BIVIC Bioinformatics moml.?@mral

Methodology article

A new dynamical layout algorithm for complex biochemical
reaction networks
Katja Wegner* and Ursula Kummer

Address: Bioinformatics and Computational Biochemistry, EML Research, Schloss-Wolfsbrunnenweg 33, D-69118 Heidelberg, Germany

Email: Katja Wegner* - Katja.Wegner@eml-r.villa-bosch.de; Ursula Kummer - Ursula.Kummer@eml-r.villa-bosch.de
* Corresponding author

Published: 26 August 2005 Received: 20 October 2004
BMC Bioinformatics 2005, 6:212 doi:10.1186/1471-2105-6-212 Accepted: 26 August 2005
This article is available from: http://www.biomedcentral.com/1471-2105/6/212

© 2005 Wegner and Kummer; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: To study complex biochemical reaction networks in living cells researchers more
and more rely on databases and computational methods. In order to facilitate computational
approaches, visualisation techniques are highly important. Biochemical reaction networks, e.g.
metabolic pathways are often depicted as graphs and these graphs should be drawn dynamically to
provide flexibility in the context of different data. Conventional layout algorithms are not sufficient
for every kind of pathway in biochemical research. This is mainly due to certain conventions to
which biochemists/biologists are used to and which are not in accordance to conventional layout
algorithms. A number of approaches has been developed to improve this situation. Some of these
are used in the context of biochemical databases and make more or less use of the information in
these databases to aid the layout process. However, visualisation becomes also more and more
important in modelling and simulation tools which mostly do not offer additional connections to
databases. Therefore, layout algorithms used in these tools have to work independently of any
databases. In addition, all of the existing algorithms face some limitations with respect to the
number of edge crossings when it comes to larger biochemical systems due to the interconnectivity
of these. Last but not least, in some cases, biochemical conventions are not met properly.

Results: Out of these reasons we have developed a new algorithm which tackles these problems
by reducing the number of edge crossings in complex systems, taking further biological conventions
into account to identify and visualise cycles. Furthermore the algorithm is independent from
database information in order to be easily adopted in any application. It can also be tested as part
of the SimWiz package (free to download for academic users at [1]).

Conclusion: The new algorithm reduces the complexity of pathways, as well as edge crossings and
edge length in the resulting graphical representation. It also considers existing and further biological
conventions to create a drawing most biochemists are familiar with. A lot of examples can be found

on [2].
Background complexity of this ambitious goal requires the additional
With the development of sophisticated experimental tech- ~ use of computers to be able to analyse the data resulting

nology scientists are trying to understand the huge cellular ~ from high-throughput experiments. Computational
biochemical network of living cells in its entirety. The approaches include the wusage of modelling and

Page 1 of 12

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16124872
http://www.biomedcentral.com/1471-2105/6/212
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:212

simulation of biochemical processes which offers new
insights into the way biochemical reactions interact with
each other and new perspectives for drug development.

Modelling and simulating increasingly complex biochem-
ical networks, however leads again to masses of data. In
order to facilitate the understanding of the results, sophis-
ticated visualisation techniques are required. Therefore,
visualisation techniques for use in bioinformatics and
computational biochemistry have attracted more and
more attention in the last years.

One common example for such visualisations is the
graphical representation of biochemical reaction net-
works/pathways. A graphical representation offers the
advantage that the topology of the network which is
tightly linked to its function, is easily depicted. This topol-
ogy information is lost when a researcher is confronted
with just a list of biochemical reactions. Of course, graph-
ical representations exist that are hand-made and static
(e.g. in biochemistry books).

Many examples of graphical representations on the com-
puter are also static, e.g. KEGG [3]. Being static offers no
flexibility in the level of detail or in the exact information
depicted by the respective graphs. To get rid of this prob-
lem dynamic visualisation techniques arose that enable
the user on the fly to see and change only those pathways
that are needed at time of viewing [4].

In this paper we concentrate on a new dynamic layout
algorithm for the graphical representation of complex
reaction networks. In such a graph consisting of nodes
and edges, the nodes of the graph represent the com-
pounds and the edges the reactions between these com-
pounds. The direction of an edge shows the direction of
the reaction. If an edge points from n, to n,, n, is the sub-
strate and n, the product of the respective reaction.

Often there is a differentiation between two types of com-
pounds, main and side compounds. Main compounds lie
on the backbone of the pathway, e.g. in linear pathways
they participate in adjacent reactions [5]. All other com-
pounds in this pathway are considered as side
compounds.

Dynamic graph layout algorithms try to visualise the
graph in such a way that it is easy to survey. This means
that crossing of edges is avoided as much as possible.
Nodes and labels have to be placed such that they do not
overlap. This task can in principle be performed by stand-
ard graph layout algorithms, however, there are reasons
why this is not suffcient in the context of bioinformatics.
One of these reasons is the very high degree of connectiv-
ity in complex biochemical networks and the other reason

http://www.biomedcentral.com/1471-2105/6/212

is that there is a certain way that biochemists are used to
seeing these graphs that does not match the way a stand-
ard layout algorithm would represent a complex bio-
chemical network (see [6] for a detailed discussion).
Therefore, several specific dynamic layout algorithms for
metabolic pathways have been developed in the past.

The algorithm by Karp et al. [5,7] uses a divide-and-con-
quer method (project BioCyc). In the first step the graph
is decomposed into subgraphs. These subgraphs are
drawn according to their topology (linear — hierarchical
graph layout, cyclic — circular graph layout, branched —
tree layout). In the second step a hierarchical layout algo-
rithm assembles these subgraphs to a whole graph.

BioPath [6,8] is a dynamic electronic version of the Boe-
hringer Biochemical Pathway map by Michal [9,10]. It uses
an improved hierarchical layout algorithm [11]. However,
BioPath is currently not available. As part of the PathDB
project Mendes et al. (personal communication) devel-
oped a PathwayViewer that consists of an improved hier-
archical [11] and an individual circular layout algorithm.
Additionally, they allow the user to edit the final drawing.

The above approaches also make more or less use of addi-
tional information in specific underlying databases, e.g.
information about the order of reactions, side com-
pounds etc. This is an advantage when aiming at the best
graphical representation of data in the database, e.g. met-
abolic pathways. However, it also often restricts the use of
the layout algorithm to these applications. Simulation
and modelling tools that also want to make use of sophis-
ticated visualisation techniques cannot rely on additional
data in most cases. A graph layout algorithm used in these
tools has to work, e.g. on the basis of the information as
presented in a SBML file [12]. SBML files only contain
explicit data about the individual reactions present in a
specific biochemical network. Furthermore, previous
approaches first calculate the coordinates of the main
compounds and subsequently place the side compounds
separately as labels near the edge representing the reaction
in which they take part (one single label for each
occurrence).

In contrast Rojdestvenski [13] uses a modified spring-
embedding layout algorithm [14] for 3D-representations
mainly. The algorithm considers main and side com-
pounds as nodes during the layout process but with differ-
ent priorities. First only the main compounds are placed.
Second the algorithm is started again with the main com-
pounds and side compounds at the same time, but with
frozen coordinates for the main compounds. In contrast
to the other three projects the side compounds are treated
as nodes of the graph and their coordinates are deter-
mined with the spring-embedder algorithm. Furthermore,

Page 2 of 12

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:212

each side compound occurs only once instead of one
node for each occurrence in the network. However, this
approach leads to many edge crossings in a graph with
highly connected side compounds.

In 2001 Becker et al. [15] developed a divide-and-conquer
method similar to Karp et al. Unlike Karp et al. they only
differentiate between cyclic and hierarchical subgraphs in
the graph and decompose the subgraphs with the help of
a force-directed algorithm [16,17]. However, this method
is only able to handle main compounds.

Nevertheless, we chose this algorithm as basis for our
work, since cyclic and hierarchical structures are the two
basic topologies in which every complex biochemical net-
work/pathway can be separated. In addition, the Becker et
al. algorithm is not linked to a specific database and is
therefore easily adjusted to different environments and
needs.

All of the above algorithms work reasonably well for small
to medium sized networks. However, the complexity of
studied biochemical networks is increasing. For large and
complex pathways the existing pathway layout algorithms
often face a problem with respect to the number of edge
crossings. Such complex pathways contain highly con-
nected nodes and cycles that share nodes with other
cycles. In addition, biological conventions stress the
importance of cycles, even small cycles in general since
such structures represent important recycling processes
and shortcuts in the system. However, existing algorithms
do not take these conventions into account. We tested e.g.
the Becker et al. algorithm with seventeen elementary
reactions of the Peroxidase-Oxidase reaction (PO-reaction
[18]). These elementary reactions interact strongly with
each other and two recycling processes are present. The
Becker et al. algorithm created a tangle of nodes and edges
which is impossible to survey (Figure 1, as comparison
Figure 2 shows the same reactions drawn by our new algo-
rithm). In the following sections we show how the new
algorithm solves these problems, reduces edge crossings
and presents the reaction in a way that corresponds more
closely with biological conventions. This is achieved by
identifying even small cycles and by splitting nodes to
improve the readability of the dynamic drawing.

Results

As the starting point for our algorithm we used the imple-
mentation of the Becker et al. algorithm that is based on
the Java graph library YFiles [19]. In general, our algo-
rithm differs from the Becker et al. algorithm in the fol-
lowing ways: it is able to join and split nodes and to detect
smallest cycles or cycles of arbitrary size instead of just the
longest one.

http://www.biomedcentral.com/1471-2105/6/212

In addition, since the Becker et al. algorithm is not able to
handle side compounds, we included this possibility.
Similar to Karp et al. [7] the definition of side compounds
results from a predefined list with compound names (e.g.
ATP, NADP, H,O, etc.) That list is editable by the user.
Each compound (side and main) is treated as a node in
the graph. However, in contrast to Rojdestvenski [13] we
place side and main nodes simultaneously which means
that as default side compounds have the same priority as
the main compounds. Only during the process of cycle
search, main compounds are prioritised. This default is
chosen, because many examples show that the differenti-
ation between main and side compounds is helpful at
times, but often somewhat arbitrary blurring the bio-
chemical reality. Nevertheless, it is also possible to gener-
ate a layout without any side compounds.

The list of reactions comprising the biochemical network
can be submitted as an SBML [12] or a simple text file
(listing all reactions separated by semicolon). It is visual-
ised by a hyper-graph, which means that each reaction is
represented by two connected dummy nodes, one is
linked with all substrates and the other one with all prod-
ucts of this reaction.

In the following, we will describe in detail how our algo-
rithm works. First, we will show how hierarchical and
cyclic subgraphs are found and second how these sub-
graphs are reassembled to a whole graph.

Identifying subgraphs

This section describes the first part of the algorithm which
identifies the cyclic and hierarchical subgraphs of a given
pathway. To find joined cyclic subgraphs, nodes which are
part of more than one cycle are split. The pseudo-code in
Figure 3 describes the modified Becker et al. recursive
method to identify circular and hierarchical subgraphs in
a given pathway. The first step is to search for the smallest
instead of the longest cycle (Figure 4, line 1) As explained
above this procedure is chosen, since otherwise biologi-
cally relevant information might get lost, since small
cycles often represent important recycling processes or
short cuts in a pathway. One example is shown in Figure
5. All graphs represent a part of the Peroxidase-Oxidase
reaction (PO reaction [18]). The first picture was crafted
with a graphic program by a biochemist. The second one
was dynamically generated with the Becker et al. algo-
rithm. In this case, the two cycles of the first picture are
not easy to depict, because of the emphasis on the longest
possible cycle. However, the two cycles represent the two
main recycling processes of enzyme intermediates and are
therefore crucial for the reaction mechanism. These cycles
are shown in the third picture in Figure 5 which is gener-
ated by our new layout algorithm.

Page 3 of 12

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:212 http://www.biomedcentral.com/1471-2105/6/212

COll <y

MLT

%

PER3+

H20
Figure |

" _
YA A
,‘Ll:; ,Ai=!!Iliﬁg!g!iiii!!!!ﬁ.!ﬁn!"r

' " ' conl

_ AN
P NS X

Visualisation of the PO reaction [18]. This picture is a result of the Becker et al. algorithm. The seventeen reactions of

this pathway are hardly recognisable.

To be identified, the smallest cycle must contain at least
three compounds. However, this number is adjustable by
the user, since there are of course cases where the cycle
representing biologically important information is not
the absolutely smallest. Therefore, if the first layout
depicting the smallest cycle is not of the desired quality,
the user can change it by increasing the number of com-
pounds for the cycle search. Furthermore, the cycle must
contain all the dummy nodes of each participating
reaction.

In the first round of cycle searching only the main com-
pounds and dummy nodes are used to find the smallest
cycle. Then the algorithm looks for connected compo-
nents. Connected components are sets of nodes which are
directly or indirectly connected via edges. Thus, there exits
a path between each pair of two nodes in the set. The
Becker et al. algorithm looks for strongly connected com-
ponents instead. In contrast to connected components,
strongly connected components consider the edge direc-
tion. Thus, the above definition applies, however, the

Page 4 of 12

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:212

http://www.biomedcentral.com/1471-2105/6/212

Figure 2

Visualisation of the PO reaction [18]. The picture is a result of our new layout algorithm and shows the reactions in a

much clearer way compared to Fig. I.

path between each pair of nodes in the respective highly
connected components is only valid if the direction of the
edges is always the same.

For this reason our algorithm is able to find both cycles
where all edges have got the same direction (e.g. in Figure
5 the left cycle (PER3+ - COII - COI) in the first picture) and
also cycles where edges have got different directions (e.g
in Figure 5 the right cycle (PER3+ - PER?* - COIII) in the
first picture). Finally, the breadth first search (BFS) [20]
finds the smallest cycle if any exists.

If no cycle is found in the first call of the findSubgraph
method, the whole graph will be drawn hierarchically.
Otherwise, if one cycle has been found already and the
method does not detect a second one with only main and
dummy nodes, nodes representing side compounds are
also included into the cycle search.

The algorithm keeps distinguishing between these three
cases:

¢ No cycle found — draw the complete graph with a hier-
archical layout algorithm (Figure 3, line 17)

¢ All nodes of the graph belong to the found cycle — draw
the complete graph with a circular layout algorithm (Fig-
ure 3, line 3)

¢ Complex graph — draw the found cycle with a circular
layout algorithm and separate the remaining nodes of the
pathway into further cyclic and hierarchical subgraphs
(Figure 3, line 6)

In the first case the Becker et al. algorithm uses a standard
hierarchical layout algorithm. We improved this standard
algorithm by separating the placement of the nodes into
two steps. First the main and dummy nodes are placed by
the standard algorithm. Second the side compounds are
split to create as many nodes as occurrences in reactions
exist. Hence, every node has got only one edge. These
nodes are positioned one layer above or under the other

Page 5 of 12

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:212

Method: findSubgraphs(grph, subgraph)
Input: graph - all nodes of the pathway

subgraph - selected nodes of the graph (first method call: subgraph = graph)
Output: foundCycles - all found cyclic subgraphs of this pathway

JoundHicrs - all found hierarchical subgraphs of this pathway
JoundSingleNodes - all single nodes which are not part of any found subgraph

cyele — searchSmallestCycle(subgraph)

if (eyele contains all nodes of subgraph) // one big cycle

1.

2, if (eyelesize() > 0) // eyele was found
3

| doCircularLayout (cycle)

0

foundCycles.add(cycle)

G else // complex graph

7 doCircular Layout (eyele)

ES foundCycles.add(cycle)

9. // Split all nodes in the cycle that have got at least

10 // two edges to nodes outside the cycle.

11 subgraph — splitCycleNodes(cycle, subgraph)

12 // Create a list of all nodes of subgraph which are not part of cyele.
13 remainingNodes — getRemainingNodes(subgraph, cyele)
14, components — getConnectedComponents(remainingNodes)
15 for (each nodeSef in components)

16, findSubgraphs(graph, nodeSet)

17. else // cycle is empty, no cycle was found, subgraph is hierarchical

15, joinSplitNodes(subgraph)

19. doHierarchicalLayout (subgraph)
20, hierCompenents — getConnectedComponents(subgraph)
21, for (each nodeSet in hierComponents) do
22 if (number of nodes in nodeSet is 1)
23 foundSingle Nodes.add(nodeSet)

24 else

25, SfoundHiers.add({nodeSet)

Figure 3

Pseudo code of the method findSubgraphs. This
method searches for all hierarchical and cyclic subgraphs of a
given pathway.

end point of the edge according to the direction (top to
down).

In the second case the whole graph consists of one cycle
and all nodes are therefore positioned by a standard circu-
lar layout algorithm.

In the complex graph case the graph consists of various
circular and hierarchical subgraphs. Since in all existing
layout algorithms each node is part of exactly one sub-
graph, these algorithms are not able to find cycles which
share nodes. Therefore, we added the possibility to split
(Figure 3, line 11) and join nodes (Figure 3, line 18 and
Figure 4, line 2). Figure 6 shows the urea cycle and a part
of the citrate cycle crafted with a graphical program by a
biochemist. The Becker et al. algorithm finds the urea
cycle and considers the unshared parts of the citrate cycle
as hierarchical subgraph. In contrast to this picture our
new algorithm finds two cycles joined at argininosucci-
nate.

http://www.biomedcentral.com/1471-2105/6/212

Method: doLayout(graph)
Input: graph - complete graph
Output: newCGraph - new drawing of graph

L. foundCycles, foundlliers, foundSingleNodes — findSubgraphs(graph)

2. joinFoundCyclesOnSplitNodes(found Cyeles)

. // Search for further cycles which share at least two nodes.

. // If two subgraphs are connected by two edges, build a new cycle

o

// with the nodes of these edges and the nodes connecting these

edges.
6. // Join both cycles at the common nodes.
7. searchForFurtherCycles(foundCycles, foundHiers)
8. reassembleSubgraphs(found Cycles, foundHiers, foundSingle Nodes)

9. // Reduce edge crossing: Count crossings for each edge between
subgraphs.

10. for (edges)

1. check: noOfCrossings — conntCrossings(edge)

12. if (noOfCrossings > allowedCrossings)

13. if (one of the nodes is split)

14. movelidgeOverToSplittingPartner()

15. continue at check

16 else

17. splitTarget Node()

18, moveNewNodeNear ToSource Node()
Figure 4

Overview of the layout process.

This result is achieved by splitting nodes in found cycles
which could also be part of another cycle (Figure 3, line
11). These nodes must represent compounds and must
have at least four edges, two edges to nodes in the found
cycle and two edges to nodes which are not part of this
cycle. Dummy nodes are not allowed to split. Each node
n is split into 1, (node with all edges connecting nodes in
the found cycle) and n, (node with all remaining edges),
see also Figure 7. In this way, several cycles representing
biochemical reaction cycles that share a compound can be
found and represented accordingly.

When no more cycles are found, the remaining nodes are
regarded as hierarchical. Split nodes are joined and the
subgraph is inspected to find connected components
before the improved hierarchical layout algorithm places
the nodes of this subgraph (Figure 3, line 18). Each con-
nected component is considered as one hierarchical sub-
graph but components with only one node are saved in an
extra set (Figure 3, lines 20-24) and are placed separately.

Building the complete graph
In this section the subgraphs are reassembled to a com-
plete graph by

¢ Joining split nodes if possible (= joining cycles at one

node, Figure 4, line 2).

Page 6 of 12

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:212 http://www.biomedcentral.com/1471-2105/6/212

NAD+

2- Per3+
2

MLT.
20
MLT
Coll

2. Becker et al.

Col

[NAD+|

3. advanced algorithm

Figure 5

Visualisation of a part of the PO reaction [18] (6 reactions). The layout of the graph that can be seen in the first pic-
ture was crafted with the aid of a graphic program by a biochemist, the second one was dynamically generated by the Becker et
al. algorithm and the third one by our new algorithm.

e Search for further cycles in the found subgraphs (Figure = These processes are described in detail in the following

4, lines 3-7). paragraphs.

¢ Reassembling of the found subgraphs to a complete For the joining of split nodes present in cycles, the algo-

graph using a force-directed layout algorithm (Figure 4, rithm tries to join main nodes with priority over side

line 8). nodes. Therefore, cycles with split main nodes will be
joined before cycles with split side nodes. Joining two

e Reducing edge crossings between subgraphs (Figure 4, nodes means that two cycles are rotated and moved

lines 9-18). together at these nodes. One node will be deleted from

the graph and all its edges will be shifted to the other one
(see an example in Figure 5 (PER3+)). Only two cycles are

Page 7 of 12

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:212

(CO2 + NH4+)

- @—Kem ﬂCid)‘
/qubomyl e

\phosph'l[e J NS N

_, A\ \q—é}uuqo acid

/ ‘ \
o Atginino—
{—/Ormfhme succinate

Oxaloacetate
»

/
A\ /
—\ A

. N —— 4
Wrea \"*'*ﬁégginie |- - Fumarate f—"/

1. graphic program

Urea

Carbamoyl-phosphate
\Ornlthlne\

Citrulline-

3. advanced algorithm

Figure 6

http://www.biomedcentral.com/1471-2105/6/212

Fumarala

Arginine NH4 co2
Ma\a(e \T/}

Argininosuccinate Carbamuw—
Oxalua:etate rea Omilhine

A DhUSDhE(

Citrulline
Aspartate

ALPHA-Aminoacid

ALPHA-Keto_acid

2. Becker et al.

Arginine
s 'Fumarate|
\
[Malate
[coz [NH4

Arginingsuccinate

Oxaloacetate

ALPHA-Aminoacid
Aspartate

ALPHA-Keto_acid

Visualisation of the urea cycle and parts of the citrate cycle. The first picture was made manually, the second one was
dynamically generated by the Becker et al. algorithm and the third one by our new layout algorithm. All visualisations look sim-
ilar but the two cycles in the first and third picture are not well represented in the middle one.

allowed to be joined at the same node because more than
two cycles would cause edge crossings.

For the detection of further cycles, the algorithm searches
for subgraphs which are connected by at least two edges
with another subgraph. These edges must have got differ-
ent source and target nodes. If such edges exists, the algo-
rithm will determine the shortest path between the nodes
of these two edges in both subgraphs. The found nodes of
this path are used to build a new cycle. This new cycle
must also correspond to the above explained definition of
avalid cycle and is then drawn accordingly. The new cycle
and the already existing one will be joined at the common

nodes. See an example in Figure 6, the two cycles are
joined at argininosuccinate and the four dummy nodes
of the two reactions in which argininosuccinate partici-
pates.

In contrast to the Becker et al. algorithm the final reassem-
bling step only starts after all subgraphs are found and
split nodes are joined. The force-directed method takes
the cycle with the maximal number of edges to other sub-
graphs as central subgraph and all remaining subgraphs
and single nodes as input. The force-directed algorithm
places all subgraphs around the central cycle to build the
complete graph. Finally, to reduce edge crossings, all

Page 8 of 12

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:212

~Citrulline —

- _— Aspartate =—_
Ve v v .
. Arginino— Arginino— Oxn]or:ce[a:e
Omnithine succinate 1 succinate 2
' Malare
T Arginie - “—=Famarate —

Adjl = {Citrulline, Arginine Adj2 = { Aspartate, Fumarate |

Figure 7
Splitting nodes. This figure shows an example how a node,
in this case argininosuccinate is split into two nodes. The

adjacency list (Adjx) shows which edge belongs now to which
node.

edges between found subgraphs are checked. The list of
these edges is sorted by their length in descending order
because typically the longer the edge the higher the
number of edge crossings. Starting from the longest edge
the number of edge crossings is counted for each edge of
this list and nodes are split to reduce the number of cross-
ings. This number of allowed edge crossings can also be
changed by the user.

Before splitting a node the algorithm checks whether one
node of this edge was the result of another splitting
operation and checks whether its splitting partner could
take over this edge with at most two edge crossings. If this
is not possible, the target node of the examined edge is
split and a new node is created that has got only this edge
and is placed near to the source node. Nodes with only
one edge are moved directly near to the other edge end-
point. To generate a planar graph the number of allowed
edge crossings can be set to zero but that also increases the
number of split nodes.

In addition, the placement of labels is automatically done
by the used layout algorithms of the YFiles package.

Discussion

We have presented our new dynamical layout algorithm
for metabolic pathways. One of the main differences to
existing algorithms is the emphasis on finding small
cycles. This results in a biochemically meaningful repre-
sentation in many cases, since cycles in biochemical net-
works often stand for important processes like recycling of
intermediates, energy or electron carrier producing or
futile cycles. Therefore, biochemists are used to seeing
these processes as graphical cycles and our algorithm takes
care of this convention. For those cases where the smallest
meaningful cycle does not match the default settings,
these can be easily adjusted.

Our algorithm is able to handle linear, cyclic and complex
metabolic pathways considering main and side com-

http://www.biomedcentral.com/1471-2105/6/212

pounds. A complex pathway consists of diverse hierarchi-
cal and cyclic subgraphs. Nodes are split and joined to
improve the detection of these subgraphs and to minimise
edge crossings. Finally in many cases the drawing reflects
the biological context better than previous approaches,
e.g. cycles which share at least one node can be found and
represented.
Therefore, our satisfies the
constraints:

algorithm following

1. Considering further biological conventions: By identifying
cycles which share at least one node and by splitting
nodes, pathways are drawn more accurately and more
similarly to the visualisations biologists are used to (e.g.
Figure 6).

2. Unequivocal distinction between substrates and products:
Each reaction is represented by two connected dummy
nodes which allows an exact distinction between products
and substrates in each reaction.

3. Complexity reduction: The complexity of pathways is
reduced by splitting higher connected nodes (see also
above). Thereby it is possible to untangle nets of many
edges to one node, see KEGG [21] pyruvate metabolism
(pathway no. 00630, e.g. Glyoxylate).

4. Edge crossing minimisation: The edge crossings are mini-
mised in the second splitting phase when one node of an
edge with more than two edge intersections is split.

5. Edge length reduction: Both dummy nodes of one reac-
tion must be part of the same subgraph which minimises
the distance between two dummy nodes. As mentioned
above, compounds are split and placed near to each other
to minimise edge crossing which also reduces the edge
length. These methods also fulfil the constraint that com-
pounds of the same reaction should be placed near to
each other.

Since our algorithm is based on the Becker et al. algo-
rithm, it calculates similar results for the examples opti-
mally represented in the Becker at al. publication. These
examples and several other pathways from the databases
KEGG [21], BioCyc [22] and PathDB [23] drawn by the
new dynamical layout algorithm can be found at [2]. In
addition, since we want to support simulation and mod-
elling tools, we used SBML files describing models of bio-
chemical networks from the SBML model repository
([24]) and the model database ([25]).

The Mendes et al. algorithm (PathDB) can only be used by
a general user in the context of the respective database and
therefore just with the pathways stored in those. For this

Page 9 of 12

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:212 http://www.biomedcentral.com/1471-2105/6/212

ATP

Figure 8
Visualisation of glycolysis. In this picture ATP, Piand NADH are considered as side compounds which shows the known hier-
archical structure of the glycolysis.

Page 10 of 12

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:212

http://www.biomedcentral.com/1471-2105/6/212

Glyceraldehyde-3-phosphate

1,3-bisphosphoglycerate

2-phosphoglycerate

Phosphoenolpyruvatej

‘ Pvruvate‘

Glucose

Dihyd roxyacetc-)?]e—p hosphate

Fructose-1,6-biphosphate

\Fructose— —-phosphate
‘Glucose—s-phosphate

Figure 9

Visualisation of glycolysis. In contrast to Figure 6 all compounds are treated as main compounds and the result consists of
two cycles which are joined at ATP. This example shows the importance of the choice of the side compound and demonstrates

its influence on the topology of a pathway.

reason we restricted ourselves to these pathways to make
a comparison.

In the case of the Karp et al. (BioCyc) algorithm which
normally is also used in the context of a database, we were
able to compare the algorithm in an isolated manner,
since it was generously supplied by Karp and coworkers.
The isolated algorithm performed well on small to
medium sized samples, however, faced some problems
w.r.t. edge crossings when considering larger or higher
connected pathways (data not shown). In addition to the
information on the individual reactions, the isolated algo-
rithm also uses information about the order of the reac-
tion events which is absent from model files, e.g. SBML
files. However, this probably could be easily circumvented
by a preprocessing step of the respective SBML file if
wanted.

The Mendes et al. algorithm and to a lesser extend the
Karp et al. algorithm usually use additional information
about the considered pathway from their database, e.g.
the order of reaction events as pointed out above, to sim-
plify the layout process.

Since such information is not available to a simulation/
modelling tool, our algorithm relies solely on a list of
reactions of the pathway and optionally a predefined list
of side compounds. The existing layout algorithms for
metabolic pathways treat the side and main compounds
of a pathway differently from our algorithm. They all treat
the side compounds as labels, which results in the labels
overlapping in complex pathways. Although side com-
pounds are part of the graph in our algorithm the algo-
rithm produces similar results compared to the existing
algorithms in those cases where the latter produce good
results and solves the overlapping problem in the more
complex cases.

Page 11 of 12

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:212

The user defined list of side compounds naturally influ-
ences the treatment of the nodes during the layout proc-
ess. By editing this list the user should keep in mind that
different side compound lists lead to different drawings of
the same pathway, see Figure 8 and 9. Since some parts of
the algorithm rely on stochastic methods, the same path-
way could be represented with different layouts. For
example, the force-directed layout algorithm could cause
different assemblings of the subgraphs. In addition the
breadth first search of the cycle finding process checks the
nodes according to their number of edges in descending
order. If there are different nodes with the same number,
the order is chosen randomly which means a varying
order of nodes could lead to different cycles.

To finish, some words about the complexity of the algo-
rithm. The bottleneck is the cycle search. In the worst case,
a breadth first tree for every node has to be calculated
when no cycle of the given definition exists. In this case,
the complexity of this process is N3 (N = number of
nodes). However, if a cycle exists the complexity is much
lower leading to faster results.

In the near future we want to integrate standard layout
algorithms independent from YFiles in order to be able to
e.g. change straight lines in cycles into curves and we want
to integrate enzymes and regulators as nodes.

Authors' contributions
KW carried out the development and implementation of
the algorithm and participated in discussions and writing.

UK initiated the project and participated in discussions
and writing.

Acknowledgements

We would like to thank Jirgen Hesser, as well as Ralph Gauges, Jiirgen
Pahle, Ursula Rost, Isabel Rojas and Sven Sahle for helpful discussions. Our
special thanks to Peter Karp and Suzanne Mercer Paley for supporting us
by making their algorithm available and answering many questions. The
project was funded by the Klaus Tschira Foundation (KTF).

References

I. SimWiz download 2005 [http://projects.villa-bosch.de/bcb/soft
ware/].

2. Supplementary material 2005 [http:/projects.villa-bosch.de/bcb/
people/katja/examples.html].

3. Kanehisa M: Toward pathway engineering: a new database of
genetic and molecular pathways. Science and Technology Japan
1996, 59:34-38.

4. Brandenburg FJ, Gruber B, Himsolt M, Schreiber F: Automatische
Visualisierung biochemischer Information. In Proceedings of the
Workshop Molekulare Bioinformatik Gl Jahrestagung; 1998:24-38.

5. Karp PD, Paley S: Automated Drawing of Metabolic Pathways.
In Proceedings of the Third International Conference on Bioinformatics and
Genome Research Edited by: Hunter L, Searls D, Shavlik J. AAAI Press;
1994:207-215.

6. Schreiber F: High quality visualization of biochemical path-
ways in BioPath. Silico Biology 2002, 6:.

7. Karp PD, Paley SM: Representations of Metabolic Knowledge:
Pathways. In Proceedings of the Second International Conference on

http://www.biomedcentral.com/1471-2105/6/212

Intelligent Systems for Molecular Biology; Mento Park, CA Edited by: Alt-
man R, Brutlag D, Karp PD, Lathrop R, Searls D. AAAI Press;
1993:225-238.

8. Brandenburg FJ, Forster M, Pick A, Raitner M, Schreiber F: BioPath
- Visualization of Biochemical Pathways. Proceedings of the Ger-
man Conference on Bioinformatics; Braunschweig 2001:11-15.

9. Michal G: Biochemical Pathways (Poster) Boehringer Mannheim GmbH
— Biochemica; 1993.

10. Michal G: Biochemical Pathways Spektrum Akademischer Verlag; 1999.

I'l. Sugiyama K, Tagawa S, Toda M: Methods for Visual Understand-
ing of Hierarchical System Structures. IEEE Transactions on Sys-
tems, Man and Cybernetics SMC 1981, 11(2):109-125.

12. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin
AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S,
Gilles ED, Ginkel M, Gor V, Goryanin Il, Hedley WJ, Hodgman TC,
Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer
U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness
ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Sha-
piro BE, Shimizu TS, Spence HD, Stelling], Takahashi K, Tomita M,
Woagner], Wang J: The systems biology markup language
(SBML): a medium for representation and exchange of bio-
chemical network models. Bioinformatics 2003, 1:524-531.

13. Rojdestvenski I: Objective and subjectiv relations in data visu-
alization. Examples from molecular biological data
collections. Proceedings of Information Visualization 2003:544-548.

14. Kamada T, Kawai S: An algorithm for drawing general undi-
rected graphs. Information Processing Letters 1989, 31:7-15.

15. Becker MY, Rojas I: A graph layout algorithm for drawing met-
abolic pathways. Bioinformatics 2001, 17:461-467.

16. Quinn NR, Breuer MA: A force directed component placement
procedure for printed circuit boards. IEEE Transactions on Cir-
cuits Systems 1979, 11:109-125.

17. Eades P: A heuristic for graph drawing. Congressus Numerantium
1984:149-160.

18. Olsen LF: Simulations of Oscillations of NAD(P)H and Reac-
tive Oxygen Species in Neutrophilic Leukocytes. Proceedings
of the 2nd Workshop on Computation of Biochemical Pathways and
Genetic Networks 2001:89-99.

19. yfiles 2003
products yfiles about.htm].

20. Cormen TH, Leiserson CE, Rivest RL: Introduction to Algorithms Lon-
don: MIT Press; 1990.

2l. KEGG 2004 [http://www.genome.ad.jp/kegg/pathway.html].
22. BioCyc 2004 [http://www.biocyc.org].

23. PathDB 2004 [http://www.ncgr.org/pathdb].
24. SBML 2005 [http://sbml.org/models].

25. Model database 2005 [http://sbml.org/models].

[http://www.yworks.com/en/

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)

http://projects.villa-bosch.de/bcb/software/
http://projects.villa-bosch.de/bcb/software/
http://projects.villa-bosch.de/bcb/people/katja/examples.html
http://projects.villa-bosch.de/bcb/people/katja/examples.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331241
http://www.yworks.com/en/products_yfiles_about.htm
http://www.yworks.com/en/products_yfiles_about.htm
http://www.genome.ad.jp/kegg/pathway.html
http://www.biocyc.org
http://www.ncgr.org/pathdb
http://sbml.org/models
http://sbml.org/models
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Identifying subgraphs
	Building the complete graph

	Discussion
	Authors' contributions
	Acknowledgements
	References

