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Abstract
Background: The purpose of this study is to determine whether or not there exists nonrandom
grouping of cis-regulatory elements within gene promoters that can be perceived independent of
gene expression data and whether or not there is any correlation between this grouping and the
biological function of the gene.

Results: Using ProSpector, a web-based promoter search and annotation tool, we have applied an
unbiased approach to analyze the transcription factor binding site frequencies of 1400 base pair
genomic segments positioned at 1200 base pairs upstream and 200 base pairs downstream of the
transcriptional start site of 7298 commonly studied human genes. Partitional clustering of the
transcription factor binding site composition within these promoter segments reveals a small
number of gene groups that are selectively enriched for gene ontology terms consistent with
distinct aspects of cellular function. Significance ranking of the class-determining transcription
factor binding sites within these clusters show substantial overlap between the gene ontology
terms of the transcriptions factors associated with the binding sites and the gene ontology terms
of the regulated genes within each group.

Conclusion: Thus, gene sorting by promoter composition alone produces partitions in which the
"regulated" and the "regulators" cosegregate into similar functional classes. These findings
demonstrate that the transcription factor binding site composition is non-randomly distributed
between gene promoters in a manner that reflects and partially defines general gene class function.

Background
Amidst a continuous bombardment of diverse stimuli
from the external environment, metazoan organisms have
adopted multiple strategies to respond specifically and

decisively to a myriad of extracellular events. The biologi-
cal map that determines this is encoded within the gene
regulatory regions of the genome. Deciphering the inher-
ent language in these encrypted codes is a major challenge

Published: 18 October 2005

BMC Bioinformatics 2005, 6:259 doi:10.1186/1471-2105-6-259

Received: 17 May 2005
Accepted: 18 October 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/259

© 2005 McNutt et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 23
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/6/259
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16232321
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2005, 6:259 http://www.biomedcentral.com/1471-2105/6/259
of the post-genomic era. The search, retrieval and exami-
nation of the upstream regulatory sequences of eukaryotic
genes coupled with empirical determination of their tran-
scriptional regulatory function has yielded a wealth of
potentially useful information relevant to the sequence-
specific codes used to dynamically coordinate the spatial,
temporal, and kinetic assembly of gene regulatory com-
plexes at specific genes [1]. Cells must orchestrate this
coordinated gene expression in order to efficiently execute
the multitude of cellular programs that direct specific
functions.

Essential components of controlling networks that modu-
late cellular programming are the regulatory sequences or
transcription factor binding sites (TFBS). TFBSs comprise
the basic unit of information stored within the upstream
genomic regions located near the transcription start site
(TSS) of most genes [1,2]. These typically 8–15 bp nucle-
otide sequences interact specifically with the DNA-bind-
ing domains of several hundred different transcription
factors. Since it is widely accepted that the TFBS arrange-
ment and composition of these upstream regulatory
regions are the fundamental determinants of gene expres-
sion, many software applications and computational
approaches have been developed to sort and identify
TFBSs in the regulatory regions of genes determined to
have similar patterns of expression [3-5]. One popular
approach is based on a software algorithm that compares
the potential binding site base frequencies against an
established database of empirically determined nucle-
otide frequencies derived from published biological stud-
ies [5]. The resulting position weight matrixes (PWM) are
then used to search for and characterize potential binding
sites dependent on their statistical similarities to known
TFBSs. A major goal of this approach is to analyze co-
occurring TFBS frequencies in the regulatory regions of
similarly regulated genes as a means of defining transcrip-
tional pathways or networks that orchestrate the co-
expression. Most biologists measure steady state RNA lev-
els as an indicator of gene expression. Thus, the linkages
between TFBS occurrence and gene expression will
undoubtedly be imperfect due to the fact that: 1) steady-
state levels of expressed mRNA are a combined result of
both active transcription and mRNA turnover; 2) indirect
regulation of transcription factors by post-translational
modification or other transcriptional components is a
common control mechanism in metazoan biology; and 3)
most PWM libraries are derived from empirical data sets
and therefore have limited inclusiveness [1,6-8]. None-
theless, focused and global analysis of gene promoter
composition has the potential of yielding important
insight into gene regulation.

Recent efforts to define a common vocabulary to describe
the function of all genes through the use of established

Gene Ontology terms has provided a standardized
approach of analyzing genes, clustered by any objective
criteria, with respect to their cellular function [9,10].
Combining the analysis of gene promoter composition
with gene ontology annotation provides a novel and
innovative means through which linkages between gene
regulatory networks and programs of cellular function can
be identified and defined.

In this study, we analyzed the transcription factor binding
site composition of 1400 bp promoter regions defined as
1200 bp upstream and 200 bp downstream of the tran-
scription start site of 7,298 genes previously characterized
in a recent microarray study of the kinetic patterns of gene
expression in a mitogen-stimulated human leukemic T-
cell line [11]. Though the composition of TFBSs in these
7,298 genes show very poor correlation with the meas-
ured global kinetic patterns of steady-state gene expres-
sion, independent partitional clustering of the TFBS
composition within these 1400 bp regions "in silico" pro-
duced definable non-random gene groups for which dis-
tinct classes of ontology terms were found more
frequently than expected by random chance. Moreover,
analysis of the TFBSs that were most significant for distin-
guishing these gene groups revealed strong correlations
between the ontology terms of the transcription factors
predicted to bind the controlling gene regulatory regions
and the ontology terms of the clustered genes themselves;
thus, establishing a functional link defined by the ontol-
ogy of the regulated gene and that of its regulators (TFBS-
associated transcription factors). Refinement of this
approach may provide a general means of defining the
regulatory genomic templates upon which transcriptional
networks are integrated to control specific programs of
gene expression and cellular behavior.

Results
The process of T-cell activation has been a widely applied
model system for the study of stimulus-evoked transcrip-
tional control [12]. Prior analysis of this system has
shown that many of the molecular signaling pathways ini-
tiated during T-cell activation converge on RAS-dependent
effectors coupled with integrated secondary messenger
signaling mediated by increased calcium influx. Thus, a
common means of achieving robust activation of lym-
phoid cell lines is through pharmacological manipula-
tions brought about by the addition of phorbol ester and
calcium ionophore to resting cells. Several recent studies
have profiled time dependent changes in steady-state gene
expression of mitogen-induced T-cells to search for tran-
scriptional pathways that appeared to be disproportion-
ately effected based on a time series analysis of the data
[11,13]. The fundamental linkage between transcriptional
pathways and the expressed gene is the presence of recog-
nition motifs or TFBS within the upstream regulatory
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region or promoters of the pathway-influenced gene.
Thus, we sought to ask whether this logic could be
extended to tease out biologically significant associations
between TFBS frequencies and kinetic patterns of gene
expression from a previously published study of the
human T-cell line Jurkat [11]. This microarray data set
contains steady-state mRNA profiles measured at 0, 1, 2,

6, 12 and 24 hours following stimulation. The data set
was first filtered to remove uncharacterized and poorly
annotated genes (see Methods). The hybridization data
from the remaining 7,298 genes was then analyzed by K-
means clustering to group or classify those genes with sim-
ilar kinetic patterns of mitogen-induced expression (Fig-
ure 1a). As demonstrated in Figure 1b, the expression

Cluster analysis of gene expression data set from mitogen stimulated T-cells compared to promoter TFBS compositionFigure 1
Cluster analysis of gene expression data set from mitogen stimulated T-cells compared to promoter TFBS 
composition. (a) K-means cluster analysis of cDNA expression profiles of phorbol ester and ionomycin stimulated Jurkat T-
cells collected at 0, 1, 2, 6, 12, and 24 hours after stimulation [11]. Total genes in each cluster is indicated in parentheses. (b) 
Centroid plot representing average kinetic profiles of the four clusters at the six measured time intervals. (c) Principal compo-
nent analysis (PCA) of TFBS frequencies in the genomic sequences extracted from the 7,298 genes profiled in Figure 1a. (1200 
base pairs upstream and 200 base pairs down stream from the start of transcription). Prior to analysis, each gene was color-
coded by its respective cluster shown in Figure 1a (red = cluster/group 1, no change, green = cluster/group 2 early elevated 
expression, blue = cluster/group 3, repressed expression, and yellow = cluster/group 4 late elevated expression). (d) The 
extracted promoter sequences of each gene were then compared with respect to TFBS composition alone by K-means clus-
tering. Nine out of sixteen clusters contained more the 4 genes (indicated as groups 1,4,6,9,10,12,13,15, and 16).
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profiles of the 7,298 genes analyzed in phorbol ester and
ionomycin stimulated Jurkat T-cells can be separated into
4 kinetic clusters.

The first cluster (group 1, red) was the largest (4539) and
represented genes that were essentially unchanged by
mitogen stimulation. The second cluster (group 2, green)
contained 175 genes and represents genes whose expres-
sion was induced early, within the first 2 hours of stimu-
lation. The third cluster (group 3, blue) contained 990
members and represents genes that were relatively
repressed by mitogen stimulation. The fourth cluster
(group 4, yellow) contained 1594 members and repre-
sents genes whose expression rose late (post 6 hours) fol-
lowing mitogen stimulation. Given the rather broad
differences between the groups and the known mitogen
and calcium sensitivity of the AP-1, NF-kappa B and NFAT
transcription factors pathways, it was expected that many
promoters of the induced gene clusters (particular group
2) would show an asymmetric enrichment for TFBSs that
bind AP-1, NF-kappa B or NFAT [12]. To address this
hypothesis, 1400 bp of genomic sequence (1200 bp
upstream and 200 bp downstream of the TSS) were
extracted from the 7,298 genes using the ProSpector Pro-
moter inspection tool (see Methods). These regions
(referred to as promoter regions) were then scored for the
presence of 164 different motifs based on the TRANSFAC
6.0 position weight matrices using the MatInspector algo-
rithms described by Quandt et al [5]. Matrix and core
thresholds were set at 0.75 and 1.0 respectively. The TFBS
composition of the genes were then compared by princi-
pal component analysis (PCA), where the cluster classifi-
cations of the genes based on kinetic expression pattern
were color coded (red = cluster/group 1; green = cluster/
group 2, blue = cluster/group 3, and yellow = cluster/
group 4). The genes were then grouped by the relative pro-
moter frequencies of the 164 motifs applying 0.75/1.0
matrix/core PWM thresholds. In this presentation, the
original 164 PWM motif vector space of the genes is
reduced to 3 principal component vectors each represent-
ing a summed linear contribution from all 164 motifs
[14,15]. As shown in Figure 1c, the clustering of the pro-
moter TFBS frequencies produces a diffuse pattern that
shows no correlation with the kinetic categories derived
from gene expression data in Figure 1b.

These data indicate that broad kinetic grouping by gene
expression alone fails to show strong correlations with
transcription factor binding site composition. Though
dramatic, this conclusion is not unexpected. Recent stud-
ies suggest that the correlation between steady-state
mRNA levels and active transcription is at best 50%, since
steady-state mRNA is the net result of not only nascent
transcription, but also mRNA turnover [7]. Accordingly,
promoter composition is likely to have a significantly

stronger correlation with active transcription than with
mRNA stability. Nonetheless, future studies aimed at gen-
erating a finer partitioning of the kinetic categories
through the use of multiple conditions (e.g. different
modes of stimulation) will be better prone to generate
more selective gene groups with higher conditional corre-
lation between TFBS composition and patterns of gene
expression.

In clear contrast however, when the TFBS compositions of
the 7,298 genes were analyzed independent of gene
expression data by K-means clustering, sixteen distinct
and stable clusters could be identified (Figure 1d). Seven
of these clusters contained 4 or less genes and were dis-
carded. The remaining 9 major partitions were composed
of clusters containing from 271 (Cluster four) to 1266
(Cluster sixteen) genes (Figure 1d).

To determine whether there were any functional differ-
ences between the gene classes shown in Figure 1d, the
genes in each cluster were analyzed for preferential enrich-
ment or depletion of ontology terms using the GoMiner
web-based software package [16]. GoMiner facilitates bio-
logical interpretation of gene lists using a quantitative sta-
tistical output that identifies gene ontology terms that are
asymmetrically distributed between gene clusters. Over-
and under-represented terms are ranked by a two-sided p-
value from the Fisher's exact T-test [16]. The top 40 gene
ontology terms for each gene cluster are shown in Table
One. On first inspection, it is clear that each of the 9 gene
clusters have distinct differences in gene ontology terms.
Cluster one appears dominated by cell cycle and DNA rep-
lication terms. The immune response, defense response
and cell communication terms appear to be a major dis-
criminating feature with prominent asymmetric distribu-
tion across the gene clusters. Development,
morphogenesis and differentiation terms are also major
class separating terms in the gene clusters.

To determine which TFBSs were most important for dis-
criminating the different gene clusters, the 164 motifs
were ranked for significance in each cluster by ANOVA
assigned significance based on discriminatory power. The
significance ranking was derived from the p-value output
for each motif in each cluster and then converted to a
color score based on the ranking (1–164 = low-high =
blue-red). A contour heat diagram showing the differen-
tial ranking of the 164 motifs in each of the 9 clusters is
shown in Figure 2a. As apparent from this heat diagram,
the TFBS patterns of the majority of the clusters produce
very distinct signatures (Figure 2a).

When the TFBS composition of the 7,298 promoter
regions was scored using more stringent PWM thresholds
optimized to yield fewer potential false positive
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Table 1: Distribution of Ontology terms within Gene Clusters. The gene clusters identified in Figure 1d were analyzed for asymmetric 
distribution of ontology terms using the Gominer Software [16]. The top 40 gene ontology terms for each cluster ranked by 
significance scoring (Fishers exact T-test) are shown. Total numbers of genes in each cluster are indicated in parentheses. Statistical 
ranking of asymmetrically distributed gene ontology terms is represented by an estimated p-value (Fisher's Exact T-test).

Cluster One (1187)
P-Value Ontology Term
0.0003 DNA dependent DNA replication
0.0003 mitotic cell cycle
0.0008 DNA replication
0.001 structural constituent of cytoskeleton
0.0014 metabolism
0.0015 proteolysis and peptidolysis
0.0016 cell cycle
0.0016 hydrolase activity
0.0016 S phase of mitotic cell cycle
0.0021 protein metabolism
0.0024 protein catabolism
0.0028 DNA replication and chromosome cycle
0.0029 small ribosomal subunit
0.0031 intracellular
0.0031 extracellular
0.004 DNA replication factor C complex
0.0059 nucleic acid binding activity
0.0059 ATP dependent helicase activity
0.006 transmembrane receptor protein phosphatase activity
0.006 transmembrane receptor protein tyrosine phosphatase activity
0.0061 cell proliferation
0.0063 mitochondrial inner membrane
0.0065 extracellular space
0.0065 macromolecule catabolism
0.0071 protein phosphatase activity
0.0073 nucleobase, nucleoside, nucleotide and nucleic acid metabolism
0.0074 replication fork
0.0078 protein amino acid dephosphorylation
0.0078 dephosphorylation
0.0078 protein-ligand dependent protein catabolism
0.0081 mitochondrial ribosome
0.009 inner membrane
0.0092 mitochondrion
0.0095 cellular_component unknown
0.0111 helicase activity
0.0113 organellar ribosome
0.0123 N-linked glycosylation
0.0123 di-, tri-valent inorganic cation homeostasis
0.014 proton-transporting ATP synthase complex
0.014 spindle

Cluster Nine (724)
P-Value Ontology Term
0.0003 mitochondrion
0.0005 metabolism
0.0008 intracellular
0.0018 biosynthesis
0.0022 complement activation, alternative pathway
0.003 complement activation
0.0044 complement activity
0.0047 sugar binding activity
0.0047 carbohydrate binding activity
0.006 humoral defense mechanism (sensu Vertebrata)
0.0067 plasma membrane
0.007 cell adhesion molecule activity
0.0071 1-phosphatidylinositol 3-kinase complex
0.0071 membrane attack complex
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0.0071 hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement of substances
0.0071 phosphatidylinositol 3-kinase activity
0.0079 ATP-binding cassette (ABC) transporter activity
0.0098 cell adhesion
0.0099 chemotaxis
0.0099 taxis
0.0125 cell-cell adhesion
0.013 mitochondrial membrane
0.0151 lectin
0.0156 G-protein coupled receptor protein signaling pathway
0.0176 cellular_component unknown
0.0187 P-P-bond-hydrolysis-driven transporter activity
0.02 thyroid hormone generation
0.02 lipid raft
0.02 ethanol oxidation
0.02 ethanol metabolism
0.02 flowering
0.02 thyroid hormone metabolism
0.02 aldo-keto reductase activity
0.02 alcohol dehydrogenase activity, iron-dependent
0.02 alcohol dehydrogenase activity, metal ion-independent
0.02 T-cell differentiation
0.02 negative regulation of Wnt receptor signaling pathway
0.02 fluid secretion
0.022 homophilic cell adhesion
0.0266 humoral immune response

Cluster Four (271)
P-Value Ontology Term
0.0002 cytoplasm
0.001 transcription
0.0012 regulation of transcription, DNA-dependent
0.0013 regulation of transcription
0.0015 transcription, DNA-dependent
0.0029 immune response
0.0029 nucleus
0.0034 transferase activity, transferring sulfur-containing groups
0.0034 solute:sodium symporter activity
0.005 defense response
0.0051 phenol metabolism
0.0051 catecholamine metabolism
0.0051 organic acid transporter activity
0.0053 cell communication
0.0055 response to biotic stimulus
0.0059 protein modification
0.0063 protein kinase CK2 activity
0.0069 solute:cation symporter activity
0.0071 response to external stimulus
0.0084 negative regulation of transcription
0.0093 biogenic amine metabolism
0.0093 adherens junction
0.0096 cAMP-dependent protein kinase activity
0.0096 cyclic-nucleotide dependent protein kinase activity
0.0096 casein kinase activity
0.0097 transcription from Pol II promoter
0.0099 secretin-like receptor activity
0.0099 neurotransmitter:sodium symporter activity
0.0099 neurotransmitter transporter activity
0.0099 biogenic amine biosynthesis

Table 1: Distribution of Ontology terms within Gene Clusters. The gene clusters identified in Figure 1d were analyzed for asymmetric 
distribution of ontology terms using the Gominer Software [16]. The top 40 gene ontology terms for each cluster ranked by 
significance scoring (Fishers exact T-test) are shown. Total numbers of genes in each cluster are indicated in parentheses. Statistical 
ranking of asymmetrically distributed gene ontology terms is represented by an estimated p-value (Fisher's Exact T-test). (Continued)
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0.0103 protein amino acid phosphorylation
0.0106 G-protein coupled receptor activity
0.0112 neurogenesis
0.0119 transmembrane receptor protein serine/threonine kinase signaling pathway
0.0128 phosphorylation
0.0139 small GTPase mediated signal transduction
0.0141 protein kinase activity
0.0151 brain development
0.016 frizzled receptor signaling pathway
0.016 frizzled receptor activity

Cluster Ten (815)
P-Value Ontology Term
<.0001 nucleobase, nucleoside, nucleotide and nucleic acid metabolism
<.0001 nucleus
<.0001 intracellular
<.0001 extracellular space
<.0001 extracellular
<.0001 RNA binding activity
<.0001 nucleic acid binding activity
0.0001 plasma glycoprotein
0.0001 oxidoreductase activity, acting on the CH-NH2 group of donors, oxygen as acceptor
0.0003 oxidoreductase activity, acting on the CH-NH2 group of donors
0.0003 molecular_function
0.0003 alpha-type channel activity
0.0004 response to external stimulus
0.0004 channel/pore class transporter activity
0.0005 chymotrypsin activity
0.0005 RNA metabolism
0.0007 trypsin activity
0.0011 metabolism
0.0014 immune response
0.0015 defense response
0.0016 RNA processing
0.0025 response to biotic stimulus
0.0028 cell surface receptor linked signal transduction
0.0028 integral to membrane
0.0031 regulation of transcription
0.0032 transcription
0.0037 signal transducer activity
0.0039 translation regulator activity
0.004 regulation of transcription, DNA-dependent
0.004 membrane
0.0042 voltage-gated ion channel activity
0.0044 ligand-dependent nuclear receptor activity
0.0044 potassium channel activity
0.0044 steroid hormone receptor activity
0.0045 ion transport
0.005 small GTPase mediated signal transduction
0.0051 nucleoplasm
0.0052 cation channel activity
0.0054 digestion
0.0058 ligand-regulated transcription factor activity

Cluster Six (474)
P-Value Ontology Term
0.0002 development
0.0002 extracellular matrix structural constituent
0.0003 muscle development

Table 1: Distribution of Ontology terms within Gene Clusters. The gene clusters identified in Figure 1d were analyzed for asymmetric 
distribution of ontology terms using the Gominer Software [16]. The top 40 gene ontology terms for each cluster ranked by 
significance scoring (Fishers exact T-test) are shown. Total numbers of genes in each cluster are indicated in parentheses. Statistical 
ranking of asymmetrically distributed gene ontology terms is represented by an estimated p-value (Fisher's Exact T-test). (Continued)
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0.0004 muscle contraction
0.0007 intramolecular isomerase activity
0.0013 cell differentiation
0.0014 mitochondrion
0.002 cellular process
0.002 organogenesis
0.0022 cell adhesion
0.0027 cytoskeleton
0.0032 oncogenesis
0.0032 structural constituent of cytoskeleton
0.0033 cell communication
0.0036 morphogenesis
0.0037 troponin complex
0.0037 NGF/TNF (6 C-domain) receptor activity
0.0042 circulation
0.0046 structural molecule activity
0.0048 actin cytoskeleton
0.0049 cell motility
0.005 muscle fiber
0.0056 photoreceptor activity
0.0056 G-protein coupled photoreceptor activity
0.0056 collagen type I
0.011 intermediate filament cytoskeleton
0.011 intermediate filament
0.0125 transcription cofactor activity
0.0128 extracellular matrix structural constituent conferring tensile strength activity
0.0128 sarcomere
0.0128 myofibril
0.0128 collagen
0.0139 response to stress
0.0149 hydrolase activity
0.016 intramolecular isomerase activity, interconverting aldoses and ketoses
0.016 phosphagen metabolism
0.016 neurofilament
0.016 galactose binding lectin
0.016 inactivation of MAPK
0.0176 striated muscle thin filament

Cluster Twelve (619)
P-Value Ontology Term
<.0001 cell communication
0.0001 signal transduction
0.0078 development
0.0103 phosphate metabolism
0.0103 phosphorus metabolism
0.0159 neurogenesis
0.016 cell adhesion
0.0179 intracellular signaling cascade
0.0196 amino acid transport
0.0311 small GTPase mediated signal transduction
0.0384 coreceptor activity
0.0464 heme-copper terminal oxidase activity
0.0464 acute-phase response
0.0464 regulation of metabolism
0.0476 cell-cell signaling
0.085 beta3-adrenergic receptor activity
0.085 purine ribonucleoside catabolism
0.085 purine ribonucleoside metabolism
0.085 pentose catabolism

Table 1: Distribution of Ontology terms within Gene Clusters. The gene clusters identified in Figure 1d were analyzed for asymmetric 
distribution of ontology terms using the Gominer Software [16]. The top 40 gene ontology terms for each cluster ranked by 
significance scoring (Fishers exact T-test) are shown. Total numbers of genes in each cluster are indicated in parentheses. Statistical 
ranking of asymmetrically distributed gene ontology terms is represented by an estimated p-value (Fisher's Exact T-test). (Continued)
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0.085 pentose metabolism
0.085 ribose catabolism
0.085 adenosine metabolism
0.085 manganese ion transport
0.085 ADP-sugar diphosphatase activity
0.085 bile acid biosynthesis
0.0858 cellular respiration
0.094 organelle organization and biogenesis
0.0966 alcohol catabolism
0.1096 xenobiotic metabolism
0.1096 neuropeptide signaling pathway
0.1105 meiosis
0.1136 deaminase activity
0.1198 synaptic transmission
0.1215 transmission of nerve impulse
0.1314 monovalent inorganic cation transporter activity
0.1491 chloride transport
0.1627 internalization receptor activity
0.1627 regulation of mitotic cell cycle
0.1627 cAMP metabolism
0.1627 regulation of cell volume

Cluster Thirteen (1208)
P-Value Ontology Term
0.0002 mitochondrion
0.0004 intracellular
0.0008 metabolism
0.0012 extracellular
0.0026 DNA repair
0.0031 immune response
0.0041 extracellular space
0.0045 phosphatidylinositol transporter activity
0.0061 cytosolic large ribosomal subunit (sensu Eukarya)
0.0065 defense response
0.0069 nucleobase, nucleoside, nucleotide and nucleic acid metabolism
0.0071 RNA binding activity
0.0078 large ribosomal subunit
0.0083 heme biosynthesis
0.0083 sex determination
0.0095 G-protein coupled receptor protein signaling pathway
0.0097 integral to membrane
0.0098 biosynthesis
0.0101 integral to plasma membrane
0.0109 mitotic cell cycle
0.0147 pigment biosynthesis
0.0147 post Golgi transport
0.015 nucleus
0.0157 cyclohydrolase activity
0.0157 protein amino acid methylation
0.0157 RNA-nucleus export
0.0157 transferase activity, transferring pentosyl groups
0.0169 porphyrin biosynthesis
0.0169 chromatin remodeling complex
0.0169 heme metabolism
0.0178 plasma membrane
0.0192 S phase of mitotic cell cycle
0.0193 coenzymes and prosthetic group biosynthesis
0.0209 cell surface receptor linked signal transduction
0.021 ion transport

Table 1: Distribution of Ontology terms within Gene Clusters. The gene clusters identified in Figure 1d were analyzed for asymmetric 
distribution of ontology terms using the Gominer Software [16]. The top 40 gene ontology terms for each cluster ranked by 
significance scoring (Fishers exact T-test) are shown. Total numbers of genes in each cluster are indicated in parentheses. Statistical 
ranking of asymmetrically distributed gene ontology terms is represented by an estimated p-value (Fisher's Exact T-test). (Continued)
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0.0233 trypsin activity
0.0234 pigment metabolism
0.0236 inorganic anion transport
0.0266 apoptosis regulator activity
0.0268 nucleic acid binding activity

Cluster Fifteen (725)
P-Value Ontology Term
0.0007 blood vessel development
0.0007 angiogenesis
0.001 phosphotransferase activity, alcohol group as acceptor
0.0013 nuclear localization sequence binding activity
0.0017 protein kinase activity
0.002 response to pest/pathogen/parasite
0.0023 protein serine/threonine kinase activity
0.0024 kinase activity
0.0025 cellular process
0.0028 cell migration
0.0038 actin polymerization and/or depolymerization
0.0048 spermatid development
0.0048 NLS-bearing substrate-nucleus import
0.0048 galactosyltransferase activity
0.0051 signal transduction
0.0053 protein tyrosine kinase activity
0.0059 embryogenesis and morphogenesis
0.006 neurogenesis
0.007 immune response
0.0073 cell-matrix adhesion
0.0073 nucleotide binding activity
0.0077 Golgi apparatus
0.0079 transferase activity, transferring phosphorus-containing groups
0.0088 phosphate metabolism
0.0088 phosphorus metabolism
0.0091 protein amino acid phosphorylation
0.0097 response to wounding
0.0097 response to biotic stimulus
0.0106 phosphorylation
0.0111 RAN protein binding activity
0.0112 morphogenesis
0.0113 development
0.0113 purine nucleotide binding activity
0.012 actin filament-based process
0.0121 importin, beta-subunit
0.0121 actin modulating activity
0.0121 actin monomer binding activity
0.0121 regulation of actin polymerization and/or depolymerization
0.0124 cytoskeleton organization and biogenesis
0.0137 cell communication

Cluster Sixteen (1266)
P-Value Ontology Term
0.0004 immune response
0.0008 oncogenesis
0.0009 defense response
0.0042 ionic insulation of neurons by glial cells
0.0125 inflammatory response
0.0245 histogenesis and organogenesis
0.0261 sarcomere alignment
0.0261 phagocytosis, engulfment

Table 1: Distribution of Ontology terms within Gene Clusters. The gene clusters identified in Figure 1d were analyzed for asymmetric 
distribution of ontology terms using the Gominer Software [16]. The top 40 gene ontology terms for each cluster ranked by 
significance scoring (Fishers exact T-test) are shown. Total numbers of genes in each cluster are indicated in parentheses. Statistical 
ranking of asymmetrically distributed gene ontology terms is represented by an estimated p-value (Fisher's Exact T-test). (Continued)
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predictions (Methods), a surprising decrease in the diver-
sity of the clustering pattern for the promoters was
observed (Figure 2b). The analysis predicted 6 clusters
from which two were discarded for having fewer than 4
genes. As expected, a heat diagram of the 164 TFBS rank-
ings in each of the clusters showed considerably less dis-
tinct signatures (Figure 2c). Moreover, the ontology terms
associated with the 4 clusters were much less distinct with
a higher total ratio of redundant terms (see supplemental
data, Table two). This tendency for more relaxed PWM
similarity thresholds to generate greater diversity in pre-
dicted promoter composition suggests that the inherent
or "perceived" degenerate nature of transcription factor
binding sites serves to broaden the potential "categories"
or strategies of gene regulation [17]. This suggests high
thresholds, though reducing the number of potential false
positives, have the severe negative effect of overlooking
real binding sites [17].

A logical prediction in this study is that the associated bio-
logical function of the transcription factors that regulate
the gene groups should share some similarity with the
function of the genes that they regulate. In other words,
the "regulator" should show similar function to the "reg-
ulated". To ask this question, we looked for any correla-
tion between the ontology terms of the transcription
factors (TFs) predicted most likely to bind to the promoter
regions of the gene clusters (TFO) and the ontology terms
of the gene clusters themselves (GCO). Accordingly, a list
of transcription factors known to recognize the most dis-
criminating TFBSs for each cluster was generated (total of
55 TF genes, Figures 3, 4, 5, 6, 7). The top 10 TFBSs were
segregated into over-represented (RED) or under-repre-
sented (GREEN) groups for their respective gene clusters.
The list of genes encoding the transcription factors that
bind the top 10 TFBSs in each cluster was then compiled
based on TRANSFAC 6.0 annotation. The GoMiner soft-
ware was then used to rank the gene ontology terms based

0.0261 negative regulation of osteoclast differentiation
0.0261 regulation of osteoclast differentiation
0.0261 negative regulation of cell differentiation
0.0261 NO mediated signal transduction
0.0326 activation of NF-kappaB-inducing kinase
0.0327 oogenesis
0.0453 cell activation
0.0483 humoral immune response
0.0491 protein modification
0.0575 regulation of cell differentiation
0.0673 cell cycle
0.07 biotin metabolism
0.0806 phosphate metabolism
0.0806 phosphorus metabolism
0.0888 sensory organ development
0.0888 G-protein signaling, adenylate cyclase activating pathway
0.1073 pattern specification
0.1111 gametogenesis
0.119 peptide receptor activity
0.1221 microtubule-based process
0.1251 phosphate transport
0.1251 glutathione conjugation reaction
0.1251 G-protein chemoattractant receptor activity
0.1256 phagocytosis
0.1256 carbohydrate kinase activity
0.1299 regulation of transcription
0.1309 fatty acid metabolism
0.1435 antimicrobial humoral response (sensu Invertebrata)
0.1435 protein amino acid phosphorylation
0.1454 NIK-I-kappaB/NF-kappaB cascade
0.1507 protein phosphatase type 2C activity
0.1507 heavy metal ion transport

Table 1: Distribution of Ontology terms within Gene Clusters. The gene clusters identified in Figure 1d were analyzed for asymmetric 
distribution of ontology terms using the Gominer Software [16]. The top 40 gene ontology terms for each cluster ranked by 
significance scoring (Fishers exact T-test) are shown. Total numbers of genes in each cluster are indicated in parentheses. Statistical 
ranking of asymmetrically distributed gene ontology terms is represented by an estimated p-value (Fisher's Exact T-test). (Continued)
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on the statistical significance of their occurrence within
the transcription factor clusters (TFO). The top gene
ontology terms with a ranking p-value less than 0.05
(determined by GoMiner) were then extracted and listed
depending on whether they were over-represented (RED)
or under-represented (GREEN) in each TFO. These lists
were then compared with the top gene ontology terms of

each respective gene cluster (gene cluster ontology, GCO)
with p-values less then 0.05. The over-represented tran-
scription factor ontology terms (TFO) found to share sim-
ilarity with terms in the respective gene cluster ontologies
(GCO) (within two branches of the ontology clade) are
displayed in bold capitals letters (Figures 3, 4, 5, 6, 7, right
column).

Significance ranking of TFBSs in respective clustersFigure 2
Significance ranking of TFBSs in respective clusters. (a) The TFBSs in the sequences of each cluster were sorted and 
ranked by ANOVA analysis to determine those sites that best discriminated the different clusters. The TFBSs in each cluster 
were then assigned ranks (1–164) according to their significance (p-value) from the ANOVA analysis. Highest ranking in red, 
lowest in blue. (b) Partitioning of gene promoter composition with more stringent PWM matrix similarity thresholds reduces 
the number of clusters identified by K-means analysis. Shown are four of six clusters containing greater than 4 genes. (groups 1, 
2, 5 and 6). (c) Analysis of the most discriminating TFBSs in the four clusters in Figure 2b by ANOVA, as in Figure 2a.
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Analysis of Ontology term distributionFigure 3
Analysis of Ontology term distribution. The top 20 best discriminating gene ontology terms in each cluster were sorted 
for over-representation (RED) and under-representation (Green) and compared to the top 10 discriminating TFBSs for each 
cluster as determined by ANOVA (Figure 2). The top 10 over-represented (Red) and under-represented (Green) TFBSs for 
each cluster are shown. The transcription factors that recognize the TFBSs were grouped and then analyzed for asymmetric 
distribution of ontology terms using GoMiner (TF ontology terms, right). Transcription factor genes that are known to bind 
the over-represented TFBSs (TF Genes, enriched) are shown enclosed in boxes. Transcription factor ontology terms that 
overlap the gene cluster ontology terms within 2 branches of the ontology clade are shown in bold. Those terms with exact 
matches in the gene cluster ontologies are indicated with an asterisk. The numbers in parentheses indicate the total number of 
ontology terms associated with each respective cluster. The numbers in brackets indicated those ontology terms with a signif-
icance measurement p-value < 0.05 (Fisher Exact T-test). Representative genes from Clusters one, six and thirteen are shown 
in supplemental Table 3.
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Analysis of Ontology term distributionFigure 4
Analysis of Ontology term distribution. The top 20 best discriminating gene ontology terms in each cluster were sorted 
for over-representation (RED) and under-representation (Green) and compared to the top 10 discriminating TFBSs for each 
cluster as determined by ANOVA (Figure 2). The top 10 over-represented (Red) and under-represented (Green) TFBSs for 
each cluster are shown. The transcription factors that recognize the TFBSs were grouped and then analyzed for asymmetric 
distribution of ontology terms using GoMiner (TF ontology terms, right). Transcription factor genes that are known to bind 
the over-represented TFBSs (TF Genes, enriched) are shown enclosed in boxes. Transcription factor ontology terms that 
overlap the gene cluster ontology terms within 2 branches of the ontology clade are shown in bold. Those terms with exact 
matches in the gene cluster ontologies are indicated with an asterisk. The numbers in parentheses indicate the total number of 
ontology terms associated with each respective cluster. The numbers in brackets indicated those ontology terms with a signif-
icance measurement p-value < 0.05 (Fisher Exact T-test). Representative genes from Clusters one, six and thirteen are shown 
in supplemental Table 3.
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Analysis of Ontology term distributionFigure 5
Analysis of Ontology term distribution. The top 20 best discriminating gene ontology terms in each cluster were sorted 
for over-representation (RED) and under-representation (Green) and compared to the top 10 discriminating TFBSs for each 
cluster as determined by ANOVA (Figure 2). The top 10 over-represented (Red) and under-represented (Green) TFBSs for 
each cluster are shown. The transcription factors that recognize the TFBSs were grouped and then analyzed for asymmetric 
distribution of ontology terms using GoMiner (TF ontology terms, right). Transcription factor genes that are known to bind 
the over-represented TFBSs (TF Genes, enriched) are shown enclosed in boxes. Transcription factor ontology terms that 
overlap the gene cluster ontology terms within 2 branches of the ontology clade are shown in bold. Those terms with exact 
matches in the gene cluster ontologies are indicated with an asterisk. The numbers in parentheses indicate the total number of 
ontology terms associated with each respective cluster. The numbers in brackets indicated those ontology terms with a signif-
icance measurement p-value < 0.05 (Fisher Exact T-test). Representative genes from Clusters one, six and thirteen are shown 
in supplemental Table 3.
Page 15 of 23
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:259 http://www.biomedcentral.com/1471-2105/6/259
Analysis of Ontology term distributionFigure 6
Analysis of Ontology term distribution. The top 20 best discriminating gene ontology terms in each cluster were sorted 
for over-representation (RED) and under-representation (Green) and compared to the top 10 discriminating TFBSs for each 
cluster as determined by ANOVA (Figure 2). The top 10 over-represented (Red) and under-represented (Green) TFBSs for 
each cluster are shown. The transcription factors that recognize the TFBSs were grouped and then analyzed for asymmetric 
distribution of ontology terms using GoMiner (TF ontology terms, right). Transcription factor genes that are known to bind 
the over-represented TFBSs (TF Genes, enriched) are shown enclosed in boxes. Transcription factor ontology terms that 
overlap the gene cluster ontology terms within 2 branches of the ontology clade are shown in bold. Those terms with exact 
matches in the gene cluster ontologies are indicated with an asterisk. The numbers in parentheses indicate the total number of 
ontology terms associated with each respective cluster. The numbers in brackets indicated those ontology terms with a signif-
icance measurement p-value < 0.05 (Fisher Exact T-test). Representative genes from Clusters one, six and thirteen are shown 
in supplemental Table 3.
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A qualitative comparison of the gene cluster ontology
terms and their respective transcription factor ontology
terms reveals several similarities in the over-represented
terms. Cluster one shows significant overlap of ontology
terms for cell division. Cluster six shows overlapping
terms for cell communication. Cluster twelve contained
overlapping terms for cellular metabolism. Cluster thir-
teen shows a puzzling anti-correlation with response to
external stimuli. Cluster fifteen shows overlapping terms
with morphogenesis and development. When these corre-
lations are tested for significance by the method of hyper-
geometric distribution, Clusters one and six shows statis-
tically significant correlation. Within Cluster one, gene
cluster and transcription factor ontology terms for cell
cycle regulation overlapped significantly (p = 1.08E-04).
Within Cluster six, there was substantial overlap for cell
communication ontology terms (p = 0.0030). Both cell
cycle regulation and cell communication encompass fun-
damental and highly conserved processes in mammalian

cells. Less than a third of clusters showed statistically sig-
nificant correlations between gene group and transcrip-
tion factor ontology terms. Nonetheless, given the
unbiased manner in the which the gene lists and TF lists
were generated and the small number of TF genes used to
generate that TFO terms (55) compared to the number
used to generate the GCO terms (7298), this approach
shows substantial promise for identifying functional cor-
relations between the transcriptional pathways and the
genes regulated by them. It is reasonable to anticipate that
these correlations will strengthen as the number and qual-
ity of the PWMs expand and the transcription factor gene
ontology annotation improves in number and accuracy
(see Discussion).

Discussion
Changes or alteration in gene expression are often linked
to influences at the regulatory elements within the pro-
moter regions of the targeted genes. The transcription

Analysis of Ontology term distributionFigure 7
Analysis of Ontology term distribution. The top 20 best discriminating gene ontology terms in each cluster were sorted 
for over-representation (RED) and under-representation (Green) and compared to the top 10 discriminating TFBSs for each 
cluster as determined by ANOVA (Figure 2). The top 10 over-represented (Red) and under-represented (Green) TFBSs for 
each cluster are shown. The transcription factors that recognize the TFBSs were grouped and then analyzed for asymmetric 
distribution of ontology terms using GoMiner (TF ontology terms, right). Transcription factor genes that are known to bind 
the over-represented TFBSs (TF Genes, enriched) are shown enclosed in boxes. Transcription factor ontology terms that 
overlap the gene cluster ontology terms within 2 branches of the ontology clade are shown in bold. Those terms with exact 
matches in the gene cluster ontologies are indicated with an asterisk. The numbers in parentheses indicate the total number of 
ontology terms associated with each respective cluster. The numbers in brackets indicated those ontology terms with a signif-
icance measurement p-value < 0.05 (Fisher Exact T-test). Representative genes from Clusters one, six and thirteen are shown 
in supplemental Table 3.
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factors that bind these regulatory elements form the final
controlling functional link to the signaling pathways that
are triggered and integrated as the cell adapts to environ-
mental change. Thus, collective control of these integrated
pathways forms the major conduit that governs changes
and patterns of cellular behavior. These relationships are
particularly applicable to metazoan systems.

Transcriptional control in metazoan cells is the culmina-
tion of multiple signal-induced transcriptional pathways,
where the collective influence of more than one transcrip-
tion factor and pathway hold sway on the ultimate expres-
sion of targeted genes. This combinatorial logic provides
a means through which a finite number of transcriptional
pathways can converge to produce seemingly infinite pat-
terns of gene regulatory control. Deciphering this logic
and how it links downstream function to upstream sign-
aling requires expanded methods of interpreting pro-
moter composition. By classifying patterns of promoter
composition and linking these classifications to func-
tional categories, of both the regulated genes and the tran-
scription factors that regulate them, this approach
provides a rational method for identifying meaningful
relationships between promoter composition and gene
function.

Though only 2 of 9 clusters showed a statistically signifi-
cant correlation between ontology terms of the clusters
and the transcription factors (Figures 3, 4, 5, 6, 7), an
inspection of the ontology terms of several of the gene
clusters in comparison to the transcription factors reveals
numerous relationships that have been well established in
the literature, though not reflected in the currently availa-
ble ontological annotation for the factors. Cluster one is
dominated by E2F transcription factors that are well
known to exert control over genes involved in cell cycle
regulation. Therefore, the overlap between Cluster one
gene and transcription factor ontology terms for cell cycle
regulation are significant (p-value = 1.08E-04). Cluster
Four showed no matches in the most significant ontology
terms, however, the significant potential regulators of this
cluster include AP-2 transcription factors, which have
broad roles in vertebrate development including control
of apoptosis and cell cycle [18]. Moreover, AP-2 factors
have been also found to control receptor tyrosine kinase
expression and other factors involved in the negative reg-
ulation of gene expression [19,20]. EGR1 and ZNF42 fac-
tors are widely known to regulate genes important for
mitogenesis and differentiation [21-23]. Thus, a more
expanded annotation of these terms would have shown
greater correlation with the top ontology terms in both
Cluster four and Cluster fifteen. These include cell com-
munication, negative regulation of transcription, protein
modification, protein tyrosine kinase activity, embryo-
genesis, morphogenesis, signal transduction and

angiogenesis (Figures 3 and 6). Even though Cluster six
shows statistically significant overlap between its ontol-
ogy terms and those of its potential regulating transcrip-
tion factors, many seemingly obvious matches could not
be found in the annotation of some of the potential regu-
lators. In particular, there is a significant absence of ontol-
ogy terms for oncogenesis, morphogenesis and cellular
differentiation for the NF-kappa B family subset of the top
discriminating transcription factors. Control of these cel-
lular process are well described for NF-kappa B [24]. The
transcription factors in Cluster nine show no overlap; yet,
it is dominated by octamer binding sites and several
reports indicate octamer family members have a role in
the control of expression of cellular adhesion molecules
and other participants in wound healing [25,26]. In Clus-
ter ten, the roles for TCF3 and TCF8 in early B-cell differ-
entiation, immunoglobin expression and T-cell function
certainly should have produced an overlap with the gene
cluster ontology terms for immune response and defense
response [27-29].

Another dominant factor that will improve the deduced
linkages between ontologies of the regulating transcrip-
tion factors and the regulated genes will be improvements
in the accuracy of predicting TFBS occurrence. Multiple
difficult factors have to be addressed. The first is accurate
prediction of the promoter regions themselves. In this
work, we define the promoter region in terms of the start
of transcription (TSS) and retrieve sequence 200 bp down-
stream and 1200 bp upstream of this position. Using the
ProSpector search engine, the TSS is extracted from RefSeq
annotation provided by the USCS genome assembly
[30]http://genome.ucsc.edu. More precise identification
of TSS is available from recent curated databases contain-
ing empirically derived TSS positions such as MPromDb
http://bioinformatics.med.ohio-state.edu/MPromDb/,
OMGProm http://bioinformatics.med.ohio-state.edu/
OMGProm/, and DBTSS http://dbtss.hgc.jp/[31,32].
These resources will certainly improve on the accuracy of
the promoter identification as their inventories continue
to grow from the current 8,793 (DBTSS) and 13,780
(MPromDb) human genes. Nonetheless, a comparison of
the promoter sequences queried from ProSpector and
those from MPromDb showed a greater than 80% overlap
in more than 80% of the mutually retrieved sequences
(data not shown). It should be noted that metazoan pro-
moter regions are highly complex and have multiple dif-
ferent TSS positions and consequently multiple
promoters [33]. Many of these alternate promoters are tis-
sue specific [33]. This feature unavoidably confounds the
approach and is not adequately addressed in current
promoter analysis tools. In addition to alternate promot-
ers, metazoan gene regulatory regions are influenced by
distant enhancer regions, locus control regions and a
complicated tissue-specific interplay between
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transcriptional co-activator complexes and transcription
factors [1,34-36]. These complex factors probably account
for the better performance of promoter prediction tools
on yeast data sets in comparison to higher eukaryotes
[37].

A particularly difficult problem with the use of PWMs to
annotate gene regulatory regions is the unavoidable
occurrence of "false positive" and "false negatives". This is
predominantly the case when searching for new TFBSs in
uncharacterized genetic regions. Figures 2b and 2c show
that using a high PWM threshold has the negative result of
reduced promoter discrimination and potentially high
levels of true "false negatives". At the heart of the matter is
how we discriminate true false negatives and positives. It
is indisputable that this can only be done through empir-
ical validation and verification. The thresholds set for the
PWM analysis in figures 2b and 2c were too high to detect
known sites for CREB, AP1, NF-kappa B and NFAT in the
IL2 promoter and failed to retrieve any of the 5 known
sites for NFAT in the IL4 promoter [38-43]. Thus, the use
of high thresholds is inappropriate. For empirically
uncharacterized gene regulatory regions, there is no way
to discriminate between correct identifications, true false
positives or false negatives. High frequency occurrence of
motifs in some promoters should be met with some skep-
ticism, but it is important to keep in mind that our under-
standing of transcription factor interaction with the
genome continues to evolve. The interaction between
transcription factors and TFBSs is not static, but highly
dynamic and repetitive [44]. Thus, gradients of high and
low affinity binding sites for classes of factors within a sin-
gle gene regulatory locus could be physiologically
relevant.

The presence of GC rich regions and CpG islands creates
an important issue that requires consideration. These
types of regions contain high densities of binding sites for
factors such as Sp1, AP2, and EGR2/3. Though greater
than 80% of promoters of are thought to contain CpG
islands [45,46], differences in their presence, length or
position will lead to background noise in the analysis.
Recently developed approaches are able to address this
problem through the use of background models repre-
senting either the entire genome (which is still subject to
GC rich asymmetry because of the preferential concentra-
tion at transcription start sites) or random/unselected
groups of promoter regions [47,48]. The method
described in this current study ranks motifs not by their
PWM score, but by using ANOVA to discriminate across
the opposing clusters. By this approach, the aggregate of
the opposing clusters serves as the background model for
discriminatory significance of the TFBSs within each
group. Though the presence of GC rich regions contribute
significant noise to the analysis, this problem does not

overwhelm the approach since it robustly discriminates
true differences in promoter composition and correctly
groups genes of known ontology with those containing
mutual TFBSs that have been empirically validated (see
supplemental Table 3).

Only Clusters fifteen, thirteen and four show high ranks
for GC-containing TFBSs (Figures 3 and 6). At the very
least, this indicates that there is a non-random distribu-
tion of GC rich regions amongst promoters. Nonetheless,
the relative contribution of GC rich tracts or CpG islands
to this distribution cannot be determined by our method.
As expected, the clusters with high ranks for GC-contain-
ing TFBSs are in close apposition (Figure 1d). The fact that
they show rather low correlation between GCO and TFO
reflects the noise due to the high occurrence of GC rich
regions. Still, it must be emphasized that CpG islands rep-
resent legitimate sites for factors like Sp1, EGR3/2 and
AP2. Thus, the detection of such binding sites is likely to
be physiologically important and their clustering patterns
may contain biological information that will increase in
importance as our understanding of transcription factor
ontology is refined. Interestingly, recent studies suggest
that genes lacking CpG islands tend to be expressed with
a higher degree of tissue specificity and contain more GO
terms consistent with "signal transducer", confirming the
speculation that many CpG islands are associated with
house-keeping gene function [46].

Unlike the yeast studies of Tavazoie et al [49], our
approach failed to show any correlation between gene
expression patterns at the RNA level and promoter TFBS
composition. This result could be due in large part to the
differences in yeast and metazoan gene regulatory regions
as discussed above. In addition, post-transcriptional regu-
lation of RNA stability is likely to be much more complex
in metazoans than yeast. Another very important
consideration is that Tavazoie et al chose to study the cell
cycle, a time series of cellular behavior that is rich in vari-
ous distinct molecular programs. It may be that the use of
time-dependent changes following mitogen stimulation
is too broad and lacks sufficient variability and distinction
of gene expression to provide the discriminatory power
necessary for the analysis of gene regulatory regions.
Recently, another group has made an elegant application
of GO terms to predict biological function by promoter
composition [50]. By this approach, Bluthgen et al used
predetermined TFBS combinations of known biological
significance to extract genes with similar biological func-
tion based on overlapping promoter composition. This
approach is very promising, confirms our central hypoth-
esis, and shares similarity with a previously reported
method where the biological significance of TFBS combi-
nations, derived from kinetic profiles of transcriptional
regulator occupancy via chromatin immuno-precipita-
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tion, was used to identify similarly regulated genes [14].
Our analysis differs from Bluthgen et al in that it does not
depend on prior knowledge. In contrast, it begins with
neither a pre-selected TFBS framework nor any other bio-
logical information. The possibility of identifying previ-
ously unrecognized ontologies linking the targeted genes
with their targeting transcription factors remains
preserved.

Conclusion
The examination of the upstream regulatory sequences of
eukaryotic genes has the potential of yielding a wealth of
information that will unravel the transcriptional control
codes that govern spatial and temporal changes in gene
expression. Combining multivariate analysis of promoter
composition with classification by gene ontology pro-
vides a method that defines functional links between reg-
ulated genes and the genes that regulate them. The above
are just a few of the examples where expanded ontology
term annotation for the transcription factors based on cur-
rent literature and improved promoter annotation meth-
ods will enhance the functional correlation between the
regulator and the regulated. Just as important, these exam-
ples also point out how this method may also aid in iden-
tifying previously unrecognized functions for known
transcription factors through the identification of "mutual
ontology" terms. Ultimately, it will be the broader refine-
ment and expansion of both PWMs for TFBSs and the
functional vocabulary for all genes (in particular those
gene encoding transcription factors), that will have a sig-
nificant impact on improving the utility of this approach.

Methods
ProSpector database
To aid in the extraction and analysis of human promoter
regions, a web-based resource named ProSpector (PRO-
moter inSPECTion) was developed [51]. The ProSpector
website operates through an Apache web server and a
MySQL relational database. The user interface of the web-
site is written in PHP. The website provides a search tool
for retrieving oriented human gene promoter regions by
gene name (HUGO), gene description, gene symbol
(HUGO), UniGene cluster, RefSeq ID, or LocusLink ID.
The search feature is facilitated by keeping local copies of
NCBI databases, including UniGene, RefSeq, and
LocusLink. The actual promoter sequences are retrieved
through a tool developed by the Genome Analysis Unit of
the National Cancer Institute [52]. This tool retrieves pro-
moters by extracting regions 5' of gene transcription start
sites identified by RefSeq annotation. Transcription start
is defined by RefSeq mRNAs aligned with genomic chro-
mosomal contigs from the UCSC/NCBI Assembly – hg12/
Build 30. ProSpector also allows extracted promoters to be
analyzed for putative transcription factor binding sites
using the MatInspector algorithms described by Quandt et

al [5] and a subset of the position weight matrices (PWM)
from the TRANSFAC 6.0 public database of transcription
factors [53]. Briefly, base composition at putative TFBS is
calculated as a vector score (Ci(i)) where:

P(i, b) being the relative frequency of base (b) at position
(i) calculated from the PWM. Core similarity is used to
quickly screen for potential binding sites with a high sim-
ilarity to the most conserved region of the PWM and is
determined from the four consecutive bases in the PWM
with the highest Ci and calculated using:

The score for base (b) and position (j) is simply the matrix
value of base (b) at position (j) as defined by the PWM
and the max score is the highest value in the matrix at
position (j). Likeness or similarity to the TFBS PWM is cal-
culated independent of the core by:

A subset of 164 PWMs representative of the major families
of human transcription factors contained in TRANSFAC
6.0 was employed in this study.

Optimization of TRANSFAC thresholds
When promoter sequences are analyzed for potential tran-
scription factor binding sites, they are selected based on
their similarity to TRANSFAC position weight matrices.
This similarity is represented by its matrix similarity
(mat_sim, Equation 3). By setting a threshold, only
potential binding sites with an equal or larger similarity
are selected. Because each position weight matrix is of dif-
fering inherent degeneracy, an optimized matrix thresh-
old was generated for each matrix to provide an
alternative method to minimize the number of potential
false positive binding sites. To optimize the matrix thresh-
olds, 1,000,000 bases of random sequence were analyzed
with each matrix at intervals of successively higher matrix
thresholds. The optimum threshold was arbitrarily
defined for each matrix to be the point at which the matrix
was detected as scoring only one binding site per 1000 bp
of the random DNA.
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Microarray analysis
Analysis was performed on previously published microar-
ray data [11] to generate a list of genes separated into
groups based on specific steady-state mRNA expression
levels. In these studies, the Jurkat human T-cell line was
stimulated with phorbol ester and ionomycin. mRNA was
isolated from cells at 0, 1, 2, 6, 12, and 24 hours after stim-
ulation. The prefiltered hybridization signals (provided
by Dieh et al [11]) were normalized and filtered to remove
any spots marked as "bad" on any of the twelve arrays. The
ratio expression data was then log transformed and stand-
ardized to a control set of hybridization signals from
mRNA isolated from untreated Jurkat T-cells at each time
point. The promoter regions (defined as 1200 bp
upstream and 200 bp downstream from the transcription
start site) of the resulting list of Unigene clusters were then
retrieved using the ProSpector website. UniGene clusters
for which no sequence could be found were discarded in
this step. A final list of 7298 UniGene clusters and pro-
moter regions remained. For analysis of gene expression
data, the method of K-means clustering was used [54].
The optimum number of clusters for the data set (four)
was determined using the method described by Davies
and Bouldin [55].

Promoter analysis
The genes analyzed in the microarray analysis were also
analyzed for putative transcription factor binding using
the ProSpector website http://prospector.nci.nih.gov. The
gene promoter regions spanning 1200 bp upstream of
transcription start and 200 bp downstream of transcrip-
tion start were analyzed with all 164 position weight
matrices. The analysis was performed twice: once applying
a common matrix threshold of 0.75 and again with the
optimized matrix thresholds. In both analyses, a thresh-
old of 1 for the core similarity was used. The results of the
analysis were analyzed by segregating the genes based on
the number of each position weight matrix that scored a
binding site in the promoter. As in the microarray
analysis, the method of Davies and Bouldin was used to
determine the optimal number of clusters according to
promoter composition. K-means clustering was used to
segregate the genes. In the analysis with a blanket 0.75
matrix threshold, the data was found through Davies-
Bouldin analysis to separate into 16 groups. These clusters
remained stable after the introduction of normalized
Gaussian noise up to two fold standard deviation. Seven
of the groups were small, containing 1 to 4 genes, and
were discarded as outliers. The final result was 9 groups.
The analysis was also conducted using optimized thresh-
olds (see above). This analysis segregated into 6 groups.
Again, groups with 4 or less genes were discarded as out-
liers leaving 4 groups derived from the optimized thresh-
old TFBS analysis. For each analysis, clustered genes were
analyzed using ANOVA to determine the transcription fac-

tor binding site motifs most significant in differentiating
the clusters. Principal component analysis (PCA), ANOVA
(one-way) and K-means clustering analysis were per-
formed using Partek Pro 5.0 (Partek Corp.).

Gene ontology
The GoMiner gene ontology tool was used to rank and cat-
egorize the gene ontology terms that were more signifi-
cantly enriched beyond random assignment in each gene
cluster [16]. Gene ontology terms were ranked according
to p-values (Fisher's Exact T-test) generated by GoMiner
[16]. Testing comparing ten random gene groups (1000
each) showed only random grouping of ontology terms
versus the total population (data not shown). GoMiner
was also used to identify those ontology terms that were
enriched in the genes groups encoding the transcription
factors known to associate with the most significant TFBSs
identified in each respective cluster by ANOVA analysis.
Significance testing for shared gene cluster ontology
(GCO) terms and transcription factor ontology (TFO)
terms was done by estimating the random probability of
observing significant ontology terms in both TFO and
GCO. The number of TFO terms were considered to be N,
of which n are significant, and there are m significant
GCO's found in TFO list of which k are also significant
TFO's. The probability of obtaining k terms was tested if n
values are randomly drawn from all TFO terms in which
m are GCO's. The random process describing the null-
hypothesis (no preferential overlap of GO terms) is
described by the hypergeometric distribution which can
be calculated by the phyper function of the R-Statistical
software [56].

Implementation
The ProSpector promoter retrieval and annotation tool is
available for open access at http://prospector.nci.nih.gov.
ProSpector is compatible with Internet Explorer, Mozilla,
Firefox, Opera and Safari.
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