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Abstract

Background: The genomes of prokaryotes and lower eukaryotes display a very strong || bp
periodic bias in the distribution of their nucleotides. This bias is present throughout a given
genome, both in coding and non-coding sequences. Until now this bias remained of unknown origin.

Results: Using a technique for analysis of auto-correlations based on linear projection, we
identified the sequences responsible for the bias. Prokaryotic and lower eukaryotic genomes are
covered with ubiquitous patterns that we termed "class A flexible patterns". Each pattern is
composed of up to ten conserved nucleotides or dinucleotides distributed into a discontinuous
motif. Each occurrence spans a region up to 50 bp in length. They belong to what we named the
"flexible pattern" type, in that there is some limited fluctuation in the distances between the
nucleotides composing each occurrence of a given pattern. When taken together, these patterns
cover up to half of the genome in the majority of prokaryotes. They generate the previously
recognized | | bp periodic bias.

Conclusion: Judging from the structure of the patterns, we suggest that they may define a dense
network of protein interaction sites in chromosomes.

Background

The distribution of nucleotides in genomes is not ran-
dom, various biases are affecting the genome sequences
from organisms spanning the three domains of life. For
example, the G+C content affects the genome as a whole.

To visualize the biases in the nucleotides distribution in
genomes, investigators have performed a variety of statis-
tical analyses; these operations basically consisted in
counting the nucleotides in a variety of subtle ways, while
attempting to identify how the counting observed in real
examples differed from a random distribution. Relevant
statistical methods developed so far include the following:
computation of correlations [1], power spectrum analysis

[2,3], DNA walking analysis [4], computation of entropy
[5,6], Hurst index estimation [7], detrended fluctuation
analysis [8], wavelet analysis [9], mutual information
function analysis [10], computational linguistics analysis
[11].

Among the different biases observed in the nucleotides
distribution in genomes, two stood out prominently.
Both are short-range biases, i.e. correlating nucleotides
over a short distance only, inferior to one thousand base
pairs (bp), and both are affecting the genome as a whole.
Both are present in many different organisms. This preva-
lent intensity and ubiquity is a hint that these biases are
very likely to be the result of some strong physical con-
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Deconvoluted correlation function of A following A in the genome of H. pylori. The correlation function has been treated so as
to hide the most intense component of period 3 bp due to the presence of genes in the genome of H. pylori. After treatment,
the function reveals a prevalent short-range component of period | | bp. This component represents the prevalent short-range
bias of period || bp in the distribution of nucleotides in the genome of H. pylori.

straints and/or biological functions acting on the affected
genomes.

The first prevalent bias, the most intense one, is easily vis-
ualized in the genomes of all prokaryotes, as well as of
lower eukaryotes. It also appears, though very dimly, in
the genomes of higher eukaryotes. This bias is periodic
with a periodicity of 3 bp (locally, the probability of pres-
ence of a given nucleotide depends on its position mod-
ulo three). This ubiquitous bias is effectively uncovered by
power spectrum analysis [12-17]. Its presence has never
been a mystery: it is due to the presence of protein coding
genes in genomes. Indeed, the structure of the genetic
code strongly affects the distribution of nucleotides
within protein coding sequences, biasing the distribution
of nucleotide triplets. As the gene density of higher
eukaryotes is very small, this bias cannot easily be
detected in these organisms. In contrast, for prokaryotes
and for lower eukaryotes, in which the gene density is
high, this bias is very easily detected. Its association to
protein coding proved to be useful to locate exons in
higher eukaryotic genomes [18]. This first bias is therefore
generated by genomic sequences that are of strong biolog-
ical significance.

Likewise, the second prevalent bias, also very intense, is
visualized in the genomes of most prokaryotes and lower
eukaryotes. For a given genome, the bias is encountered
throughout the genome. In contrast with the previous 3
bp periodic bias, which spans large distances (typically
several hundreds nucleotides) this bias does not involve
nucleotides over a distance longer than about one hun-

dred base-pairs: it is a short-range bias. It is also periodic,
but this time with a fuzzy periodicity of mean value 11 bp.
This signal has been visualized with the straightforward
computation of correlations [1,19] or its equivalent, the
power spectrum method [17]. The mean value of the peri-
odicity of this bias varies from organism to organism. In
the two articles just mentioned, the authors discuss the
relation between phylogeny and the distribution of these
periods. It turns out that it is generally of 10 bp for
Archaea or hyperthermophilic Bacteria and 11 bp or more
for the non-hyperthermophilic Bacteria, though there are
many exceptions to this rule [19]. In the case of lower
eukaryotes, a period of 10 bp for C. elegans and of 11 bp
for S. cerevisiae has been observed. In the case of higher
eukaryotes, a weak bias of period 10 bp is observed once
the many repeated sequences present in these genomes
have been removed from the analysis [19]. Moreover, in
prokaryotes and lower eukaryotes, the bias is affecting
coding sequences as well as non-coding sequences. This
general observation is illustrated in Figure 1 with a graphic
representation of the correlation function of nucleotide A
following itself in the genome of Helicobacter pylori.

This function measures the probability to get a nucleotide
A following another nucleotide A as their distance
increases. The correlation function has first been treated
by deconvolution so as to hide the overwhelming compo-
nent of period 3 bp that results from the presence of genes
in the genome (see above). The corresponding statistical
treatment is described in the Methods section. In the
graphic representation of the correlation function shown
in Figure 1, there is a prominent component of period 11
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bp. It appears as a short-range component as it completely
vanishes for nucleotides located more than 70 bp apart.
The periodic peaks do not occur every 11 bp exactly but
every 10 bp to 12 bp. The strength of the periodic bias is
illustrated by their large amplitude.

Although this bias is half as high in intensity as the one
created by the presence of genes, and although it is ubiqg-
uitous in prokaryotes and lower eukaryotes, the nucle-
otide sequences generating this bias have not been
determined so far. Nonetheless, the biological function
that might be at the root of this bias has been proposed.
In the case of Archaea, it has been suggested that the posi-
tioning of nucleosomes is controlled by some specific
sequences, whose nature could however not be identified
[1,19].

In the present article, we describe the program we
designed, meant to discover the sequences that are gener-
ating every short-range bias (excluding the trivial one of
period 3 bp generated by the genes) in genomes. Making
use of this program, we discovered explicitly the
sequences responsible for the bias of period 10-11 bp in
the prokaryotic and lower eukaryotic genomes. These
sequences, that we named "class A flexible patterns" for
reasons that will be clarified in the course of this article,
display a new type of organization. We show that the class
A flexible patterns are ubiquitous in prokaryotes.

Results

Our aim was to identify the sequences that generate the 11
bp periodic short-range bias. To address this question, we
designed a generic program to determine the sequences
that generate any short-range bias in genomes nucleotides
distribution (see the Methods section): the sequences
responsible for the 11 bp periodic bias should belong to
the sequences identified by the program.

For each genome of interest, the output of the program is
given as a family of patterns. By pattern, we mean any suc-
cession of nucleotides with gaps in between (see the
Methods section). The family of patterns returned by the
program has the following property: the occurrences in
the genome of all the patterns belonging to the pattern
family match the sequences of the genome supposed to
generate its short-range biases (see Methods section).
Because of computation time limitations, our program
gives an approximate result only: the patterns shape is
restricted and the matching may not be exact (see the
Methods and Discussion sections).

The program was run with 49 prokaryotic genomes, with
four lower eukaryotic genomes and three viruses
sequences. We collected the patterns of all the resulting
family of patterns and saw that we could class them into
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two category of patterns. Naming them after their particu-
lar structural features, we called them the "rigid patterns"”
and the "flexible patterns". The rigid patterns are
described first, but not discussed in details because they
overlap with previously identified repeated sequences.
Then we describe the more frequent but elusive flexible
patterns. Among those, a great number belongs to a class
that we called the "class A flexible patterns”, for reasons
explained below. The latter patterns are discussed exten-
sively. Finally, we show that the occurrences of the class A
flexible patterns define the sequences generating the bias
of period 11 bp in genomes.

Rigid patterns

A rigid pattern is a pattern verifying the two following
properties: first, the distance between the nucleotides
making the pattern is the same for every occurrence of the
pattern in the genome. Second, some variability in the
nature of the nucleotides composing the pattern is
allowed from one occurrence to another one. Most pat-
terns described so far in the literature are rigid patterns.
For rigid patterns, the exact distances between the nucle-
otides and the frequency of occurrence of the nucleotides
A,T,G,C composing the pattern account for what is usually
termed a "consensus sequence".

As a proof of concept, the program uncovered families of
rigid patterns in a few selected genomes. Each family was
made of short highly repeated motifs. As could be
expected, when present in a genome, highly repeated
sequences generate a short-range statistical bias. For exam-
ple, we found the following rigid pattern in the genome of
Escherichia coli (an x represents any nucleotide):

5G xxxXEB xXXG XXXXXXG xxxXxZ® xxxG -3'

One can recognize in this pattern a consensus for the
repeated Bacterial Interspersed Mosaic Elements (BIMEs)
sequences of E. coli [20]. It is important to note here that,
although these sequences are recognized by our program
because they create small but significant biases in the
nucleotides distribution of E. coli, they do not contribute
to the generation of the bias of period 11 bp. However, the
very fact that we uncovered them is an independent vali-
dation of our approach.

Flexible patterns

To extend the rigid patterns description, we defined the
"flexible patterns". A flexible pattern satisfies the two fol-
lowing properties: first, the nature of the nucleotides com-
posing the pattern is the same for all the occurrences of
the pattern in a given genome. Second, the distance
between the nucleotides composing the pattern varies in a
narrow range between occurrences of the pattern. Hence,
a flexible pattern differs from a rigid pattern in that it
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Diagrammatic structure of class A flexible patterns. Class A flexible patterns belong to the category of flexible patterns. Here
"flexible" means that there is limited variation in the exact position of their conserved nucleotides. This is shown in the figure
by the green arrows, indicating that the position of the conserved nucleotides may vary from one occurrence of the pattern to
the next. The particular class of flexible patterns depicted here in the standard 5'-3' orientation is composed of two sets of
conserved nucleotides. First, the patterns are shaped by a skeleton of regularly repeated Ts or TTs every 10 bp to 1.5 bp,
spanning a maximum of 50 bp. These are called "skeleton nucleotides" and are symbolized by the black and dark grey Ts. The
peripheral repeats of the skeleton, in dark grey, are sometimes absent from a given occurrence. The Ts of the central part,
spanning 20 bp on average, are always present. Furthermore, class A flexible patterns are composed of a set of "inner nucle-
otides". These conserved nucleotides are represented here in dark blue. They can be any nucleotide but never Ts. They are
located between the Ts of the skeleton and in the central part only.

could not generate a "consensus" by aligning sequences
without introducing gaps. As an example, here are differ-
ent occurrences of a flexible pattern found in the genome
of

Pyrococcus furiosus
GxxXAXXXT xxxGxxxT

GxxAXXXT xxxGxxxT

B xxxT xxxxxGxxxT

GXXAXXXT XXXGXXxxxxT

GXXXAXXXT xXXGxxxxxxT

GXAXXXT XXXXGXXxxxxxT
5'—xxxXxxxX-20xXxXXXxXX--3"'

From now on, we will represent a given flexible pattern
not by its various spellings but by an average representa-
tive, in which the distance between the nucleotides is the
mean distance of all the distance observed in all the vari-
ous spellings. For example, we represent the previous flex-

ible pattern by this average representative:

5'-GxXAXXXT XXXGXXXXXT-3'

Conversely, in the following, a flexible pattern mentioned
by an average representative is defined by the list of simi-
lar patterns which are deviating from the average repre-
sentative by distances varying withing a narrow range
between its conserved nucleotides.

The great majority of the patterns that we found by run-
ning our program in various genomes turned out to be of
the flexible patterns category. We found on average
approximately twenty flexible patterns in each genome,
be it of a prokaryotic organism or of a lower eukaryotic
organism. We observed that the distances between nucle-
otides composing the flexible patterns we identified vary
generally from one to two base pairs. These patterns are
composed of five to ten nucleotides spanning a distance
of 10 bp to 60 bp. The nucleotides composing these pat-
terns are most of the time either isolated or grouped as
dinucleotides.

The description of patterns is limited by our program due
to computing time limitations (see the Methods section),
for example they cannot be composed of more than six
nucleotides. The patterns that we get often seem to be sub-
sets of longer patterns. In the following we mention the
longest pattern that can be inferred, but it should be kept
in mind that each of its detected variations are composed
of only six nucleotides. For example, the following flexi-
ble pattern found in H. pylori:
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A few identified class A flexible patterns. Ten related yet distinct class A flexible patterns common to different genomes have
been identified so far. Their structures share common features, which are characteristic of class A flexible patterns. Peripheral
repeats of the skeleton nucleotides of the patterns have not been represented here. Skeleton nucleotides are shown in black.

Inner nucleotides are shown in dark blue.

5'-TxxAxG xT -3'

is defined by the following variations:
TxxxG xxT

TxxxxG xxT xT

TxxXxXG xxTxT

TxxxxxG xxT

TXXXXXAXG xT

AxxG XxT

AxG xT xT

AxxG xT xT

Class A flexible patterns

Among flexible patterns, we observed that a great majority
shared a similar structure and were thus easily identifia-
ble. We named "class A flexible patterns" this subset of
flexible patterns. We will restrict our study to these pat-
terns, as they account for most, if not all, of the 11 bp
period found in the genomes we analyzed.

All class A flexible patterns, though different in spelling,

share the same structure, as depicted in Figure 2. The struc-
tural features illustrated in this figure are formally defin-

ing the class A flexible patterns. The patterns are described
here in the standard 5'-3' orientation.

Class A flexible patterns are in total composed of five to
ten conserved nucleotides spanning a length of approxi-
mately 11 bp to 50 bp. The conserved nucleotides are
either isolated or grouped as dinucleotides.

That these patterns belong to the category of flexible pat-
terns is illustrated in Figure 2 by the green arrows above
the nucleotides composing the patterns (always isolated
nucleotides or dinucleotides). The distance between any
of the isolated nucleotides or dinucleotides varies by 1 bp
to 2 bp from one occurrence of the pattern to the next in
a given genome. Class A flexible patterns are composed of
two subsets of conserved nucleotides: the skeleton nucle-
otides and the inner nucleotides.

The skeleton nucleotides consist of two to five repeats of
the single nucleotide T or of the dinucleotide TT, regularly
spaced every 10 bp to 11 bp on average. The central part
(nucleotides represented in black in Figure 2) is made of
two to three repeats. These repeated nucleotides appear at
every occurrence of a given pattern in a given genome.
Outlying repeats (nucleotides in dark grey in Figure 2)
may extend the skeleton outside the central part. Those
are involving single nucleotides Ts exclusively and are not
always present: they do not appear in every occurrence of
a given pattern. Typically, one or two such peripheral
repeats of the single nucleotide T on each side of the cen-
tral part of the skeleton exist in a given occurrence of a pat-
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Table I: Distribution of class A flexible patterns in genomes.

I 2 3 45 6 7 8 9 10

Aeropyrum pernix X X X Archaea; Crenarchaeota; Thermoprotei; Desulfurococcales
Sulfolobus solfataricus X X X X Archaea; Crenarchaeota; Thermoprotei; Sulfolobales
Sulfolobus tokodaii X X X Archaea; Crenarchaeota; Thermoprotei; Sulfolobales
Pyrobaculum aerophilum X Archaea; Crenarchaeota; Thermoprotei; Thermoproteales
Archaeoglobus fulgidus X X X Archaea; Euryarchaeota; Archaeoglobi; Archaeoglobales

M. Acetivorans X X X X Archaea; Euryarchaeota; Methanosarcinales
Halobacterium sp. X Archaea; Euryarchaeota; Halobacteriales

M. thermoautotrophicum X X Archaea; Euryarchaeota; Methanobacteriales
Methanococcus jannashii X X X Archaea; Euryarchaeota; Methanococcales

Pyrococcus abyssi X X X Archaea; Euryarchaeota; Thermococcales

Pyrococcus furiosus X X X X Archaea; Euryarchaeota; Thermococcales

Pyrococcus horikoshii X X X Archaea; Euryarchaeota; Thermococcales
Thermoplasma acidophilum X Archaea; Euryarchaeota; Thermoplasmatales
Tropheryma whipplei X X Bacteria; Actinobacteria; Actinomycetales

Aquifex aeolicus X X Bacteria; Aquificae; Aquificales

Chlorobium tepidum X Bacteria; Chlorobi; Chlorobiales

Synechocystis sp. Bacteria; Cyanobacteria; Chroococcales

Deinococcus radiodurans X Bacteria; Deinococcus-Thermus; Deinococcales

Bacillus subtilis X Bacteria; Firmicutes; Bacillales

Oceanobacillus iheyensis X Bacteria; Firmicutes; Bacillales

Listeria monocytogenes X Bacteria; Firmicutes; Bacillales

T. Tengcongensis X X Bacteria; Firmicutes; Clostridia; Thermoanaerobacteriales
Streptococcus pneumoniae X Bacteria; Firmicutes; Lactobacillales

Pirellula sp. X Bacteria; Planctomycetes; Planctomycetales
Magnetactic cocci X Bacteria; Proteobacteria

Caulobacter vibrioides X Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacteriales
Agrobacterium tumefaciens X Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales
Sinorhizobium meliloti Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales
Rickettsia conorii X X Bacteria; Proteobacteria; Alphaproteobacteria; Rickettsialles
Rickettsia prowozekii X X X X Bacteria; Proteobacteria; Alphaproteobacteria; Rickettsialles
Bordetella pertussis X Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales
Neisseria meningitidis X Bacteria; Proteobacteria; Betaproteobacteria; Neisseriales
Campylobacter jejuni X X Bacteria; Proteobacteria; Epsilonproteobacteria; Campylobacterales
Helicobacter hepaticus X X X X Bacteria; Proteobacteria; Epsilonproteobacteria; Campylobacterales
Helicobacter pylori X X Bacteria; Proteobacteria; Epsilonproteobacteria; Campylobacterales
Wolinella succinogenes X X X Bacteria; Proteobacteria; Epsilonproteobacteria; Campylobacterales
P. haloplanktis X X Bacteria; Proteobacteria; Gammaproteobacteria; Alteromonadales
Candidatus bl. floridanus X Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales
Buchnera aphidicola X Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales
Escherichia coli X Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales
Wigglesworthia glossinidia X Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales
Coxiella burnetii X Bacteria; Proteobacteria; Gammaproteobacteria; Legionellales
Haemophilus influenzae X X X X X Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales
Pseudomonas aeruginosa X X Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales
Pseudomonas putida X X X X Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales
Vibrio vulnificus X X X Bacteria; Proteobacteria; Gammaproteobacteria; Vibrionales
Xylella fastidiosa X X X X X Bacteria; Proteobacteria; Gammaproteobacteria; Xanthomonadales
Leptospira interrogans X Bacteria; Spirochaetes; Spirochaetales

Thermotoga maritima X Bacteria; Thermotogae; Thermotogales

Plasmodium falciparum

Eukaryota; Alveolata; Apicomplexa
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Table I: Distribution of class A flexible patterns in genomes. (Continued)

Saccharomyces cerevisiae X X

Encephalitozoon cuniculi

Caenorhabditis elegans X X X
Enterobacteria phage T4 X
S. tengcon.. Vvrus STSV X

Human herpesvirus 4

Eukaryota; Fungi; Ascomycota

Eukaryota; Fungi; Microsporidia

Eukaryota; Metazoa; Nematoda

Virus; Enterobacteria phage T4
Virus; Fusellovirus

Virus; Human herpesvirus 4

1. AxxxXX TXxXXXAXXXX T TXXXXXAXXXX TXXXXA
2. GxxxxTTxxxCxxxT

3. TTxxxGxxxT TxxxxGxxxxTT

4. TxxxxAGxxxT TxxxxxxxxT

5. TxoxxxxxxxxxxTxxxGAxxxTT

6. CxxxxxT TxxxCxxxxxxT

7. TxxxGCxGxT

8. TxxCxGxCxTT

9. GxoxXxXxXX TXXXXXAXXXXX T

10. TTTxxxCAxxxxxT

tern. Note that for a given pattern, the distance (averaged
over all the occurrences of the given pattern in a given
genome) between two neighboring isolated conserved
nucleotides Ts or dinucleotides TTs of the skeleton ranges
from 7 bp to 12 bp. Yet, the average of these distances over
the two to five repeats of the skeleton of the given pattern
remains inside the interval of 10 bp to 11.5 bp. The skele-
ton structure, spanning up to 50 bp in total, is basically
the same for all class A flexible patterns, for only the dis-
tances between the Ts and the choice of single or dinucle-
otides can fluctuate.

The inner nucleotides consist of one to three conserved
nucleotides located exclusively in the central part of the
skeleton. Most importantly, these conserved nucleotides
are found to be either A, G or C (a particular nucleotide
specifying the particular kind of pattern identified, see Fig-
ure 3) but never T. They are either isolated or grouped as
dinucleotides (isolated conserved nucleotides are more
frequent than conserved dinucleotides). There can be only
one isolated nucleotide or dinucleotide between two
neighboring skeleton nucleotides. The position of the
inner nucleotides is usually located exactly in the middle
of two neighboring Ts of the skeleton. These inner nucle-
otides play a discriminating role in class A flexible pat-
terns as they differentiate patterns from one another.

The central part of these patterns is composed of three to
six skeleton nucleotides and of two to four inner nucle-
otides (see Figure 2). Altogether, the central part is com-
posed on average of six conserved nucleotides covering
from 10 bp to 33 bp. This part of the patterns is the one
that varies from one class A flexible pattern to another,
both in the choice of single or dinucleotides in the skele-
ton and in the nature of the inner nucleotides. Therefore,
we choose to subsequently identify the patterns using this
central part only.

The program we ran is limited to identification of patterns
spanning up to a maximum of 60 bp (see the Methods
section). This implies that we may have been missing
some peripheral repeats of Ts in some occurrences of the
patterns, but we did not miss important nucleotides as the
latter are located in the central parts of the patterns only.

Distribution of class A flexible patterns in organisms

As a whole, cumulating all the tested genomes, we could
identify twenty different types of class A flexible patterns.
Some genomes harbor specific class A flexible patterns
that are found in no other genome. In contrast, some
types of patterns are found in more than one genome. We
could identify ten such conserved types of patterns. In Fig-
ure 3, we list these ten types of class A flexible patterns.

Patterns numbered 1 to 5 in Figure 3 are present in many
genomes, patterns numbered 6 to 10 are present in less
than ten different genomes.

In Table 1, we display the organisms in which these pat-
terns were identified, as well as the phylogenetic family to
which the organisms belong. It turned out that every one
of the 49 prokaryotic genomes tested, two of the four
lower eukaryotic genomes tested (Saccharomyces cerevisiae
and Caenorhabditis elegans) and the two genomes of bacte-
riophages analyzed were harboring class A flexible pat-
terns.

First, we found out that class A flexible patterns are ubiq-
uitous in prokaryotes. Indeed, each of 49 genomes of
prokaryotes tested harbors one or more different types of
class A flexible patterns. The genome of Xylella fastidiosa
harbors for instance five different types of patterns. Usu-
ally, each genome harbors two to four different types of
class A flexible patterns. Second, each of the patterns num-
bered 1 through 5 in Figure 3 is present in more than 10
different genomes. This makes it possible to discuss the
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nature of the distribution of these five types of patterns in
genomes.

Pattern 1 has been detected in more than 50% of the 56
tested genomes, with no relationship to phylogenetic
branches as we found it in Archaea, in Bacteria, in lower
eukaryotes and in phages (see Table 1). This pattern alone
may be ubiquitous as a low content of this pattern in a
given genome would fail to be detected by our approach.

Pattern 2 is present in a total of 19 genomes. Out of these
19 genomes, 16 belong to Proteobacteria. Three further
genomes, that do not belong to the Proteobacteria clade,
display this type of pattern. Among those, we found first
two Bacteria: Deinococcus radiodurans and Tropheryma
whipplei. The former lives under highly desiccated or radi-
ation-exposed conditions, with remarkable features in
DNA maintenance [21], while the latter is a highly degen-
erate parasite [22]. The third organism which is not a Pro-
teobacteria and where this type of pattern is present is an
Archaeon: Pyrobaculum aerophilum [23]. Overall, the distri-
bution of pattern number 2 in genomes is highly corre-
lated with the Proteobacteria class of organisms. It is
present throughout this class of organisms as it has been
detected in some genomes of the alpha, beta, epsilon and
gamma groups (the delta group has not yet been ana-
lyzed). It is also remarkably present in all tested genomes
of the epsilon group.

Pattern 3 is present in 18 genomes in total, in Archaea, in
Bacteria and in lower eukaryotes. Pattern 4 is present in 13
genomes in all. It has been identified in 11 of the 13
archaeal genomes analyzed (in Crenarcheota as well as in
Euryarchaeota). It is also present in two Bacteria (Aquifex
aeolicus and Helicobacter hepaticus). Hence, the distribu-
tion of this pattern in genomes seems to be somewhat cor-
related with the archaeal kingdom.

Pattern 5 is present in 14 genomes in total, in Archaea, in
Bacteria and in lower eukaryotes. The other identified
class A flexible patterns are present in only a few organ-
isms. Moreover, these organisms do not clearly belong to
any specific phylogenetic lineage. In Figure 4 are summa-
rized the few parallels that could be drawn between the
distribution of class A flexible patterns and phylogeny.
Each of these three patterns is present in more than 10
genomes out of the 56 tested.

Distribution of class A flexible patterns in a given genome
The occurrences of class A flexible patterns are equally dis-
tributed in the two strands of chromosomes. These occur-
rences cover a considerable part of each genome. The
conserved nucleotides of all occurrences of all class A flex-
ible patterns are involving up to one fourth of the total
number of nucleotides of a given genome (24% in the

http://www.biomedcentral.com/1471-2105/6/206

case of H. pylori). If we take into consideration the total
length that the occurrences of the patterns span in a
genome, then it comes up to one half of each genome
(51% in the case of H. pylori). In the case of H. pylori, the
span of the patterns ranges from 9 bp to 29 bp (Table 2).
We observed that the patterns' occurrences can be overlap-
ping. Interestingly, class A flexible patterns occur indiffer-
ently in coding and in non-coding regions of genomes.
They are neither correlated with the leading nor with the
lagging strand of chromosomes. All things considered,
there seems to be no obvious bias in the distribution of
the occurrences of the patterns.

Contribution of class A flexible patterns to the || bp
periodic bias

The structure of class A flexible patterns is highly reminis-
cent of the 11 bp periodic bias in genomes of prokaryotes
and lower eukaryotes. Indeed, the patterns have a core of
repeated Ts or TTs every 10 bp-11 bp on average in all
occurrences. It can therefore be expected that because
these periodic nucleotides are densely spread, a bias of
period 10 bp-11 bp will be generated in the correspond-
ing genome sequences. The length of the patterns when
the peripheral repeats are considered (up to 60 bp) is on
the same order as the span of the 10 bp-11 bp periodic
component in the correlation between nucleotides (see
Figure 1). Furthermore, we systematically observed that
the component of period 11 bp is somewhat fuzzy (see
the blunt shaped peaks in Figure 1). This is consistent with
the fact that the distance between neighboring skeleton
nucleotides ranges from 7 bp to 12 bp. This is also consist-
ent with the involvement of dinucleotides in class A flexi-
ble patterns. Finally, the occurrences of class A flexible
patterns distribute throughout a given genome, with no
apparent preference for coding or non-coding regions,
similarly to the bias of period 10-11 bp. Now we want to
show that the class A flexible patterns are indeed the
source of the 11 bp periodic bias in genomes. We illustrate
this with the genome of H. pylori as the statistical bias of
period 11 bp is particularly prominent there. We got the
same results for all other genomes analyzed.

The class A flexible patterns discovered in the H. pylori
genome are the following:

1-5'-TXXXXXXXXXXTXXXXGXxxXT xT-3'
2-5"'-G XXT XXXXXXXXXXTXXXXXXXXXT-3'
3-5"-TxxxxxxxxxT xxA xCxxT-3'
4-5'-G xxXT =xxxxxC-3'

5-5'-TxxAxG xT -3'
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Figure 4

The distribution of three types of class A flexible patterns is correlated to specific phylogenetic groups of organisms. We iden-
tified five class A flexible patterns distributed in many different organisms. Three of them, displayed here, show a distribution

which can be related to the phylogeny.

Patterns numbered from 1 to 3 are also found in genomes
of other organisms, while patterns 4 and 5 are found only
in this genome. Helicobacter pylori is remarkable as the
skeleton nucleotides are composed of the trinucleotide
TTT. For each of those flexible patterns, Table 2 illustrates
the list of their variations. No peripheral repeats are dis-
played, as we failed to determine any in this particular
genome. It is interesting to note that all the variations of
these five patterns are indeed over-represented in the
genome of H. pylori. We compared the number of occur-
rences of the patterns in the authentic genome to the
number of occurrences in a model genome that keeps
only the crude statistical features of the nucleotide distri-
bution in the H. pylori genome (see the Method section).
We found that the variations of pattern 1 occur approxi-
mately 30% more often in the authentic genome than in
the model genome, the variations of pattern 2 approxi-
mately 40%, the variations of pattern 3 approximately
30%, the variations of pattern 4 approximately 40%, the
variations of pattern 5 approximately 30%. All the nucle-
otides involved in the occurrences of patterns 1 to 5 and
of their reverse complements amount to 24% of the total
number of nucleotides contained in the whole genome.
To explore whether the bias of period 11 bp in the distri-
bution of the nucleotides is due to these 24% of the
genome of H. pylori, we constructed two reference
genomes for comparison.

We constructed a first "deconvoluted" genome G,,,(G") in
the following way (see the Methods section): starting
from the authentic genome of H. pylori, every nucleotide
which belongs to any occurrence of any of the five class A
flexible patterns or of their reverse complements is
replaced by the nucleotide of a model genome preserving
the local composition in hexanucleotides of the authentic

genome but not their order (see the Methods section)
while every other nucleotide is kept unaltered. We plotted
the treated correlation function of G,,,(G") for the nucle-
otide A following A (see the Methods section) in Figure 5.
The 11 bp periodic bias is now absent from this plot. This
means that the 76% of the genome of H. pylori which is
not covered by class A flexible patterns does not have any
significant 11 bp periodic statistical bias. Hence, we con-
cluded that class A flexible patterns are generating the 11
bp bias in genomes.

Interestingly, the 11 bp periodic bias disappeared even at
correlations over 30 bp, despite the fact that our patterns
are never longer that 30 bp for this genome (we have
deconvoluted the central parts of the patterns but not the
hypothetical peripheral repeats). Deprived of the core
sequences of the patterns, the peripheral repeats, even if
they exist, can no longer generate much bias. In Figure 5,
one can notice a small peak pointing downwards at 11 bp.
This probably reflects the fact that we failed to describe
accurately the patterns and therefore removed too many
sequences, some of which artefactually taken as genuine
patterns. Second, we plotted the treated correlation func-
tion (see the Methods section) of a complementary
model: G,,,(G*), the "convoluted" genome (Figure 6). As
in the preceding model, G,,,(G*) is built starting from the
authentic genome of H. pylori: all the nucleotides not
belonging to occurrences of class A flexible patterns and of
their reverse complements are replaced by the nucleotides
of a model genome (see the Methods section). The 11 bp
statistical bias from the original genome is now visible
again (the treated correlation function of the original
genome is shown in Figure 1). The correlations over 30 bp
are hardly visible, which is consistent with the fact that no
peripheral repeats were introduced in the convolution
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Table 2: The variations defining the five class A flexible patterns found in the genome of H. pylori

1-5' —XXXXXXXXXXXXXXXTXXXXXXXXXXTXXXXGXXXT XTXXXXXXXXXXXXXXXXXXXXX-3'
XXXXXXXXXXXXXXXXXXXXTXXXXXXXXXXTXXXXGXXXT XTXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXTXXXXXXXXXXXTXXXXGXXXT XTXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXKX-20XXXXXXX-1O0XXXXXXXXXOXXXXXXXXXIOXXXXXXXX20xxXxXxXxXXX30

2-5'-XXXXXXXXXXXXXXG XXT XXXXXXXXXXTXXXXXXXXXTXXXXXXXXXXXXXXXXXX-3'
XXXXXXXXXXXXXXXXXXXGXXXTXT XXXXXXXXXTXXXXXXXXXXTXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXGXXT XXXXXXXXXTXXXXXXXXXXTXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXGXXT XXXXXXXXXTXXXXXXXXXXXTXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXGXXT XXXXXXXXXXTXXXXXXXXXTXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXG XXT XXXXXXXXXXTXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXG XXT XTXXXXXXXXXTXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXGXXT XXXXXXXXXT XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXKXGXGXXT XXXXXXXXXXTXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXX-20XXXXXXX-10XXXXXXXXXOXXXXXXXXX10XXXXXXXX20xxXxXXxXXX30

3-5' —XXXXXXXXXXXXXXXXTXXXXXXXXXT XXA XCXXTXXXXXXXXXXXXXXXXXXXXXX-3'
XXXXXXXXXXXXXXXXXXXXXTXXXXXXXXXXT XXAXXCXXTXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXTXXXXXXXXXXTXXA
XXXXXXXXXXXXXXXXXXXXXTXXXXXXXXXXXTXXA
XXXXXXXXXXXXXXXXXXXXXXTXXXXXXXXXT XXA
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTXA
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTXXA

XCXXTXXXXXXXXXXXXXXXXXXXXXXXXX
XCXXTXXXXXXXXXXXXXXXXXXXXXXXXX
XXCXXXXXXXXXXXXXXXXXXXXXXXXXXX
XC XTXXXXXXXXXXXXXXXXXXXXXXXXX
XC XXTXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXT XXAXC XXTXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXT XXAXXCXXTXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXT XTXXXAXXCXXTXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTXT XXAXXCXXTXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXX-20XXXXXXX-10XXXXXXXXKXOXXXXXXXXXIO0XxXxXXXXXX20xXxxXxXxXxXxXx30

4-5' —XXXXXXXXXXXXXXXXXXXXXXXXXXG XXT XXXXXCXXXXXXXXXXXXXXXXXXXXX-3'
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXG XT XXXXCXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXG XXT XTXXXXCXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXG XXTXT XXXXCXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXGXGXTXT XXXXCXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXGXGXXT XXXXCXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXX-20XXXXXXX-10XXXXXXXXKXOXXXXXXXXXIO0XxXxXXXXXX20xXxXxXxXxXxXxXx30

5-5'—XXXXXXXXXXXXXXXXXXXXXXXXXXTXXAXG XT XXXXXXXXXXXXXXXXXXXXXXX-3'

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTXXXG
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTXXXXG
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTXXXXG
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTXXXXXG
XXXXXXXXXXXXXXXXXXXXXXXXXXXXTXXXXXAXG
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXAXXC
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXAXC
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXAXXG

XXT XXXXXXXXXXXXXXXXXXXXXXXXXX
XXT XTXXXXXXXXXXXXXXXXXXXXXXXX
XXTXT XXXXXXXXXXXXXXXXXXXXXXXX
xxT XXXXXXXXXXXXXXXXXXXXXXXXX
XT XXXXXXXXXXXXXXXXXXXXXXXXXXX
XT XXXXXXXXXXXXXXXXXXXXXXXXXX
XT XTXXXXXXXXXXXXXXXXXXXXXXXXX
XT XTXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXX-20XXXXXXX-10XXXXXXXXKXOXXXXXXXXX10XxXxXXXXXX20xXxXxXxXxXxXxXx30

|p463pt| The variations defining the five class A flexible patterns found in the genome ofH. pylori

process. In this "realistic" imitation of the H. pylori
genome, the correlations below 30 bp are somewhat too
intense when compared to the real ones, displayed in Fig-
ure 1. This shows again that we removed too many core
sequences, as they were not described with enough accu-
racy. The sum of the treated correlation function of the
deconvoluted genome and of the treated correlation func-
tion of the convoluted genome fails to be exactly equal to
the treated correlation function of the authentic genome.

This shows that there exist correlations between occur-
rences of class A flexible patterns and of neighboring
sequences. It can be expected that these correlations
involve the undetected peripheral repeats.

Finally we must note that we chose to illustrate the rela-
tionship between class A flexible patterns and the 11 bp
bias with the correlation function calculated for an A fol-
lowing an A, as the correlations are specially strong for
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The treated correlation function of G,,,(G). This correlation function of nucleotide A following A reveals biases generated by
the part of the genome of H. pylori that do not contain occurrences of class A flexible patterns.

those two nucleotides. However the results reported are
still valid for any combination of two nucleotides.

Discussion

In the present work we focused on class A flexible patterns
as they are the source of the 11 bp periodic bias long
known to exist in genomes. Because of the technical limi-
tations of our approach we expect that there may still be
other classes of flexible patterns in DNA sequences. They
must be however relatively less important as genome
sequences do not display prominent short-range biases
other than the 3 bp and the 11 bp periodic long identified,
while deconvolution of authentic genome sequences
from the patterns we identified yielded sequences which
no longer displayed any outstanding periodicity.

Limitations in the description of class A flexible patterns

As explained in the Methods section, our approach suffers
some limitations, mainly due to computational time lim-
itations. First, simply for stochastic reasons (the signal
must be significantly higher than the noise), we would
not find sequences that are generating weak biases or that
are present in a too limited amount in genomes (with a

frequency below ﬁbp_1 ). Hence we probably missed

the presence of some class A flexible patterns in some
genomes. Second, the output of our program may have
been somewhat inaccurate. Namely, because of the limi-
tation we had to impose on the correlations order (see the
Methods section), we may have identifed some patterns as
genuine while they would represent a mix of different pat-

terns present at distinct locations in the genomes. Third,
we are bound to miss completely any pattern in which the
shorter distance between conserved nucleotides is longer
than 14 bp (see the Methods section). Fourth, the patterns
spellings are but an approximation. Our program has
restrictions in the maximum length and number of con-
served nucleotides of patterns it is able to determine. As a
consequence, we may have missed peripheral parts of the
patterns we identified. Still, these restrictions probably
did not affect much our spelling of class A flexible pat-
terns, as these patterns are short enough: the central parts
span only 20 bp on average. In contrast, in the identifica-
tion of rigid patterns, typically made of continuous
sequences of conserved nucleotides ("words" or
"motifs"), we could not retrieve all conserved nucleotides.
This was not, however, the main goal of this work.

Connection to optimal growth temperature

As phylogeny cannot account for the distribution of pat-
terns numbered 3 and 5 in Figure 3, we may wonder
whether the distribution of these two class A flexible pat-
terns could be related to physical or biological parameters
of the organisms in which they have been identified. We
took into account the Gram staining, the cell shape, oxy-
gen dependency, sporulation ability, encapsulation abil-
ity, optimal pH and maximum growth temperature, GC
content and GC skew. Among those features, the optimal
growth temperature somewhat correlates with the distri-
bution of these class A flexible patterns. Indeed, both pat-
terns are present mostly in thermophilic organisms. Still,
it remains difficult to draw any firm conclusion in this
matter as all tested Archaea but one (Methanosarcina ace-
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The treated correlation function of G,,,(G*). This correlation function of nucleotide A following A reveals biases in the genome
of H. pylori which are generated by the occurrences of class A flexible patterns in its genome.

tivorans) are thermophilic and as these patterns are found
mostly in Archaea. The question thus arises to determine
whether these patterns are present in archaeal organisms
or in thermophilic organisms. It is not yet possible to
draw a clear rule from the presently tested genomes.

Class A flexible patterns may define protein interaction
sites on the DNA molecule

The very structure of class A flexible patterns offers pre-
cious hints to conjecture their biological function. The
hypothesis we propose is that the patterns are the signa-
tures of DNA-protein interaction sites. Five arguments
tend to support this idea. These are only theoretical argu-
ments and our hypothesis needs to be substantiated by
further experiments. First argument: to our knowledge,
the length of class A flexible patterns is in a range appro-
priate for DNA-protein interactions. The total length of
the patterns ranges from 11 bp to 60 bp while the length
of the central part ranges from 10 bp to 33 bp (see Figure
2). The size of the DNA-protein binding sites usually
ranges from 10 bp to 40 bp [24,25]. Hence the central part
of the patterns, which is specific and conserved, may be
the interacting protein-DNA interface.

Second argument: the number of conserved nucleotides
composing the central parts of class A flexible patterns (six
on average, see Figure 2) is compatible with the hypothe-
sis. Indeed, if more nucleotides were conserved in the
sequence, it is likely that the interaction would be very
strong and would therefore have been already identified.
Furthermore it would correspond to a stable interaction
that would presumably preclude any function of the DNA
molecule requiring its opening. In contrast, if there were
fewer conserved nucleotides, the interaction would be too

weak to create a specific interaction with proteins. Previ-
ous studies have established that the average number of
conserved nucleotides in DNA-protein interaction sites
ranges from five to ten conserved nucleotides [25].

Third argument: the position of the conserved nucleotides
of class A flexible patterns is remarkably consistent with
the hypothesis of a DNA-protein interaction site. Class A
flexible patterns are composed of a skeleton made of reg-
ularly repeated Ts or TTs every 10 bp-11.5 bp on average.
As the shape of the DNA molecule is helical, with a pitch
of average 10.5 bp, varying from 10 bp to 12 bp [26],
when unbound, repeated conserved nucleotides of the
skeleton always appear at the same side of the helix, in the
major groove and in the minor groove respectively (see
Figure 7). Inner nucleotides of the patterns, which are
always A, G or C depending on the particular pattern con-
sidered, are set between the repeated Ts of the skeleton,
most often in the middle of two neighboring repeats.
Hence, the inner nucleotides also appear on the same two
sides of the DNA molecule, through grooves that are
opposite to those of the skeleton nucleotides. Note that
interactions between proteins and DNA minor grooves
are well documented [27,28].

The spatial structure of the DNA molecule of class A flexi-
ble patterns is illustrated in Figure 7. The nucleotides com-
posing the example pattern of the figure are accessible
from the upper side, with the skeleton nucleotides visible
through major grooves and the inner nucleotides visible
through minor grooves, or from the lower side, with the
skeleton nucleotides visible through minor grooves and
the inner nucleotides visible through major grooves.
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The nucleotides composing this class A flexible
pattern are fully accessible through this side and
the dinucleotides are set in major grooves.

}
i The nucleotides composing this class Aflexible
~  pattern are accessible through this side too but
| the dinucleotides are set in minor grooves.
I
7

Accessibility of class A flexible patterns. There are two opposed sides from which nucleotides composing this occurrence of
this given class A flexible pattern are accessible. The dinucleotides are visible through major grooves only from the upper side
and hence fully accessible from this side only. Hence a given occurrence of a given class A flexible pattern in a genome is only

accessible from one side of the DNA molecule.

The skeleton of the patterns is half composed of repeated
dinucleotides TTs. In contrast, inner nucleotides are
mostly isolated conserved nucleotides. A dinucleotide
may be less easily accessed through a minor groove
because this groove is too narrow. Conversely, it may be
easily accessed through a major groove as the latter is
wider. Hence, class A flexible patterns may be actually
accessible by only one of the two opposed sides of the
DNA double helix, the one where skeleton nucleotides are
seen through major grooves, as shown in Figure 7. This
gives a very specific argument to think that the function of
these patterns may be to define interaction sites with
some proteins. Indeed, a protein interacting with the DNA
molecule usually comes along one defined side of the
molecule and at any rate is never covering the molecule
on all sides [29]. The position of the nucleotides compos-
ing the patterns is fully consistent with this requirement.

Fourth argument: class A flexible patterns belong to the
group of flexible patterns. This means that the exact posi-
tion of conserved nucleotides of the patterns varies from
one occurrence of the patterns in genomes to the next one.
This property is fully consistent with the hypothesis that
the patterns are signatures of motifs allowing interaction
with a geometrically rigid protein, as explained below.

The DNA molecule is a flexible molecule that can be elas-
tically bent, elongated and supercoiled negatively or pos-
itively. As a matter of fact, in living cells, the molecule
keeps on being constrained by thermal agitation and even
more dramatically by the constant action of various mol-
ecules. For example, the action of polymerases will induce
strong supercoiling ahead and behind where it acts [30].

Finally, the pitch and bending of the DNA helix keeps on
varying locally, depending in particular on the local base
composition [31].

Under these conditions, the constraint on the precise
position in the genome of the conserved nucleotides of an
interaction site is low. Indeed, when one conserved nucle-
otide of a given pattern is shifted from one base pair in the
genome, chances are high that one of the probable confor-
mations of the DNA molecule will place this nucleotide at
the same spatial position compared to when it is not
shifted in the genome and with another conformation of
the DNA molecule. This is obviously true only if the shifts
are not too important. This tends to confirm that class A
flexible patterns define protein interaction sites. Indeed,
we observed that from one occurrence to the next, the rel-
ative position of nucleotides composing them can vary
from one to two base pairs. This is small enough so that
there exists a likely conformation of the DNA molecule
suitable to make it interact with its associated rigid pro-
tein. Alternatively, locally constrained DNA segments (for
example through preexisting interaction with particular
factors) might interact with proteins with flexible seg-
ments. Note that the absence of strong constraints on the
position of the conserved nucleotides in class A flexible
patterns is not easily compatible with other biological
functions.

Fifth argument: the presence of optional peripheral
repeats of Ts extending the skeleton at its two sides in class
A flexible patterns (see Figure 2), can easily be accounted
for under this DNA-protein interaction hypothesis. There
are at least two ways to interpret the presence of the
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peripheral repeats. A first idea is to suppose that they
could be used by the DNA molecule to stabilize an inter-
acting protein, as they appear on the same side of the DNA
molecule as the rest of the conserved nucleotides of the
pattern. These peripheral repeats would not be essential in
the interaction, which would be possible only when the
central part of class A flexible patterns is involved. A sec-
ond idea is that the peripheral repeats of Ts in class A flex-
ible patterns may help proteins slide along the DNA
molecule in order to reach rapidly the central part of the
patterns.

Now we may wonder which interacting proteins could be
involved. Here is a few requirements that must be fulfilled
by proteins to be good candidates according to the fea-
tures of class A flexible patterns. First requirement: pro-
teins have to be present in large enough amount in cells in
order to be good candidates. Indeed, there are many inter-
action sites defined by the occurrences of class A flexible
patterns in genomes. Alternatively, they may be involved
in a dynamic process progressively threading the whole
DNA molecule through a ratchet-like mechanism (for
example forcing DNA segregation into daughter cells).
Second requirement: proteins must not play a role exclu-
sively in the transcription process as the pattern occur-
rences can be found inside coding regions as well as
outside. Third requirement: the interaction sites of pro-
teins with the DNA molecule must not be rigidly defined,
as the sites we have uncovered in the present study have
never been found previously. The fourth requirement that
these proteins must fulfill is related to their presence in
the organisms of interest. For each candidate protein, we
checked whether its distribution in organisms matched
the distribution of class A flexible patterns presented in
Table 1. Here are some example of plausible candidates:
archaeal histones [32,33], histone-like proteins H-NS and
IHF [34-40], two topoisomerases (the reverse gyrase and
the topoisomerase IIB-VI) [41-44] and the SMC family of
proteins [45-49].

Since the patterns are ideally shaped to display specific
but labile interaction with proteins, and since they are
densely present in genomes with no relationship to the
position of genes, we propose that they may be involved
in some biological function such as the shaping of the
prokaryotic nucleoid or its segregation before cell divi-
sion.

Class A flexible patterns could be recognized during
homologous recombination

The widespread distribution of flexible patterns of class A
along genomes is consistent with selection of the motifs
through processes that are fairly ubiquitous and happen
sufficiently often in the life of an organism to provide
some selective advantage. Until now we have mostly con-
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sidered structural or regulatory processes involving the
DNA molecule as a whole. In the course of evolution the
process of recombination plays an essential role as it both
permits proof-reading and insertion or deletion of DNA
segments. In prokaryotes, recombination involves the for-
mation of long helical filaments of the RecA protein dou-
ble-stranded DNA [50] and homologs exist in eukaryotes
[51]. During the process of recombination, the DNA dou-
ble helix is distorted, asking for a nucleation process of the
first RecA proteins binding, making use of the flexibility of
the DNA molecule. The class A flexible patterns, distrib-
uted throughout genomes, and insensitive to the origin of
the DNA (regions of the genome which are from horizon-
tal gene transfer descent are as likely to harbour the pat-
terns as are the core regions), might play such role.
Exchange of base pairs between segments undergoing
recombination is essential for recognition of homology,
and physical evidence indicates that such an exchange
occurs early enough to mediate recognition at A:T base
pairs [52]. The conserved skeleton of the class A flexible
patterns would provide the required biochemical basis for
the process.

Conclusion

In this article, the source of the ubiquitous bias of period
10-11 bp in genomes has been identified. It is generated
by specific and ubiquitous sequences that we named
"class A flexible patterns". These patterns are flexible pat-
terns whose main property is to display 10 bp-11 bp peri-
odic repeats of Ts. As the patterns are densely spread in
genomes, their occurrences naturally generate the bias.

The patterns account for the second largest bias in the
nucleotides distribution of prokaryotic genomes, second
to the one generated by the use of genetic code in genes,
hence their biological function has to be of an essential
nature. We discussed what this function could be and sug-
gested that class A flexible patterns could be defining a
new category of protein-DNA interaction sites in
genomes.

Methods

First we introduce the definition of a correlation function
which is used throughout this article. Then we explain the
theoretical basis of the program we designed to find the
sequences responsible for short-range biases, its actual
implementation and its controls.

The correlation function
Definition — a genome G

A genome G of length L is written G = (x;)je[;..1,,] with Vi
€ [1..Lg], x;€ {A, T, G, C}. It is taken in the standard 5'-3'

orientation.
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Definition — a sub-genome S extracted from a genome G

Let G=(x;)i[1..] be a genome. A sub-genome S of

length Lg extracted from G is a sub-series of G. We call E,
(G) the set of all the sub-genomes of G. Then, for S V E,
(G) composed of Ny nucleotides, ot [1..Ng] — [1..Lg] a

strictly increasing function so as S = (Xg(j) )ie[1..N,] -

Definition — a pattern m

A pattern m composed of N,, nucleotides and of length L,,
is written m = (x;,p;)ie(1.N, |’ Nm2 1, pr=1, pn, =Ly

with p a strictly increasing series and Vi€ [1..N,,], x;€ {A,
T, G, C}. We call E, (N, L) the set of patterns composed of
exactly N nucleotides and with a length shorter or equal

toL.Wecall E,, = U E (N, +e0).
Ne[1..400]

Definition — an occurrence of a pattern m in a genome G

Let m = (x;,pi)ien1..N,,] € Em e a pattern composed of N,

nucleotides and of length L,,..

Given the sub-genome S = (yc(i))iell..[\]s] € E(G) com-
posed of N, = N,, nucleotides, S is an occurrence of m in G
if and only if Vi € [1..N,], x; =y, and p;= o(i) - o(1) +
p;- We call E, (m, G) the set of the occurrences of m in G.
# E,. (m, G) is the number of occurrences of m in G and #
E,.(x, G) is the number of occurrences of the single nucle-

otide x in G.

Definition — the correlation function f (G)

Given a genome G, an order of correlation O, and a

cor

length for the computation of the correlation L,,, we

ana’

define the correlation function f (G) on the space E,, (O

cor’

Lona): for m= (xi'pi )ie[l..Om,] €Ey, (Ocor'Lana) ’
#E,.(m,G)

£(G)(m) = e 2
# Eoc (xl ’ G)

Our practical calculation of correlation functions is per-
formed as follows: the function is represented by an array

L
of size 40 [ ana

. For each nucleotide of G, the
Ocor -1

array cells of all the patterns composed of O, nucleotides
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included in the next L, bp are increased by one. The

ana

number of steps is then proportional to L - Lana )
Ocor -1

The correlation functions of all prokaryotic and lower
eukaryotic genomes reveal a strong statistical bias of
period 3 bp due to the dense presence of genes in
genomes [1]. This bias is of little interest as its source is
known. In order to study the other biases in the present
work, we always pre-treated the correlation functions so as
to hide this trivial bias. This deconvolution step was per-
formed by subtracting the correlation function of a model
genome constructed so as to contain only the trivial bias.
The concept of model genome has been developed in
[53,54]. This is performed here as follows:

Definition — the model genome G, ,(G)
Let us write the genome G as a series of dihexanucleotides:
G =(H;1H; ;) [ Lc] with H = (x,x,X3x,X5%,) represent-
il 1.—
12

ing an hexanucleotide.

The model genome G,,,(G) is a random genome built
from G by following these probability rules:

P(o(i)=1,0(i)=2)=

Go (G)= (Hi,O'(i)Hi,@) L
[1" P(o(i)=2,0(i)=1) =

ie| 1.2¢
12

] with

N|— N

Definition — the treated correlation function f(G)

f1(G) = 1)~ [(GraG)) ™
The upper line means that f, (G) is the average of correla-
tion functions of several model genomes derived from the
same genome G. The treated correlation function is an
average of probabilistic functions. Practically, for
genomes long enough, after averaging over a few model
genomes (usually three) one gets a function that almost
completely lost the effects of biases with very short ranges
(inferior to 6 bp) and hence lost the effect of the 3 bp peri-
odic bias due to the presence of the genes, but saved most
of the effects of other kind of information included in
genomes. In the Background section, on Figure 1, we plot-
ted f, (G) restricted on the following set of patterns: (A,

AL 100)
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Definition — the complementary sub-genome S of the sub-genome
S
Given a genome G and a sub-genome S, we define natu-

=G
rally S as the sub-genome of G which includes in the
right order all the nucleotides of G which are not in S.

Definition — the model genome G, (S) for a sub-genome S

Let G= (xi)ie[luLc] be a genome, S = (xc(i))ie[l.‘[\]s] be a

sub-genome of G, S = (xg(l.) )ie[l..Ng] be its complemen-

tary sub-genome and Gy, (G) = (¥i)ig[1...,| be a model

genome derived from G.

Vie [1..Ng|, zg(iy = Xo(i
Gino(S) = (2 )ie|1..1,.) is defined as: . sl ot 0.
G Vie [1..N§],Za(i) =Ya(i)

Definition — the treated correlation function of a sub-genome f, (S)

£1(8) = £ (Go (5))

Notation — a pattern family M
A pattern family M is a finite set of patterns. It is noted
M= (mi)iE[L_Nm] ,Vie [1"Nm]' m; e Em

In the Results section, G*(G,M) = U
meM ,SeE,.(m,G)

S and

G (GM)= U

meM ,SeE,.(m,G)

S. On Figure 5, 6, we plotted

two correlation functions of those two sub-genomes
restricted on the following set of patterns: (A,

AL D 1000

The rationale of the program

Our goal was to determine which sequences of a given
genome G account for the statistical bias of period 11 bp
affecting the distribution of its nucleotides. We designed a
program meant to find out which sequences were respon-
sible for all short-range non-trivial biases present in a
given genome G. Here, "non-trivial" means different from
the bias of period 3 bp due to the presence of the genes in
genomes. Since the bias of period 11 bp is indeed a short-
range bias, the sequences of G generating the bias should
be included in the sequences determined by the program.
Assuming that the majority of significant statistical biases
present in a genome G can be revealed by the correlation
function of G, our program does not look directly for the
sequences generating the short-range biases but, rather,
identifies the sequences generating f, (G) for a given O,,,
and L,,, (practically four nucleotides and thirty base-
pairs). The treated correlation function of a genome that
would be biased only by the genes structure is the null

http://www.biomedcentral.com/1471-2105/6/206

function. Our program stands on the approximated for-
mula (1) that we are introducing now.

Definition — a special pattern family for the genome G

A pattern family M will be called "special pattern family"
if (E,. (m, G)),ue m cOVers exactly, with no overlapping, the
sequences of G that generates f, (G) for a given O, and
L,,, and if the positions of the occurrences of the different
patterns of M are not correlated. These conditions are writ-

ten:
ft(cmo((Euc(m'G))mEM)) = ft(G) and ft((Eoc(m'G))meM) =0

2 2 Nm = N(Eoc(mfc))meM

meMSeE, (m,G)
o U oosi=2 4 U s
meM,SeE,.(m,G) meM SeE,.(m,G)
We call E,, (G) the set of all special pattern families of G.

Assuming that such families containing only short
enough patterns (shorter than one hundred base-pairs)
exist, the aim of our program was to determine one of
them.

Definition — the simulated genome G, (G, m, )

For a given pattern m, let G;,, (G, m, ) be the simulated
genome derived from a genome G and constructed by
repeatedly overwriting the pattern m on the original
sequence of G (with a frequency f). We call E_;,, (m, Gy,
(G, m, p)) the set of all the occurrences of m artificially
introduced in G, (G, m, ).

Property - for M € Eipo(G) and
1
E max((Nm)mEM'Lana) ’
Q)= 3 T fGopmaB). ()
meM G

f(G)=f, U S| As

meM ,SeE,.(m,G)

2 2 Nm = N(Eoc(mfc))me/\/i

Indeed, we have

meMSeE,.(m,G)
,  we have
U si=X A U oS
meM,SeE,.(m,G) meM SeE,.(m,G)
=1 U s}
meM SeE,.(m,G)
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Considering the way we derived the simulated genomes,
it is obvious that the occurrences of the patterns m intro-
duced in G, (m, G, ff) are not correlated to neighboring
sequences. We then assume that natural occurrences of m
in G are not too much correlated to neighboring
sequences. Hence one gets:

# ’
VYme M, ft U S |= w . ft U S
SEEoc(m'G) ﬁ G SEEocin(m'Gsim)

As we introduced the occurrences of the pattern m in a

non-correlated manner in G, (m, G, f), it results that

S + ft Tscsim

Se Eoc(m'csim)

ft(csim(m'crﬂ)) = ft U

Se Eoc (m'csim )

We have f; U SGSim << f; U S

Se Epc (m'Gxim) Se E, (m'Gxim)

because many occurrences of the pattern m have been
introduced in G, (m, G, ), generating very strong corre-

lations. Hence f,(Gg;,(m, G, B)) = f; U S|. As
SeEoc(m'Csim)

many more occurrences of the pattern m were introduced

in G, (m, G, p) than there are naturally in G, one has

fi(Gsim(m, G, B)) = f; U

S|. Finally it comes

Se Eocin (m'Gsim )
#E,.(m,G
that (@)= T T (G (G ).

meM,

Hence the treated correlation function of G can be approx-
imated by a linear combination of the correlation func-
tions of the simulated genomes associated to the patterns
belonging to a special pattern family. This property gave
us a theoretical framework to determine such a special
pattern family.

Definition — a positively free family
Let E be a vectorial space and F a family of vectors.

http://www.biomedcentral.com/1471-2105/6/206

Let us define Pos(F)= { 2 OCEE/VEE Fo;: 2 0}. The
heF

family F ={u; }ie[l..n] € E" is positively free in E if and

only if Vae Pos(F), 30 )€ R Ja= Y, oy
ie[1..n]

Our idea was to choose a pattern family M,,,,,

. containing
as many patterns as possible that is positively free. If there
exists one and only one special pattern family M,

included in M, then there exists a linear decomposi-

input’
tion of f, (G) on the (f; (Gsim(m,G,B)))meMmpm with posi-
tive coefficients (for any Y/ SO as
L << B< L ), ie.
Lg max((Nm )me Minpue * Lana)

#E,.(m,G .
(@)= Y PO p ma ). As i

meM B-Ng

spe
decomposition is unique, by calculating the decomposi-
tion of f, (G) on the (f,(Gyim(m, G, B)))mem,

input

, one can

determine which patterns belong to M, ,. Hence basically

spe*
our program, for an input of a genome G and a pattern

family M, chose a suitable f calculated the

(fe(Gsim (M. G, B)))mem,,,, and the unique decomposi-

tion with positive coefficients of f, (G) on these functions.
It gave as an output a pattern family M, which con-

sisted in the patterns of M. . for which the treated corre-

input
lation functions of the associated simulated genomes are

involved.

Practical implementation of the program

First of all, we assumed that, for O, = 4 and L,,, = 30 bp,
there exist N > 0 and L > 0 so that there exists one and only
one special pattern family included in E (N, L).

Because of computational time limitation, only input pat-
tern families that are not containing too many patterns
(less than one thousand patterns) could be tested. To
extend the output possibilities of the program, we ran it in
a few steps, at the cost of further approximations. First, we
entered M, = E(2,14) U E(3,14) as an input family (this
family is positively free). As we did not expect any special
pattern family to belong to M,, we did not calculate the

decomposition of f, (G) on (f(Gsjm(m. G, B)))men, - but
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rather a "positive

(ft (Gsim (m' G ﬁ)))mEMO :

projection” of f, (G) on

Definition — p* (d,F) the positive projection of d € E a vectorial
space of finite dimension in the non-void family

I n
F= {ul }ie[l..n] €E
Be < > a scalar product in E and || || the associated norm.
It is possible to prove that 3!p e Pos(F) so as Vs € Pos(F),

|s-al|= ||13 —-d || . We call this vector p*(d,F), the positive

projection of 4 in F.

We calculated £(G) = p" (f(G)(f (Gsim (1, G, B))me ny ) -

The coefficients of this positive projection can be assimi-
lated to a frequency of patterns present in G, expressed in
bpl. Then we constructed M, the output pattern family
with all the patterns of M, for which the coefficient of the
treated function of the associated simulated genome is
large enough. The selectivity of the program is adjustable
at this level. Practically, we kept the patterns for which the

coefficients are above

1 -
5 bp~!, with an average approx-

1 _ . .
imately Mbp ! which makes usually approximately

twenty patterns. This is a first approximation in our pro-
gram. As a second step, we used M, as an input pattern
family. M, is containing M, plus all the patterns that can
be built by extending the patterns of M; with one extra
nucleotide. The added nucleotide can be placed at any
position inside the original patterns or at their sides (as far
as 15 bp from the extremities of the original patterns).
Again, we calculated a positive projection and got a result-
ing pattern family M.

We repeated this step as long as we got patterns that were

strictly included in UE(i, 30)
i€[2..6]

(i-e. all the patterns that

are composed of up to six nucleotides and span less than
30 bp). We got usually close to one hundred patterns in
this pattern family. Let us call M, this resulting pattern

family. It is an approximation of M,,,. Then, by merging
the patterns (composed of six nucleotides) that could be
identify as subsets of a same longer pattern (composed of

more than six nucleotides), we obtained patterns that

http://www.biomedcentral.com/1471-2105/6/206

| JECGi.60)

ie[2..10]

belonged to while becoming closer to M

spe*

Finally, from the patterns contained in Mg,,, we could
define approximately twenty flexible patterns per organ-
isms (see the Results section).

Besides the approximation generated by the division of
the program into a few steps, a few more approximations
were introduced during that process. First, the calculation
of the positive projection was performed approximately
so as to save calculation time. Second, the correlation
functions were calculated on restricted sets, practically on
E(4,30), i.e. O, = 4 and L,,, = 30 bp. This made the
description of patterns approximate since we aimed at
determining patterns containing more than four nucle-
otides. The correlation order should be longer than the
maximum number of nucleotides we want to find in pat-
terns, otherwise the program may find patterns which are
actually artefacts (a mix of genuine patterns present at dis-
tinct locations in the genome).

The program was written in C code. Built and operated in
this way, the program was run on a genome of 2 Mbp in
3 weeks with a 1.8 Ghz G5 CPU. The most time-consum-
ing step is the calculation of the correlation functions with
O, =4and L, =30 bp.

cor ana

Controls of the program

Different controls were performed to test the selectivity of
the program. First, when run on completely random
genomes, the coefficients of the first positive projection
were below the threshold, so that the resulting pattern
family was empty. Second, the program was also tested
with artificial genomes built from completely random
genomes in which we introduced a given pattern at ran-
dom locations. The program proved able to extract the
pattern back provided that the pattern frequency of intro-

duction was above

100 bp_1 . Third, the program proved

able to identify already known rigid patterns in genomes
(see the Results section).
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