a reasonable period of time.
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Background
One of the primary goals in analyzing complete genomes
is to identify all of the functional regions in the sequences,
including genes and regulatory regions. However, this
interpretive work is not keeping pace with the avalanche
of raw sequence data. This disparity is due in part to the
fact that algorithm development for genomic annotation
has been relatively slow, and annotation of completely
sequenced genomes inevitably depends on human expert
knowledge. The most effective method to understand
genomic content is to compare multiple genomes of vari-
ous phylogenetic distances. The coding regions of a large
set of common genes can be identified by comparing
genomic sequences that are distantly related phylogeneti-
cally. In addition, comparing the genomic sequences of
divergent non-coding regions that show some degree of
conservation can yield important information related to
regulation of gene expression, structural organization of
the genome, and possibly other yet unknown functions
[1]. Finally, functional and evolutionary inferences can be
made from comparative genomic analysis. For example,
orthologous relationships can suggest the function of a
genetic sequence when the function of a similar sequence
in another species is known.

One of the major challenges when comparing two or
more genomic sequences is producing a high-quality mul-
tiple sequence alignment of all the genomes. In recent
years, a number of computer programs have been devel-
oped for the alignment of large genomic sequences
including CHAOS/DIALIGN [2], MUMmer [3], WABA
[4], VISTA [5], BLASTZ [6], MAVID [7], and Multi-LAGAN
[8]. In general, these tools utilize heuristic algorithms that
provide an approximate solution to the problem of gener-
ating multiple sequence alignments. These heuristic tools
are based on many different paradigms, but they all fall
into the "anchor-extension" strategy, wherein a series of
strong sequence similarities (anchors) are identified first
and gaps are filled in (extension) by aligning the regions
between the anchor points. The resulting alignment is glo-
bally correct, but in many cases is suboptimal locally.

In this paper, we describe the development of a program,
GenAlignRefine, which improves the overall quality of
global multiple sequence alignments by using a genetic
algorithm to improve alignments in local regions.

Implementation
Multiple sequence alignment (MSA) is one of the most
difficult problems in computational biology and there are
only approximate solutions for all but the smallest align-
ments [9]. Therefore a number of novel heuristic algo-
rithms have been proposed [10]. There are at least two
distinct technical problems remaining: the choice of an
objective function (OF) that assesses the quality of an

alignment, and the design of an appropriate algorithm to
optimize the score from that objective function. Ideally, a
biologically meaningful alignment should produce a bet-
ter OF score than a suboptimal alignment. One popular
OF is the sum-of-pair (SP) function, which is a direct
extension of the scoring method used in pair-wise align-
ments [11]. The SP score for an aligned column in the
MSA is computed by scoring all of the pair-wise compari-
sons between each residue in each column of an align-
ment and adding the scores together. The major
shortcoming of the SP function is that the alignment qual-
ity is extremely dependent on the choice of a score matrix
and gap penalties. In general, this choice is problem-spe-
cific. For instance, for closely related input sequences, it
might be better to use a score matrix reflecting a short phy-
logenetic distance. On the other hand, for divergent
sequences, it might be more appropriate to choose a score
matrix reflecting a longer phylogenetic distance.

One alternative to using the SP function is the COFFEE
[12] function, which evaluates the consistency between a
multiple alignment and libraries of optimal pair-wise
alignments of the same sequences. Although COFFEE
does not completely overcome the problems related to the
choice of score matrix and gap penalties, it can reduce
them. (There are some algorithms such as Dialign, in
which the OF does not consider gapped regions. Instead,
the OF of Dialign uses the sum of weights of gap free seg-
ment pairs [13]). The optimal pair-wise alignment is inev-
itably affected by the choice of score matrix and gap
penalty, but a correct choice will be more likely since it is
possible to choose different score matricies and gap pen-
alties adaptively based on the distance detected during the
pair-wise alignment process. The COFFEE OF has been
shown to be more robust and to lead to better alignments
[14]. In our application, we chose to utilize the COFFEE
OF as a measure of the optimization of the multiple
sequence alignment. Our COFFEE score is calculated
based on the following formula:

where N is the number of sequences to be aligned; Wij is
the percent identity between sequence i and j in the opti-
mal pair-wise alignment library; Cij is the number of
aligned character pairs that are shared between the multi-
ple alignment and the optimal pair-wise alignment; and
Lij is the length of the optimal pair-wise alignment of
sequences i and j. The optimal pair-wise alignment library
is constructed by aligning every pair of input sequences
with an implementation of the Needleman-Wunsch algo-
rithm [15].
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To optimize an alignment by attempting to maximize its
COFFEE score, we chose to implement a genetic algo-
rithm. A genetic algorithm is a stochastic search method
based on the concept of biological evolution; i.e., in sim-
ulating an evolutionary process in a population of poten-
tial solutions, a better solution will evolve [16]. Biological
terms are used to describe the evolutionary process. Each
potential solution is called a chromosome; a set of chro-
mosomes refers to a population; and successive popula-
tions are called generations. To create new chromosomes
(or offspring), two types of operators are generally used:
mutation, which changes a single chromosome, and
crossover, which exchanges information from two or
more chromosomes. Based on Darwin's principle of sur-
vival of the fittest, chromosomes that perform well on cer-
tain fitness functions will have a greater likelihood of
producing more offspring. Since the best performing indi-
vidual in each generation is always selected for the next
generation, the solutions in each generation are at least as
good as those provided in previous runs. In this way, the
genetic algorithm is able to optimize solutions from any
source. Using genetic algorithms to solve MSA problems is
not a new idea. SAGA [17] successfully applies a genetic
algorithm to MSAs by attempting to optimize the
weighted sum-of-pairs with natural or quasi-natural affin-
ity gap penalties. Further attempts based on SAGA include
SAGA-COFFEE, which tries to optimize the consistency-
based objective function [14]. Our approach differs from
SAGA in several ways. First, GenAlignRefine is designed to
optimize multiple sequence alignments without regards
to their length. SAGA is not optimized to align genome-
length sequences. Second, in order to reduce the number
of genetic operators that need to be utilized, GenAlignRe-
fine pre-aligns each fuzzy region using T-Coffee. This
allows us to optimize the application of the genetic oper-
ators by using a combination of only 3 operators rather
than the full set of 22 operators used in SAGA (see below).

There are two considerations when designing a genetic
algorithm. The first is how quickly a genetic algorithm can
converge to an optimal solution. The second is the risk of
misguiding an optimization process to a solution that
appears to be optimal, but in fact resulted from conver-
gence to a local optimum. Genetic algorithms are known
to be extremely slow, with some MSA implementations
being hundreds of times slower than ClustalW [18,19].
Genomic sequences may be megabases in length, and
depending on the similarities between the sequences to be
aligned, there may be thousands of poorly aligned
regions. For that reason speed is a critical factor. To
improve the overall performance of this application, we
implemented the entire optimization process as a parallel,
cluster-based program.

Based on manual inspection of the multiple genome
alignments produced by various tools, we have found that
regions encompassing and surrounding gaps are where
most of the discrepancies between alignment methods
occur. In this study, we concentrated our attention on
these "fuzzy" regions. Fuzzy regions were defined as col-
umns in an alignment that contain a gap adjacent to a
gap-free region of at least 20 nucleotides. The gap-free
regions of 20 nucleotides in length provided a constrained
space in the multiple alignment that allowed the refining
algorithm to place gaps between the constrained posi-
tions. Experimenting with different lengths of gap-free
regions showed that a length of 20 was sufficient to allow
for reasonable constraint. Longer gap-free regions did not
increase the quality of final alignment, but did increase
the length of time required for the optimization process.

GenAlignRefine was developed based on the assumption
that the original starting alignment is globally correct.
With this rationale, the overall genome alignment is
shaped by those anchor regions that show strong similar-
ity and are therefore obvious orthologs. These optimal
anchor regions are kept intact. Optimization of the fuzzy
regions between these anchor points will therefore not
reshape the overall alignment, but will improve the over-
all quality of the alignment by improving each individual
local region. One possible reason that the starting align-
ment might not be globally correct would be if one or
more genomes contained large sequence rearrangements
in comparison to the other genomes. Regions containing
such rearrangements would need to be removed from the
analysis since these regions will not be directly alignable.
GenAlignRefine handles this problem by removing from
consideration fuzzy regions longer than 1000 bases that
may contain, in addition to rearrangements, large num-
bers of repeat sequences. Manual inspection of whole-
genome pair-wise dotplots [3,20] were also used to iden-
tify these unalignable regions.

Using a Linux cluster in master-slave mode, fuzzy regions
from an initial rough global MSA were identified. These
fuzzy regions were then sent by the master to one of the
slave nodes where a genetic algorithm (described below)
was used to optimize the fuzzy region. The process contin-
ued until all fuzzy regions were optimized.

It is important for the efficiency of the search process to
utilize a reasonable alignment for each fuzzy region as the
starting point for optimization. This avoids local optima
and yields better results in shorter periods of time. There-
fore, in GenAlignRefine, we first used T-Coffee [14] on
each of the fuzzy regions to produce an initial alignment,
which is then used as the starting point for the genetic
algorithm, thereby becoming the first chromosome from
which successive generations originate. This strategy has
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Mutation operators used in GenAlignRefineFigure 1
Mutation operators used in GenAlignRefine. a) Random_gap operator. Random gaps (shaded hypens) are inserted into 
the parent alignment to produce the offspring sequences. b) Local_gap_shuffle operator. Gaps in the parent are randomly 
moved to produce new offspring. c) Block_gap_shuffle operator. Contiguous blocks of gaps are randomly moved to new 
positions.
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been proven successful in other studies [21] and we have
found it to be very efficient. Furthermore, since each
potential solution in a population is derived from the T-
Coffee alignment, the simplest way to optimize the COF-
FEE score is to re-arrange gaps in the alignment. For that
reason, we implemented a subset of the mutation opera-
tors from SAGA [17] that perform gap re-arrangement:
random_gap, local_gap_shuffle, and block_gap_shuffle
(see Fig. 1). The random_gap operator randomly inserts a
gap into every sequence of the alignment. The
local_gap_shuffle operator shuffles one gap in every
sequence by randomly moving it to a different position in
that sequence. The block_gap_shuffle randomly moves
gaps in selected columns of every sequence of the align-
ment to different positions in that alignment. In addition,
any columns containing only gaps are deleted in each gen-
eration. A combination of random_gap, local_gap-shuf-
fle, and block_gap_shuffle was able to effectively simulate
any single mutation operator in SAGA. Previous studies
have shown that operator schedules (setting a probability
and frequency for use of each genetic operator) did not
improve the performance of SAGA compared to the uni-
form selection of SAGA operators [21]. After experiment-
ing with different operator scheduling strategies, we chose
to use the three operators at equal frequency.

In summary, the overall process used to generate refined
multiple sequence alignments starts with a set of
sequences that are initially aligned using a genome
sequence MSA tool such as Multi-LAGAN. Fuzzy regions
within these alignments are identified and individually
realigned using T-Coffee. These realigned regions are then
refined using our implementation of the indicated set of
genetic algorithm operators. All computation following
generation of the initial multiple sequence alignment
takes place on a Linux cluster.

GenAlignRefine was implemented in Perl to take advan-
tage of the convenience in manipulation of biological
sequences provided by the Bioperl [22] application pro-
gramming interface (API). To bridge the gap between Perl
and the message passing interface (MPI) [23] API which is
implemented in C/C++ and is required for our parallel
implementation, we also provide a wrapper module that
ports to Perl only those MPI C/C++ procedures necessary
for this application. The implementation of an efficient
Needleman-Wunsch algorithm [15] coded in C/C++ and
ported to PERL was used to construct pair-wise alignment
libraries.

Results and discussion
We performed our benchmarking experiment on a 32-
node Linux cluster in the Department of Computer and
Information Science at the University of Alabama at Bir-
mingham. All machines have 1.6 GHz Dual AMD

Opteron™ Processors, 2 GB of RAM, and are connected via
Gigabit Ethernet.

The lack of a "gold standard" for assessment of multiple
sequence genome alignments makes it difficult to assess
the performance of multiple genome alignment tools. In
this study, we chose a simulation-based approach to
benchmark the results produced by GenAlignRefine. Mul-
tiple sequences along with the correct, "optimal" multiple
alignment of these sequences as generated by the software
tool Rose (random model of sequence evolution) [24]
have been widely used to benchmark the performance of
multiple alignment tools [25] and phylogenetic analyses
[26]. We started with a sequence alignment created by
Rose which contains 9 sequences comprising about
100,000 nucleotides each. Sequence generation began
with 1 randomly generated ancestral sequence composed
of equal nucleotide base frequencies. From that sequence,
the 9 test sequences were generated based on the HKY evo-
lutionary model of point substitution [27] using a transi-
tion/transversion bias of 2.5. The insertion and deletion
threshold was set to allow insertions and/or deletions 5%
of the time. The mean base substitution rate was set to
0.05 substitutions per site. The tree was set to
((a:.2,b:.5):.1,(c:.4,d:.5,e:.4):.2,(f:.3,g:.4):.3,(h:.4,i:.5):.1).
For each sequence, the mutation probability of each
nucleotide position was set to either 0.0, 0.3, 0.6, 0.9, or
1. Using this set of 9 sequences, we generated two new
alignments using the programs Multi-LAGAN [8] which
was run locally using the default options, and CHAOS/
DIALIGN [2] which was run using the available web
application [28]. Each of the two new alignments was
then subjected to refinement by GenAlignRefine. We then
measured the consistencies between the alignments by
comparing each of the four new alignments to the original
simulated alignment produced by Rose. The consistency
between any two alignments, A and B is defined as the
ratio between the number of identical character pairs
between the two alignments, and the total number of
character pairs in alignment B. The results from this com-
parison are provided in table 1. In each case, GenAlignRe-
fine was able to improve the quality of each multiple
genome sequence alignment by at least 7% as measured
by an increase in the number of pair-wise matches to the
"optimal" alignment as constructed by Rose. It was also
apparent that the quality of the final alignment was
dependent on the quality of the original alignment prior
to refinement.

In addition to the above benchmarking experiments, we
also conducted a study to demonstrate the usefulness of
the program GenAlignRefine by refining the genome
alignment of complete genome sequences available for
the virus genus, Orthopoxvirus that includes variola virus,
the agent responsible for causing smallpox. Genome
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sequences used in this analysis were obtained mostly from
GenBank and included vaccinia virus strains Copenhagen
[GenBank: M35027], Western Reserve (WR) [GenBank:
AY243312], and Tian Tan [GenBank: AF095689] (with
updates from Dr. Chris Upton of the University of Victo-
ria); variola major virus strains Bangladesh [GenBank:
L2579] and India [GenBank: X69198]; variola minor virus
strain Garcia [GenBank: Y16780]; camelpox virus strains
CMS [GenBank: AY009089] and M-96 [GenBank:
AF438165]; cowpox virus strains Brighton Red [GenBank:
AF482758] and GRI-90 [GenBank: X94355]; ectromelia
virus strain Moscow [GenBank: AF012825]; and monkey-
pox virus strain Zaire [GenBank: AF380138]. Genome
sequences of monkeypox virus strain WRAIR 7–61 [Gen-
Bank: AY603973] and rabbitpox virus strain Utrecht
[GenBank: NC_005858] were kindly provided by Dr.
Mark Buller of Saint Louis University. The genome
sequence of ectromelia virus strain Naval was obtained
from [29]. An initial alignment of these 15 Orthopoxvirus
genomic sequences was created using Multi-LAGAN [8].
The overall length of the alignment was approximately
260,000 nucleotides.

Two considerations in implementing our genetic algo-
rithm were when to stop the optimization process and
how to breed the next generation. In our benchmarking
experiment, if there was no improvement in an align-
ment's COFFEE score for 500 generations, the optimiza-
tion process was stopped and the alignment with the best
COFFEE score was returned to the master node. As the
population size increases, the risk of falling into a local,
suboptimal alignment decreases, but so does the speed of
the optimization process. Since our starting alignments
are derived from T-Coffee, it is assumed that they are close
to the global optimum. For that reason, and for the sake
of efficiency, we try to keep the population size relatively
small. From each pool of 1000 individuals (alignments
generated by application of the genetic algorithm), only
the top 100 individuals with the best COFFEE scores are
allowed to breed. In addition, we use an elite selection
strategy in which some of the fittest individuals from the
first generation are allowed to carry over unaltered into
the second generation. We also permit individuals having

the best COFFEE scores to have more offspring. All of
these parameters are adjustable.

In general, regions with gaps are most likely to be discord-
ant and therefore in need of improvement. However, even
for closely related species, not all regions in their genomic
sequences can be aligned. For instance, the regions at the
ends of poxvirus genome sequences contain variable
numbers of repeat sequences and some of these repeating
units are species-specific [30] and thus cannot be aligned.
In our study, fuzzy regions longer than 1000 bases were
considered unalignable, so these regions were not subject
to optimization. In our orthopoxvirus alignment, there
were 18 fuzzy regions longer than 1000 bases, all of which
occurred at the ends of the original alignment. Between
these unalignable genomic regions, there were about 400
gapped (fuzzy) regions that were then subjected to the
genetic algorithm. Using 40 processors, it took 150 min-
utes to optimize all of these regions. Only some 200
regions were actually improved by the genetic algorithm
with the remaining 200 regions already showing optimal
COFFEE scores. Figure 2 displays the improvement in the
200 fuzzy regions based on the COFFEE scores. It is appar-
ent that, in general, regions with lower initial COFFEE
scores showed more improvement while regions with
higher initial COFFEE scores showed less improvement.

An improvement in COFFEE score is only one possible
measure that might reflect an actual improvement in
alignment quality. And since for these poxvirus
sequences, there is no "correct" alignment for comparison
as there was for the simulation, we chose to measure
improvement by simply demonstrating an increase in the
overall percentage identity calculated between all pair-
wise sequence comparisons, along with a decrease in the
length of the overall alignment due to the introduction of
fewer gaps. An increase in the percentage identity can be
achieved by simply inserting greater numbers of gaps into
the alignment without necessarily improving the overall
quality of the alignment. However, when the overall per-
centage identity is increased concomitant with a decrease
in the length of the alignment, then in general, we would
argue that the overall quality of the alignment has been

Table 1: Performance of GenAlignRefine on simulated data.

Program Before Refinement After Refinement

CHAOS/DIALIGN 78.0%* 85.1%
Multi-LAGAN 86.3% 93.0%

* The numbers indicate the consistency between the alignment generated with the genome alignment tool and the "correct" alignment generated by 
Rose (see text).
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improved. The alignment of the 15 Orthopoxvirus
genomic sequences produced by Multi-LAGAN was
259817 nucleotides in length and showed 96.0% identity
[see Additional file 1]. After refinement by GenAlignRe-
fine, the length of the alignment was 258593 with 96.2%
identity [see Additional file 2]. The improvement in the
percentage identity was marginal for the overall align-
ment, but for each fuzzy region, the improvement was
much higher. Significantly, this occurred at the same time
that the overall alignment length decreased – through the
removal of gaps – by approximately 200 gapped regions
representing roughly 1,300 gaps. Therefore, the increase
in the overall alignment quality was substantial.

The three mutation operators used in the genetic algo-
rithm were effective after using T-Coffee to initially realign
each fuzzy region of the starting alignment thus produc-
ing a seed for subsequent improvement. This is similar to
what has been seen in previous studies [21]. As the result-
ing alignment from T-Coffee can be viewed as an approx-
imation to the optimal result, starting with this
alignment, which is presumably close to the optimal
result in the multiple alignment search space, should
decrease the chance of becoming trapped into a local opti-
mum. And although there is still a risk that the optimiza-
tion process will be misguided to a local optimum, the
chance of this occurring should be small.

Genetic algorithms are known to be slow and computa-
tionally intensive compared to other methods [19]. How-
ever by using appropriate design parameters along with a
large computing cluster, we have shown that GenAlignRe-
fine can be used to efficiently and effectively improve
multiple sequence alignments of whole genome
sequences.

Availability and requirements
GenAlignRefine is freely available under the Artistic
License described by the Open Source Initiative [31]. The
source code can be downloaded via ftp [32]. Contact elli-
otl@uab.edu for information on obtaining the software.
It has been tested on an AMD Opteron™ Processor-based
Linux cluster with LAM/MPI and should be compatible
with other implementations of MPI.
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Improvement of COFFEE score for fuzzy regionsFigure 2
Improvement of COFFEE score for fuzzy regions. The 200 fuzzy regions derived from the starting Orthopoxvirus align-
ment that showed improvement following application of GenAlignRefine are displayed. For clarity, regions are sorted according 
to the overall improvement in COFFEE score. Vertical bars connect dots that show the improvement in COFFEE score for 
each region at each step in the refinement process. Red dots plot the original COFFEE score of the Multi-LAGAN-generated 
alignment for each region; green dots plot the COFFEE score of the same region after realignment by T-Coffee; blue dots indi-
cate the COFFEE score of the same region after optimization by the genetic algorithm. The small magenta squares plot the 
overall improvement in COFFEE score for each region.
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Additional material
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