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Abstract
Background: The NCBI taxonomy provides one of the most powerful ways to navigate sequence
data bases but currently users are forced to formulate queries according to a single taxonomic
classification. Given that there is not universal agreement on the classification of organisms,
providing a single classification places constraints on the questions biologists can ask. However,
maintaining multiple classifications is burdensome in the face of a constantly growing NCBI
classification.

Results: In this paper, we present a solution to the problem of generating modifications of the
NCBI taxonomy, based on the computation of an edit script that summarises the differences
between two classification trees. Our algorithms find the shortest possible edit script based on the
identification of all shared subtrees, and only take time quasi linear in the size of the trees because
classification trees have unique node labels.

Conclusion: These algorithms have been recently implemented, and the software is freely
available for download from http://darwin.zoology.gla.ac.uk/~rpage/forest/.

Background
The NCBI Taxonomy [1] provides one of the most power-
ful ways to navigate the National Center for Biotechnol-
ogy Information (NCBI) sequence data bases. Every
sequence in GenBank is associated with a taxon (which,
however, may be unidentified), and each taxon has a
unique place in the NCBI taxonomy. Hence, not only can
the user retrieve sequences for a given species (such as
Homo sapiens), but also for a group of species, such as
mammals (Mammalia) or animals (Animalia).

The NCBI provides a single classification, assembled from
a variety of sources including published literature, a panel
of expert advisors, and the taxonomy provided by users
when they submit new sequences. Given that there is not

universal agreement on the classification of organisms,
providing a single classification places constraints on the
questions biologists can ask.

To give a concrete example, Figure 1 shows a simplified
classification of animals, based on the current NCBI tax-
onomy. In this classification, the Bilateria are split into
three groups (Acoelomata, Pseudocoelomata, and Coelo-
mata) based on the nature of the internal body cavity
(coelom). The Coelomata are themselves split into two
groups, the Protostomia and the Deuterostomia, charac-
terised by the fate of the blastopore during development
(in the Protostomia this becomes the mouth, in the Deu-
terostomia it becomes the anus).
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An alternative view of animal classification is shown in
Figure 2. The three-fold division based on body cavity dis-
appears, leaving the fundamental split being between the
Protostomia and the Deuterostomia. The Protostomia are
divided into the Lophotrochozoa and the Ecdysozoa, the
latter comprising arthropods, nematodes, and other
moulting animals [2]. This classification has implications
for comparative genomics. The best known animal
genomes are Homo sapiens (human), Drosophila mela-
nogaster (fly), and Caenorhabditis elegans (nematode).
Under the classical classification (Fig. 1), the coelomates
human and Drosophila are more closely related to either
other than either is to the aceolomate C. elegans, suggest-
ing it would be most productive to compare our genome
with that of Drosophila, rather than the more distant nem-
atode. However, in the alternative classification (Fig. 2)
Drosphila and C. elegans are more closely related to each
other than either is to humans, and we have no (phyloge-
netic) reason for choosing one over the other as a point of
reference for interpreting the human genome. There is
considerable debate about the merits of the two classifica-
tions [3-5]. However, because the NCBI provides only one
classification users cannot, for example, easily query Gen-

Bank for all ecdysozoan sequences – this taxon simply
does not exist in the NCBI database. Instead, users are
forced to construct Boolean queries such as (Arthropoda
AND Nematoda). While in this simplified example this is
not a great hardship, as the trees get larger and the differ-
ences more profound, it becomes harder to pose a query
that captures the taxa required.

One solution is simply to download the NCBI taxonomy,
edit it to reflect the desired alternative classification, then
use that to obtain sequences from taxa such as Ecdysozoa.
It is reasonably straightforward to store a tree in a rela-
tional database an query it using SQL [6]. However, the
NCBI taxonomy is continually growing as new organisms
are sequenced. Hence, a locally edited classification will
quickly become obsolete. Having to download a fresh
copy and then manually edit it would quickly become
tedious.

Implementation
Taxonomic classifications
Although ideally classifications mirror phylogenetic rela-
tionships, it is important to distinguish between

Traditional view of animalsFigure 1
Traditional view of animals. A "traditional" view of animal relationships, based on the NCBI classification.
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classifications and phylogenies. A taxonomic classifica-
tion can be modelled as a rooted, labelled, unordered tree.
Unlike classifications, internal nodes of phylogenetic trees
need not be labeled, although the internal nodes of a phy-
logeny may be decorated with measures of support (such
as bootstrap values or Bayesian posterior probabilities).

Subtree isomorphism
Our approach is to first find subtree isomorphisms
between the two trees, T1 and T2. A subtree is a connected
subgraph of a tree. We distinguish between top-down and
bottom-up subtree isomorphism. A top-down node match-
ing the parent of each node in the matching is itself in the
matching (excluding the root which has no parent). In a
bottom-up matching, all the children of a node in the
matching are also in the matching (Fig. 3).

The algorithm first finds all subtrees, including bottom-up
and top-down subtrees, that are common to T1 and T2. We
find all kinds of subtree because, by themselves the sub-
trees found by each method can be small (Fig. 4).

Script
Having identified common subtrees, we then list the oper-
ations needed to transform T1 into T2. The first step is to

delete nodes in T1 that are not in any of the shared sub-
trees. The deletion of a node entails deletion of all the
edges incident with the deleted node. We then add nodes
found only in T2, and the corresponding edges. The size of
the script depends on the size of the shared subtrees,
hence it is desirable to find the largest such subtrees.

Complexity
In general, computation of the least number of operations
needed to transform T1 into T2 is an NP-hard problem [7],
even for binary trees with a label alphabet of size two, as
long as node and edge deletions, insertions, and label sub-
stitutions are allowed. However, in the case of trees with
unique node labels, node label substitutions are forbid-
den because they may generate trees with non-unique
node labels [8], and the least number of operations or edit
distance becomes a function of the size of shared subtrees
[9]. By identifying the largest common subtrees, we
obtain the shortest possible edit script.

Computing an edit script
Taxonomic classifications are modelled as trees with
unique node labels, and this fact makes it easier to deal
with trees in terms of their sets of node labels and node

An alternative view of animalsFigure 2
An alternative view of animals. A alternative tree of animals reflecting the "new animal classification".
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label pairs, as done for graphs with unique node labels in
[8].

Definition 1 Let T = (V,E) be a tree. The label representation
of T, denoted by R(T), is given by R(T) = (L,C), where L =
{�(v) | v ∈ V} and C = {(�(v),�(w)) | (v,w) ∈ E}.

Thus, the label representation R(T) of a tree T defines the
equivalence class of all those trees that are isomorphic to
T. The use of label representations simplifies the notation,
because isomorphic trees have exactly the same label
representation.

The edit operations of node and edge deletion and inser-
tion, allow one to transform any given tree into any other
tree. Label substitutions are forbidden because they may
generate trees with non-unique node labels [8].

Definition 2 Let T1 = (V1,E1) and T2 = (V2,E2) be trees, let
R(T1) = (L1, C1), and let R(T2) = (L2,C2). Let also C = L1 ∪
L2 ∪ {λ}.

A node edit operation between T1 and T2 is a pair (a, b) ∈ C ×
C with a ≠ λ or b ≠ λ. A node edit operation of the form (a, λ)
establishes deletion of the node v ∈ V1 with �(v) = a together
with the edge (parent(v), v), if v is not the root of T1, and dele-
tion of edge (v,x) for each child x of v in T1. A node edit oper-
ation of the form (λ,b) establishes insertion of the node w ∈ V2
with �(w) = b.

An edge edit operation between T1 and T2 is a triple (a, b, c) ∈
C × C × C with b ≠ λ and a ≠ λ or c ≠ λ. An edge edit operation
of the form (a, b, λ) establishes deletion of the edge (v, x) ∈ E1
with �(v) = a and �(x) = b, and an edge edit operation of the
form (λ, b, c) establishes insertion of the edge (w,y) ∈ E2 with
�(w) = b and �(y) = c.

Subtree isomorphismsFigure 4
Subtree isomorphisms. The top-down and bottom-up subtree isomorphisms between the animal classifications shown in 
Figs. 1 and 2. (ignoring the trivial bottom-up subtrees that comprise a single leaf).
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An edit operation is either a node edit operation or an edge edit
operation.

An edit script between two trees is just a set of edit opera-
tions that, if applied in the right order (essentially, insert-
ing an edge only after having inserted the nodes incident
with the inserted edge), allow one to transform one tree
into the other.

Definition 3 An edit script between two trees T1 = (V1,E1) and
T2 = (V2,E2) is a set of edit operations that transform R(T1) into
R(T2).

Given R(T1) = (L1, C1) and R(T2) = (L2, C2), an edit script
between T1 and T2 can be easily obtained by sorting the
label sets and computing set differences, as follows:

• Delete all nodes with labels in L1 \ L2

• Insert all nodes with labels in L2 \ L1

• Delete all edges with labels in C1 \ C2

• Insert all edges with labels in C2 \ C1

However, such a procedure does not, in general, lead to
the shortest possible edit script, because some of the edge
deletion operations may be redundant, given that dele-
tion of a node entails deletion of all the edges incident
with the deleted node. While any edit script would suffice
to transform one tree into the other, the shortest edit
script leads to a faster computation of the edited tree,
given the script and the original tree.

The following, alternative procedure is based on the set of
common node labels between the two trees, which can be
easily obtained as the intersection of the sets of node
labels in the label representation of the trees, that is, C =
L1 ∩ L2 = {�(v) | v ∈ V1} ∩ {�(w) | w ∈ V2}. The procedure
can be sketched as follows:

• Delete all nodes v ∈ V1 with �(v) ∉ C.

• Insert all nodes w ∈ V2 with �(w) ∉ C.

• Delete all edges (v,x) ∈ E1 with �(v), �(x) ∈ C and such
that the node w ∈ V2 with �(v) = �(w) is not the parent in
T2 of the node y ∈ V2 with �(x) = �(y).

• Insert all edges (w,y) ∈ E2 with �(w), �(y) ∈ C and such
that the node v ∈ V1 with �(v) = �(w) is not the parent in
T1 of the node x ∈ V1 with �(x) = �(y).

• Insert all edges (w, y) ∈ E2 such that �(w) ∉ C or �(y) ∉ C.

A detailed description of the algorithm is given in Fig. 5.
Correctness of the edit script algorithm is easy to establish.

Connected subgraph and top-down and bottom-up subtreesFigure 3
Connected subgraph and top-down and bottom-up 
subtrees. In the top-down subtree the parent of any node in 
the subtree is itself in the subtree. In the bottom-up match-
ing, the children of any node in the matching are also in the 
matching. Modified from [10].

Top-down subtree Bottom-up subtreeSubtree

Algorithm for computing edit scriptFigure 5
Algorithm for computing edit script. Let C be a set of 
common node labels of T1 and T2. A function call of the form 
edit script (T1, T2, C) returns a set E of elementary edit opera-
tions that transform T1 into T2.
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Theorem 1 Let T1 and T2 be trees, let C ⊆ �(V1)  �(V2), let E
= edit script (T1, T2, C), and let be the result of applying the
set of edit operations in E to T1. Then, and T2 are
isomorphic.

Proof It has to be shown that . Let R(T1) =
(L1, C1) and R(T2) = (L2, C2). The edit script establishes the
deletion of all nodes with labels in L1\ C and the insertion

of all nodes with labels in L2 \ C. Thus,  = L1 \ (L1 \ C) ∪
(L2 \ C) = C ∪ (L2 \ C) = L2.

The edit script also establishes the deletion of all edges
with source and target labels in (C1 ∩ C × C) \ C2, the
insertion of all edges with source and target labels in (C2
∩ C × C) \ C1, and the insertion of all edges with source or
target label in L2 \ C, that is, of all edges in C2 \ (C2 ∩ C ×
C). Furthermore, the deletion of all nodes with labels in
L1 \ C entails the deletion of all edges with source or target
label in L1 \ C, that is, of all edges in C1 \ (C1 ∩ C × C). (See
Fig. 6.)

Now, C1 = (C1 \ C2) ∪ (C1 ∩ C2) = ((C1 ∩ C × C) \ C2) ∪
((C1 \ (C1 ∩ C × C)) \ C2) ∪ (C1 ∩ C2). In a similar vein,
C2 = ((C2 ∩ C × C) \ C1) ∪ ((C2 \ (C2 ∩ C × C)) \ C1) ∪ (C1
∩ C2).

Thus,

 = C1 \ ((C1 ∩ C × C) \ C2) \ ((C1 \ (C1 ∩ C × C)) \ C2)
∪ ((C2 ∩ C × C) \ C1) ∪ ((C2 \ (C2 ∩ C × C)) \ C1) = (C1 ∩
C2) ∪ ((C2 ∩ C × C) \ C1) ∪ ((C2 \ (C2 ∩ C × C)) \ C1) = C2

and therefore,  = (L2, C2) = R(T2), that is,

 and T2 are isomorphic.

The edit script algorithm can be implemented to take time
quasi linear in the size of the trees, by using any efficient
dictionary data structure to represent the set of common
node labels. The same dictionary data structure allows one
to compute the set of common node labels within the
same time bound and thus, the whole procedure can be
implemented to take time quasi linear in the size of the
trees. In particular, our C++ implementation uses the STL
associative container set<string> as representation of the
set of shared node labels.

Results
Here we suggest a solution based on the notion of an "edit
script" that summarises the differences between two trees.
Given two trees, T1 and T2, a script lists the operations
required to convert T1 into T2. The script could be con-
structed manually, but it would be more efficient to gen-
erate it automatically. Hence, we imagine the following
scenario. A user downloads the NCBI taxonomy tree (or
that subtree relevant to their interests), then edits the tree
to reflect their preferred classification. Using the
algorithm we describe below, the user then computes the
edit script that transforms the NCBI tree into their classifi-
cation. When a new NCBI tree appears on the NCBI ftp
site, the user downloads that tree and applies to edit script
to regenerate their classification. In this way, the user need
only edit the NCBI tree once.

As an example, given the two trees in Figs. 1 and 2, the edit
script for these trees is:

delete node Pseudocoelemata

delete node Coelomata

delete node Protostomia

delete node Acoelomata

insert node Ecdysozoa

insert node Lophotrochozoa

insert node Protostomia

insert edge Bilateria -> Deuterostomia

insert edge Bilateria -> Protostomia

Illustration for the proof of Theorem 1Figure 6
Illustration for the proof of Theorem 1. Given the label 
representation R(T1) = (L1, C1) and R(T2) = (L2, C2) of two 
trees, and a set of common node labels C ⊂ L1 ∩ L2, T1 can be 
transformed into T2 by deleting all nodes with labels in L1 \ (C, 
which implies deletion of all edges with source and target 
node labels in C1 \ (C1 ∩ C × C); inserting all nodes with labels 
in L2 \ C, deleting all edges with source and target node labels 
in (C1 ∩ C × C) \ C2; inserting all edges with source and target 
node labels in (C2 ∩ C × C) \ C1; and inserting all edges with 
source and target node labels in C2 \ (C2 ∩ C × C).

(C1 C × C) \ C2

(C2 C × C) \ C1C1 \ (C1 C × C)

C2 \ (C2 C × C)

′T1
′T1

R T R T( ) ( )′ =1 2

′L1

′C1

R T L C( ) ( , )′ = ′ ′1 1 1

′T1
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insert edge Ecdysozoa -> Nematoda

insert edge Ecdysozoa -> Arthropoda

insert edge Lophotrochozoa -> Annelida

insert edge Lophotrochozoa -> Brachiopoda

insert edge Lophotrochozoa -> Bryozoa

insert edge Lophotrochozoa -> Mollusca

insert edge Lophotrochozoa -> Nemertea

insert edge Lophotrochozoa -> Platyhelminthes

insert edge Protostomia -> Lophotrochozoa

insert edge Protostomia -> Ecdysozoa

Applying the script to the NCBI tree (Fig. 1) yields the tree
shown in Fig. 7, which is identical to the tree shown in Fig.
2.

Discussion
The size of the edit script will be a function of the size of
the input trees, and the degree to which they differ. At the
time of writing, there are 83,802 metazoan taxa in Gen-
Bank. Given that the disagreement between the Coelo-
mata and Ecdysozoa hypotheses concerns the deep level
relationships, we can simplify the task by reducing the
subtrees about which there is little or no disagreement to
single nodes. For example, the 36,746 arthropod taxa can
be represented by a single node. Hence, the tree shown in

Result of applying the edit scriptFigure 7
Result of applying the edit script. The result of applying the edit script to the tree in Fig. 1. This tree is the same as that 
shown in Fig. 2. Nodes which have been inserted into the tree are filled with light grey. A dashed line represents an edge that 
has been added to the original tree.
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Fig. 1 is greatly simplified, compared to the complete
NCBI tree.

One issue we don't directly address here is using the tree
that results from applying the edit script to query Gen-
Bank. There are at least two approaches to doing this. The
first is to store the tree in a local database and use a
method such as visitation numbers [6] to generate queries
involving higher taxa (such as listing all sequences from
the Ecdysozoa).

Another approach would be to use the tree to rewrite que-
ries in terms of the original GenBank taxonomy. For
example, in our rather simplified example in Fig. 2, we
could use the tree to automatically rewrite the query term
"Ecdysozoa" as the sum of its children (Arthropoda and
Nematoda) as both trees (Fig. 1 and Fig. 2) agree on the
composition of these two taxa. One advantage of this
approach is that we can continue to use tools such as
BLAST, but in the context of a different taxonomic
classification.

Conclusion
We present a solution to the problem of generating mod-
ifications of the NCBI taxonomy, based on the computa-
tion of an edit script that summarises the differences
between two classification trees. Our algorithms find the
shortest possible edit script based on the identification of
all shared subtrees, and only take time quasi linear in the
size of the trees because classification trees have unique
node labels. We have implemented the edit function in a
C++ program that makes use of the Graph Template
Library (GTL) available from http://infosun.fmi.uni-pas
sau.de/GTL/. The code has been compiled and tested with
the GNU gcc compiler on Mac OS X and Linux machines,
and is available from http://darwin.zoology.gla.ac.uk/
~rpage/forest/. The software comprises two programs, for-
est and script. The program forest takes two trees in GML
format (the original tree and the edited tree) and com-
putes an edit script. Given this script and the original tree,
script generates the edited tree.

Availability and requirements
• Project name: Forest

• Project home page: http://darwin.zoology.gla.ac.uk/
~rpage/forest/

• Operating system(s): Unix/Linux, tested on Mac OS X
and Red Hat 8.0

• Programming language: e.g. C++

• Other requirements: Graph Template Library (GTL)
(http://infosun.fmi.uni-passau.de/GTL/)

• License: GNU GPL

• Any restrictions to use by non-academics: Forest
depends on GTL, which can be downloaded free of charge
for non-commercial use. Commercial use of GTL requires
a licence from BRAINSYS – Informatiksysteme GmbH
(http://www.brainsys.de/)
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