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Abstract

Background: The extensive use of DNA microarray technology in the characterization of the cell
transcriptome is leading to an ever increasing amount of microarray data from cancer studies.
Although similar questions for the same type of cancer are addressed in these different studies, a
comparative analysis of their results is hampered by the use of heterogeneous microarray platforms
and analysis methods.

Results: In contrast to a meta-analysis approach where results of different studies are combined
on an interpretative level, we investigate here how to directly integrate raw microarray data from
different studies for the purpose of supervised classification analysis. We use median rank scores
and quantile discretization to derive numerically comparable measures of gene expression from
different platforms. These transformed data are then used for training of classifiers based on
support vector machines. We apply this approach to six publicly available cancer microarray gene
expression data sets, which consist of three pairs of studies, each examining the same type of
cancer, i.e. breast cancer, prostate cancer or acute myeloid leukemia. For each pair, one study was
performed by means of cDNA microarrays and the other by means of oligonucleotide microarrays.
In each pair, high classification accuracies (> 85%) were achieved with training and testing on data
instances randomly chosen from both data sets in a cross-validation analysis. To exemplify the
potential of this cross-platform classification analysis, we use two leukemia microarray data sets to
show that important genes with regard to the biology of leukemia are selected in an integrated
analysis, which are missed in either single-set analysis.

Conclusion: Cross-platform classification of multiple cancer microarray data sets yields
discriminative gene expression signatures that are found and validated on a large number of
microarray samples, generated by different laboratories and microarray technologies. Predictive
models generated by this approach are better validated than those generated on a single data set,
while showing high predictive power and improved generalization performance.
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Background

Gene expression profiling by DNA microarrays has
become an important tool for studying the transcriptome
of cancer cells, and has been successfully used in many
studies of tumour classification and of identification of
marker genes associated with cancer [e.g. [1-3]]. With an
increasing number of microarray data becoming availa-
ble, the comparison of studies with similar research goals,
e.g. to identify genes being differentially expressed in nor-
mal versus tumour tissue, has gained high importance. In
general, the evaluation of multiple data sets promises to
yield more reliable and more valid results since these
results are based on a larger number of samples and the
effects of individual study-specific biases are weakened.
However, the comparison of results from different micro-
array studies is hampered by the fact that different studies
use different protocols, microarray platforms and analysis
techniques. The question whether the results of gene
expression measurements obtained by different platforms
can be compared has been addressed in several studies [4-
7]. It has been found that results derived from the meas-
urements like lists of tumour subtype marker genes [5] or
measures of intra-study correlation of gene expression
patterns [6] can be compared and thus inter-validated
between different platforms. However, the measures of
gene expression themselves could not be directly com-
pared between different platforms [4,7]. Some studies
propose methods for meta-analysis of microarray data
with the goal to identify significantly differentially
expressed genes across studies by using statistical tech-
niques that avoid the direct comparison of gene expres-
sion values [8-14].

The goal of this study is to investigate the benefit of per-
forming supervised classification analyses across disparate
sources of microarray data. Methods of supervised classi-
fication analysis render it possible to automatically build
classifiers that distinguish among specimens on the basis
of predefined class label information (phenotypes), and
in many cancer research studies [e.g. [1-3]] the application
of these methods has shown promising results of
improved tumor diagnosis and prognosis. However, as
pointed out by several authors, there is a strong need for
independent validation of these results, and an increase in
sample size is recommended for future studies [15,16].
We therefore chose to explore how gene expression data
from different studies can be directly combined, especially
for an integrated classification analysis. Such an integrated
analysis promises to be a valuable tool for validation of
classification results obtained in a single study, and might
yield improved results because it is based on a larger
number of samples.

Recently, Wright et al. [17] have proposed a statistical
method based on Bayes' rule to classify cancer specimens
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by their gene expression profiles. They were able to clas-
sify oligonucleotide microarray data from one study with
a predictor derived from cDNA microarray data from a dif-
ferent study. Here, we evaluate the feasibility of building
predictors from and classifying microarray data independ-
ent of the platform used for expression profiling. The gen-
eral approach to first derive numerically comparable
measures of gene expression from different platforms
(data integration) and then to apply supervised classifica-
tion on the integrated data was successfully applied in first
attempts to classify cancer microarray data generated with
multiple array platforms [18,19].

We adopt this approach and demonstrate the use of two
data integration methods, namely median rank scores,
which has already been successfully applied for compara-
bility assessment of five different breast cancer microarray
data sets [19], and quantile discretization which has not
been used in the context of microarray data analysis
before. For supervised classification analysis, we use sup-
port vector machines (SVM), a well-established machine
learning technique for classification of microarray data
[20,21]. Integrated cross-platform classification of cancer
is demonstrated for three pairs of publicly available data
from microarray studies on different types of cancer [22-
27]. To investigate the hypothesis that an integrated anal-
ysis of data from different microarray studies can yield
results not obtained by a single study, we chose to investi-
gate two leukemia data sets in more detail and studied dif-
ferences in gene expression profiles between the
cytogenetically defined subgroups t(15;17), t(8;21) and
inv(16), all associated with a favourable prognosis
[28,29], and samples with normal karyotype lacking
mutations in FLT3 or RAS, thought to belong to an inter-
mediate risk group [30-32]. While differences between the
first three groups are prominent and were detected in mul-
tiple studies [33,26,27], evidence about the homogeneity
of the normal karyotype group and the associated genes is
still lacking. The list of genes selected in an integrated
analysis of both studies is compared to the lists of genes
selected in two analyses performed separately on either
study.

Results

We investigated six publicly available cancer microarray
gene expression data sets to perform cross-platform super-
vised classification analysis. We selected three pairs of
studies, each examining the same type of cancer, i.e. breast
cancer, prostate cancer and acute myeloid leukaemia,
respectively. All pairs of studies allowed for either classifi-
cation of cancer versus normal tissue or cancer subtype
differentiation. Each pair was chosen to consist of one
study using cDNA arrays and one study based on oligonu-
cleotide arrays. We studied how to combine pre-processed
data sets measured with different microarray platforms for
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Barplot of the number of UniGene clusters repre-
sented in each data set. Grey coloured bars indicate the
proportion of UniGene clusters common to a pair of studies.

an integrated classification analysis. The process can be
divided into the following main parts: First, we deter-
mined the overlap of genes common to both platforms
using the UniGene database. Next, we derived numeri-
cally comparable quantities from the expression values of
both platforms by application of median rank scores or
quantile discretization. Then, the support vector machine
algorithm, an approved method for supervised classifica-
tion analysis, was applied to different classification set-
tings.

Data integration

Figure 1 shows for all three study pairs the number of
common UniGene clusters (genes) represented on both
platforms. Since there is only a moderate overlap of Uni-
Gene clusters for the pairs of array platforms, many
probes cannot be used for cross-platform analysis. The
number of microarray features used for cross-platform
analysis is further reduced by averaging expression values
of probes on the same platform that map to the same Uni-
Gene cluster. As a result, only 40-50% of genes are
retained for cross platform analysis.

As the next step, we applied the median rank scores (MRS)
method or quantile discretization (QD). In order to check
whether the comparability of the data from different plat-
forms is improved after data transformation by these
methods, we compared the distribution of gene expres-
sion values per microarray between arrays of different
studies. We selected one microarray per study and pro-
duced a quantile-quantile plot (QQ-plot) for every pair of
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microarrays from corresponding studies as shown in Fig-
ure 2. In every QQ-plot the quantiles of all gene expres-
sion values from a first microarray are plotted against the
quantiles of all gene expression values from a second
microarray. If the gene expression values of the two differ-
ent microarrays share the same distribution, the points in
the plot should form a straight line. As can be seen in Fig-
ure 2, the distribution of expression values of microarrays
of different studies is much more similar after application
of MRS in comparison to non-integrated data. As an effect
of QD, the quantiles of the expression values of all micro-
arrays in the integrated studies are equal by definition,
resulting in points in the plots forming a straight line.

Classification analysis

After data integration by the median rank scores method
or quantile discretization, respectively, two different types
of cross-platform classification analyses were performed:
training of a classifier on only one data set of a pair fol-
lowed by classifier evaluation on the other data set, and
classifier training and testing on data instances randomly
chosen by a cross validation from the combined data set.

The first type of analysis was performed on non-integrated
data and on integrated data, respectively. Evidently, with-
out data integration, a classifier created on one set cannot
correctly classify data instances of the other set (Figure 3).
This is clearly indicated by prediction accuracies being
similar to or worse than the prior prediction rates, i.e. the
prediction accuracy of a classifier which always predicts a
data instance to be an element of the dominating class.
The only exception is the prostate cancer data, where high
classification accuracy was achieved after training on the
data set of Welsh et al. and classification of the data of
Dhanasekaran et al. Data integration improves the results
in cases of the prostate and breast cancer studies (p-values
< 0.01, except for classification of the data of Dhanaseka-
ran et al, where a high classification accuracy was already
achieved on the non-integrated data set). We conclude for
these two pairs of studies that data integration enables the
successful application of classifiers trained on one data set
to a comparable data set generated with a different plat-
form. This conclusion does not hold for the AML studies.
Here, only the result for building a classifier based on the
data of Bullinger et al. and classifying the data of Valk et
al. improved after application of median rank scores or
quantile discretization (p-value < 0.1).

Except for the pair of breast cancer microarray data sets,
the application of the MRS versus QD showed no signifi-
cantly different effect on the achieved classification accu-
racies. For the training on the data set of Gruvberger et al.
and classification of the data of West et al., the classifica-
tion result was significantly better after application of QD
in comparison to the result obtained after using the MRS
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Figure 2

Quantile-quantile-plots (QQ-plots) comparing the distribution of gene expression values from microarrays of
all investigated studies before and after the respective application of MRS or QD. One microarray per study was
selected and a quantile-quantile plot (QQ-plot) for every pair of microarrays from corresponding studies was produced. In
every QQ-plot the quantiles of all gene expression values of a first microarray are plotted against the quantiles of all gene
expression values of a second microarray. If the gene expression values of the two different microarrays share the same distri-
bution, the points in the plot should form a straight line. Abbreviations: MRS, median rank scores; QD, quantile discretization
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Barplot of results from a classification analysis using SVM classifiers. Barplot of results from a classification analysis
where all data from one study are used to built a classifier (training), which is then used to classify all samples of the other
study (test), using SVM classifiers. The names below the bars indicate which study was used for classifier training (left name)
and testing (right name). The bars represent the achieved classification accuracies, i.e. the fraction of samples correctly classi-
fied. The colour of a bar indicates the method used for data integration. P-values are obtained by statistical testing with the null
hypothesis that the two marked classification approaches perform equally well on the given test set (see Methods for details).
The target variable for classification analysis of the prostate cancer data was 'type of tissue' (normal vs. tumor tissue), for the
breast cancer data the estrogen receptor (ER) status (ER positive vs. ER negative), and for the leukemia data the karyotype of
the samples (one of the chromosomal aberrations t(8;21), t(15;17), inv(16) or normal karyotype, respectively). Abbreviations:
MRS, median rank scores; QD, quantile discretization, SVM, support vector machine.

method. In all other cases both methods can be consid-
ered equivalent.

In addition to the above mentioned separated training
and validation, cross-validation analyses were performed
on combined data sets. High classification accuracies were
achieved with training and testing on data instances ran-
domly chosen from both data sets (> 85%; see table 2).
Although the integrated classifiers only operated at less

than 50% of all genes, classification accuracies for inte-
grated classifiers were nearly as high or even markedly
improved in comparison with classification accuracies
achieved for single data sets only. In the case of the breast
cancer studies, the results were better than the accuracies
achieved by cross-validation on each of the pre-processed
single sets with all available microarray features.
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Venn diagrams showing the overlap between lists of
genes generated by RFE analysis. Venn diagrams show-
ing the overlap between lists of genes generated by RFE anal-
ysis based on single sets (Bullinger et al. or Valk et al.) and
based on both data sets integrated by MRS or QD. Abbrevia-
tions: MRS, median rank scores; QD, quantile discretization,
RFE, recursive feature elimination.

In order to check whether similar classification results
could be obtained with another method of supervised
classification analysis, we repeated the above described
experiments using the method of nearest shrunken cen-
troids classification (also known as "Prediction Analysis
of Microarrays", PAM) [34]. As presented in Additional
Files 1 and 2, the classification results obtained with PAM
are similar to those obtained by SVM.

Selection of genes with discriminative expression patterns
To show the potential of an integrated cross platform
analysis, we generated lists of genes forming discrimina-
tive expression patterns by means of recursive feature
elimination (RFE) analysis for the leukemia studies (see
Methods for details). We generated six lists of genes, two
lists for an analysis of the combined leukemia studies,
integrated by MRS or QD, and two lists for each of the two
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leukemia studies analysed separately, using only samples
of the either the MRS or QD data which belong to one
study. A number of 512 elements was selected for each
list, which corresponded to minimal cross-validated error
rate in the integrated analyses of data from both leukemia
studies. Interestingly, the intersection of the lists gener-
ated in analyses using only data of one of the two leuke-
mia studies comprises only about 40 UniGene clusters,
independently of whether MRS or QD was used (Figure
4). In the sets generated by an analysis of both studies
together, integrated by MRS or QD, many genes were
selected that were lost in the analyses based on a single
study (Figure 4). These include important genes with
regard to the biology of leukemia, like RXRA, PBX3, ABL2,
SOCS1, and EGR2 (see Additional File 3 for annotated
lists of selected genes; Additional File 4 contains all six
gene lists ordered by gene ranks as determined in RFE
analysis).

Finally, we used hierarchical clustering as a visualization
method to display coherence in gene expression of the
genes selected by RFE in the leukemia studies. We first
clustered the data of both leukemia studies separately
based on the genes selected by RFE on either set. As shown
in Figure 5(a,b), the samples of Valk et al. were perfectly
grouped according to their karyotype while in the data of
Bullinger et al. samples with karyotype t(8, 21) and
inv(16) were not grouped homogeneously. Then, we clus-
tered the data of Valk et al. using only genes found to be
discriminative on the data of Bullinger et al. (Figure 5c).
Figure 5d shows the reverse case, a clustering of the data
of Bullinger et al. based on the gene selection on the data
of Valk et al. For the selected groups of genes, coherence
in gene expression between samples of the same karyo-
type was weak when results of an analysis solely based on
one leukemia data set are transferred to the other leuke-
mia data set, as samples of the same karyotype were not
grouped homogeneously. Figure 5e and 5f show cluster-
ing results on all samples of both studies using gene lists
integrated either by MRS or QD. Here we can observe a
much more consistent grouping of the samples according
to their karyotype than that observed in Figure 5c and 5d.
Still, both methods of data integration are not able to fully
eliminate study specific self-similarity of samples, as the
samples form clusters according to study origin.

Discussion

In this study we showed that classification of cancer
microarray data can be markedly improved by cross-plat-
form classification analysis of gene expression data from
different studies with similar focus. Key techniques for
cross-platform classification analysis were data integra-
tion methods rendering microarray data numerically
comparable across platforms in combination with well-
established machine learning techniques for generation of
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Figure 5
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Hierarchical clustering of leukemia samples. Hierarchical clustering of leukemia samples based on expression values of
genes selected by RFE analysis. The colored bars indicate the true class affiliations of every sample, the black and white bars
below indicate study origin. (a) Clustering result for data from Valk et al. or (b) Bullinger et al. using only genes selected by RFE
on this data set. (c) Clustering of data from Valk et al. after data integration by MRS algorithm using only expression values of
genes selected by RFE on the data of Bullinger et al. (d) Clustering of data from Bullinger et al. based on genes selected on data
from Valk et al. Data integrated by QD or non-integrated data yielded results similar to those here (data not shown). () Clus-
tering results of all samples of both studies using gene lists generated on the combined set integrated by MRS or (f) QD.
Abbreviations: MRS, median rank scores; QD, quantile discretization, RFE, recursive feature elimination.

predictive models. An obvious advantage of an integrated
classification analysis is the improved generalization per-
formance and reliability of the resulting predictive models
(classifiers) since they are found and validated on a larger
number of samples, thus the effect of study-specific biases
can be reduced. For all study pairs used here, we achieved
high classification accuracies when using data samples
randomly chosen from both data sets of a comparison
pair for classifier building and testing. Our findings
endorse the encouraging results of first attempts of multi-
platform microarray classification analysis [18,19].

For integration of microarray measurements from differ-
ent platforms, Bloom et al. [18] used a scaling approach
based on measurements for one common reference RNA
sample. As hybridization results for such a common refer-
ence RNA sample are normally not available for different
microarray studies and platforms (especially in the case of

custom made cDNA arrays), we applied the median rank
scores method [19] and quantile discretization for data
integration. Besides the problem of integrating microarray
data that have been measured with different platforms, a
general problem in combining measurements from differ-
ent gene expression studies is the variability between
results of different studies. This is primarily due to biolog-
ical differences among the samples of different studies,
differences in the technical procedures to obtain gene
expression measurements, and random variation. The use
of methods providing an abstraction of data like ranks or
discretized values reduces this variability at the price of
reduced information. Therefore, data sets processed by
MRS or QD can not be considered as a suitable input for
every kind of analysis purpose. However, for the aim of
cross-platform classification analysis, the combination of
such abstraction methods with a sophisticated machine
learning technique like the support vector machine used
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Table I: Key characteristics of used microarray data. The figures in curly brackets denote the number of samples belonging to each
category. The number of probes comprises all probes for which data were available and which have not been filtered out in the
preprocessing of the data (see methods for details). Abbreviations: ER, estrogen receptor status; AML, acute myeloid leukemia;
t(A;B), balanced translocation of genetic material between chromosomes A and B; inv(l6), inversion of a segment of chromosome 16;

NN, normal karyotype.

Probes

Target Variable of Classification Analysis

Study Cancer Platform Samples
Dhanasekaran et al[22]  Prostate cancer cDNA 53
Welsh et al[23] Prostate cancer oligo 33
Gruvberger et al[24] Breast cancer cDNA 58
West et al[25] Breast cancer oligo 49
Bullinger et al[26] AML cDNA 52
Valk et al[27] AML oligo 97

7769  Tissue: tumor{34}, normal{|9}
9023  Tissue: tumor{24}, normal{9}

3300  ER-status: positive{28}, negative{30}
5435  ER-status: positive{25}, negative{24}
14776
13250

Karyotype: t(8221){1 1},t(15;17){12},inv(16){15}, NN{I4}
Karyotype: t(8;21){22}, t(15;17){19},inv(16){23}, NN{33}

here helps to compensate for this loss of precision, and
can yield useful results.

Even when a classifier is built on one data set of a pair of
compared studies and the samples of the other study are
classified, good classification results can be observed for
the prostate and breast cancer studies. In this case, the
generalization ability of the classifier is sufficient to cor-
rectly classify most of the samples of the other study, and
thus the classifier obtained on the data of one study can
be validated by the data of another study. In contrast, the
results for the AML studies indicate that the generated
classifiers based on only one of these studies are too spe-
cific. This might be due to fact that the sample sets of
either study are not representative enough to cover all
characteristic transcriptional features observable for the
investigated phenotypes. Indeed, the results for the cross-
validation analysis using samples from both AML studies

Table 2: Classification results observed by cross validation using
SVM classifiers. Figures represent achieved classification
accuracies, i.e. the fraction of samples correctly classified. The
upper table shows results for cross validation analysis of both
data sets of a pair, where samples for training and testing are
selected randomly from both studies. For this, data sets were
integrated by either MRS or QD. The bottom table contains the
results of a cross-validated classification analysis performed
separately on each study, using all available gene expression data
after pre-processing (without applying MRS or QD).
Abbreviations: MRS, median rank scores; QD, quantile
discretization, SVM, support vector machine.

both data sets integrated

MRS QD
Prostate cancer 97.67 % 97.56 %
Breast cancer 87.01 % 88.97 %
Acute myeloid leukemia 90.60 % 90.20%

original data

Prostate cancer Dhanasekaran et al. Welsh et al.
95.28 % 99.09 %

Breast cancer Gruvberger et al. West et al.
80.52 % 86.73 %

Acute myeloid leukemia Bullinger et al. Valk et al.
68.53 % 99.90 %

show that classifiers with better generalization perform-
ance can be obtained underlining the potential of a cross-
platform classification analysis.

Selection of discriminative gene expression signatures is
an important task frequently performed in microarray
studies. Here, we applied RFE analysis for selecting subsets
of genes with distinctive expression patterns on the data of
the leukemia studies of Bullinger et al. [26] and Valk et al.
[27]. For visualization of the coherence in gene expression
of the genes selected by RFE in the different studies we
performed hierarchical clustering. Gene sets selected only
on data of one study show poor coherence in gene expres-
sion for the karyotype groups of samples on the other set.
Clustering results observed for gene sets selected on the
combined set are more consistent. Therefore, these dis-
criminative gene sets are apparently of more general valid-
ity. On the other hand, cluster analysis showed that
neither of the two methods of data integration was able to
entirely overcome study specific self-similarity of the
leukemia samples. For cross-platform classification analy-
sis, however, the MRS and QD algorithms yielded good
results.

The analysis of gene lists obtained by RFE indicated that
gene signatures can be generated on a combined set that
comprise important genes that were not part of gene sig-
natures generated on either set alone. Notably, the inter-
section of lists from the Bullinger and Valk data sets with
the list from the combined set contained only a few genes,
none of them to be known of high importance in the con-
text of AML. Similarly, the intersection between the Bull-
inger and Valk data sets was not large (Additional File 3).
In contrast, the list obtained from the combined data set
contained many genes well known to be involved in
leukemia pathogenesis, like PBX3 [35], the retinoid recep-
tor X [36], the ABL2 tyrosine kinase [37] or early growth
response 2 [38]. In addition, many genes in the combined
list are prominent oncogenes or tumour suppressors, like
BCL2 [39] or ERBB3 [40]. Most notable is the inclusion of
human telomerase TERT, which has been found by Hahn
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et al. to be one of three necessary factors for transforming
a normal cell into a tumour cell [41].

We compared the gene lists generated by the RFE method
to the result of a meta-analysis approach as described by
Rhodes et al. [8]. This method aims at identifying genes
that show reproducible standardized differences in mean
expression between phenotype groups across studies. For
this, a p-value is calculated for every gene in both leuke-
mia studies separately, in order to quantify the signifi-
cance of differences in mean expression between
phenotype groups within a study. Then, the study specific
p-values are combined to a test statistic S and significance
values for this test statistic by a permutation approach are
calculated (for details see [8]). At a significance level of p
= 0.01, 43 genes were selected by this meta-analysis
approach. Of these 43 genes, 12 genes were also found in
the list generated by an RFE analysis of the data of both
studies integrated by MRS, 19 were also found in the list
generated by an RFE analysis of the data of both studies
integrated by QD. This result shows that the gene lists
selected by RFE analysis also contains genes that would
have been found in an independent meta-analysis, but
that also many different genes are selected. This is not sur-
prising, as there are essential differences in both
approaches. The meta-analysis performed here applies a
univariate statistical test to find genes with a significant
difference in group means of expression values, whereas
the SVM based RFE analysis is a multivariate approach
which also considers combinations of genes and selects
genes with maximum influence on the discriminative per-
formance of a classifier. While interpreting a gene list gen-
erated in a RFE analysis, one has to keep in mind that the
main goal of methods like the SVM based RFE approach
used here is to generate signatures that allow for accurate
classification of phenotypes. These gene signatures are
unlikely to contain all and only genes that are most rele-
vant to the genetic differentiation between complex dis-
ease phenotypes. The task to find the complete set of only
those relevant genes out of gene expression data is much
more demanding and might pose an irresolvable chal-
lenge as the changes of gene expression profiles recorded
by microarrays are mostly secondary and tertiary effects
and not the primary ones. With microarrays one observes
the avalanche of gene expression changes, not necessarily
the small pebble causing it. First promising concepts and
methods to work on the task to find the set of relevant
genes have been proposed [42], but their usefulness to
address biological questions has still to be thoroughly
investigated. However, the finding that RFE signatures
generated by an integrated analysis of both leukemia stud-
ies contained genes that are described as being relevant for
tumor biology in the literature, and that were not found
in either single set analyses, shows the potential of cross-
platform microarray data integration to be useful not only
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to improve results for phenotype classification but also for
generation of gene signatures that contain more biologi-
cally interesting genes.

Considering integrated classification analyses in general, a
limiting factor for future application is posed by inconsist-
encies in biological phenotype annotation across studies.
In many cases, it is hard to obtain consistent annotation
on the samples used that would allow to form comparable
groups for classification analysis. This is due to lack of
ontologies for description, or the use of categories that are
based on subjective evaluation such as histological grad-
ing or borderline expression of a molecular marker as
determined by immunohistochemistry. In such respect, it
would be highly desirable to introduce systems for anno-
tation of samples that are analogous to the MIAME stand-
ard for description of technical details of hybridization
[43]. Until such a system exists, one has to focus on stud-
ies where consistency can be guaranteed by expert evalua-
tion, as is the case for the data sets investigated here.

More study results will be needed to validate our findings.
Cross-platform analyses have to be conducted considering
more than two studies at a time. Here, the problem of hav-
ing relatively few genes in common between all studies
will gain increasing importance. Methods to make use of
gene expression values only available on some plat-
form(s) but not on others will be required. For this, the
adaption of a recent approach by Guo et al. [44] could be
a first step. Guo et al. use functional expression profiles
(FEP) instead of gene expression profiles (GEP) for their
classification analysis and generate the FEP by averaging
the expression levels of genes mapping to the same Gene
Ontology (GO) annotation. For integrating data from dif-
ferent microarray platforms, mapping of such functional
summary measurements as FEP rather than the actual
gene expression measurements between different chip
platforms might result in an increased number of meas-
urements (in terms of the number of genes) having an
influence on the analysis results. However, by this
approach the amount of information in the data is also
reduced, as for example anti-correlated genes mapping to
the same GO annotation would countervail each other.
Further research is required to evaluate the impact of these
two effects on the results of an integrated cross-platform
classification analysis. The general improvement of
matching genes between different platforms would also
be beneficial in order to avoid false or missing mappings.
Such developments are under way in our laboratory.

Conclusion

Cross-platform classification of multiple cancer microar-
ray data sets yields discriminative gene expression signa-
tures that are found and validated on a large number of
microarray samples, generated by different laboratories
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and microarray technologies. Predictive models generated
by this approach are better validated than those generated
on a single data set, while showing high predictive power
and improved generalization performance. The results
presented here for the three sample study pairs indicate
that this approach bears the potential to become a widely
applicable technique for inter-validation of studies per-
forming classification of microarray gene expression data.

Methods

Gene expression data collection and preprocessing

All data for this study were downloaded from public web
sites (Table 1) and were pre-processed by software pack-
ages included in the R-project [45] or Bioconductor [46],
respectively. For all studies where raw microarray data
were available, pre-processing was performed as follows.
Microarray features with more than 20% missing values
across all arrays per study were not considered for further
analysis. Missing values for all remaining features were
replaced by median values per gene. Normalization was
carried out using either the vsn [47] or loess [48] algo-
rithms with default parameters as implemented in the
Bioconductor software packages vsn and marray. Data
were base-two log-transformed where applicable.

Data integration

The UniGene database (Build 171) [49] was used to
match cDNA clones and Affymetrix probe sets between
platforms. Each transcript from the different microarrays
was mapped to a UniGene cluster. The overlap of genes
was determined by forming the intersection of the respec-
tive UniGene cluster sets. Within each study, expression
values corresponding to probes of the same UniGene clus-
ter were averaged. Genes that did not map to any UniGene
Cluster and genes not mapping to a UniGene cluster
obtained for the other microarray platform were not con-
sidered for cross-platform analysis.

In the case of the breast cancer data sets [24,25], all probes
corresponding to the estrogen receptor gene (UniGene
cluster Hs.1657) have been removed for further analysis
since, for these data sets, the estrogen receptor status of the
samples should be predicted independently of the expres-
sion of the estrogen receptor gene.

For the comparison of the leukemia microarray data sets
[26,27], we selected only those samples belonging to one
of the following karyotypes being represented in both
data sets: t(8;21), t(15;17), inv(16) and normal karyo-
type, respectively.

To derive numerically comparable measures of gene
expression for different microarray platforms we used
either median rank scores or quantile discretization.
Before either of these methods was applied to the preproc-
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essed data, all expression values of oligonucleotide arrays
were divided by the median expression value per array to
scale absolute intensity values to relative ratio values.

Median Rank Scores

(MRS) [19] The basic idea of this method is to transform
gene expression values of different microarray platforms
to a common numerical range by replacing numerical val-
ues of one study by numerical values from the other study,
with respect to the relative ranks of expression values
within each study. Therefore, one of the microarray data
sets to be compared is chosen as a reference set. For each
gene, the median expression value over all microarrays of
the reference study is calculated, and the resulting vector
of median gene expression values is sorted in ascending
order. Next, for every microarray of the non-reference set,
the relative rank of each gene expression value is deter-
mined. An expression value with rank n is then replaced
by element n of the sorted median expression vector.
Thus, the gene expression values of all microarrays of the
non-reference sets are replaced by surrogate values with
comparable numerical range relative to the reference data
set. Therefore, the study comprising most microarrays
should be designated as the reference set. Under certain
circumstances it might make sense to chose the reference
set according to another criterion than sample size, e. g.
when the largest data set shows an inferior expression data
quality in comparison to the smaller sets. Note that the
only information being preserved for the non-reference
set are the relative ranks of gene expression values. To
keep our analyses comparable with regard to the selection
of the reference set, we always selected the study using a
¢DNA microarray as reference data set because for two of
the three investigated pairs of studies the study using a
c¢DNA microarray contained more samples (microarrays)
than the corresponding study that used an oligonucle-
otide microarray.

Quantile discretization

(QD) This method is based on equal frequency binning
[50]. Here, the expression values of all arrays are discre-
tized into a predetermined number of bins b (b = 8) for
all our analyses. For each experiment, b subsets with equal
number of values are determined using the quantiles of
the array expression values as cut points, where a cut point
is here defined as the expression value separating an
ordered set of expression values into two subsets. The two
central bins with the median value as cut point are merged
into one bin yielding one central interval. Every expres-
sion value is replaced by an integer value corresponding to
the bin it falls into, where zero is assigned to central bin
and all other bins are numbered consecutively beginning
with the bins next to the central one, using positive inte-
gers for bins containing values above the median and neg-
ative integer values for the others. Both methods were
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implemented using the R software for statistical comput-
ing [45]. Code is available upon request.

Classification analysis

For each pair of studies, classification analyses were per-
formed on the UniGene matched gene expression values.
We investigated how well a classifier trained on one data
set predicts class labels of the other data set after applica-
tion of MRS and QD, respectively, compared to no appli-
cation of MRS or QD. For each pairwise combination of
these three approaches, a statistical test with the null
hypothesis of equal performance in classification of the
given test set was realized according to Salzberg [51]: For
comparing the performance of two classification
approaches A and B on a given test set, the number of test
samples n for which one of the two approaches gave a cor-
rect classification and the the other approach gave a wrong
classification is determined. If both approaches perform
equally well, then among these n samples the proportion
p of samples for which approach A gave a correct classifi-
cation should be equal to the proportion q of samples for
which approach B gave a correct classification. Therefore,
the null hypothesis of equal classification performance of
A and B can be tested by a binomial test with null hypoth-
esisp=q=0.5.

In addition, we examined the class prediction accuracies
by 10-times repeated (i.e. 10 resampling replicates) 10-
fold cross-validation. Arrays of both studies were chosen
randomly for training and testing after data integration by
the median rank scores method and by quantile discreti-
zation, respectively. Finally, we performed a cross-vali-
dated classification analysis on each data set alone using
all available pre-processed gene expression values.

We used support vector machines (SVM) for supervised
classification analysis, applying the libsvm implementa-
tion by Chang and Lin with a polynomial kernel function
[52]. Hyperparameters C and degree were tuned by cross-
validating parameter combinations in a grid search over a
two-dimensional parameter space with ranges from 2->to
210and 1 to 3, respectively.

For classification with nearest shrunken centroids (PAM),
we used the corresponding R package pamr, available on
the Bioconductor website [46]. The hyperparameter delta
(threshold for centroid shrinkage) was tuned over the
default parameter range given in the pamr package.

Parameter tuning for both classification methods was
done by a three-fold cross-validation and was repeated for
cross-validation in each single iteration (nested cross-val-
idation). No variable pre-selection was performed on the
preprocessed data prior to classifier construction. The
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scheme of our workflow for calculating class prediction
accuracies is shown in Additional File 5.

The whole process of cross-platform classification analysis
in comparison to a meta-analysis approach is summarized
in Figure 6.

Selection of genes with discriminative expression patterns
Independently of the classification analysis described
above, we applied a SVM based Recursive Feature Elimina-
tion (RFE) method [53] for selection of genes with dis-
criminative expression patterns in case of the leukemia
studies by Bullinger et al. (2004) and Valk et al. (2004).
We used an implementation of the method in R [54]. As
the magnitude of the internal SVM classifier feature
weights represent the influence of a feature on a classifica-
tion decision by that classifier, the approach suggested by
Guyon et al. [53] uses the internal feature weights of an
SVM classifier to generate a feature ranking. This is real-
ised by repeatedly fitting an SVM model to given data and
iteratively eliminating features from this model. We gen-
erated six lists of genes, two lists for an analysis of both
leukemia studies together, integrated by MRS or QD, and
two lists for each of the two leukemia studies analysed
separately, using only samples of either the MRS or QD
data which belong to one study. Note that in the inte-
grated analyses as well as in the analyses based on single
study data only expression data for only those genes were
used that were present on both microarray platforms used
in the two studies. For generation of gene lists with RFE,
we first performed a 10-fold cross-validation once on
every given data set for optimizing the number of selected
genes, where we only considered gene lists containing a
number of genes equal to a power of two but less than the
total number of genes. For the two integrated analyses of
data from both leukemia studies, a number of 512 ele-
ments corresponded to the minimal cross-validated error
rate. We next applied RFE to every dataset (without cross-
validation) resulting in one ranking of all genes per data
set. We then selected the 512 most highly ranked genes for
every data set and finally compared the six different lists
of 512 genes.

Moreover, we visualized results from RFE analysis by per-
forming hierarchical clustering of the leukemia data based
on the generated gene lists. For hierarchical clustering, we
used the method "hclust" of the R package mva, applying
the following parameter settings: Manhattan distance
function was performed on data transformed to zero
mean and unit variance, and clustering was done using a
complete linkage algorithm [55].

List of abbreviations
AML: acute myeloid leukemia
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Flow diagram of the presented cross-platform classification approach. Flow diagram of the presented cross-platform
classification approach (see Methods for details) compared to a meta-analysis approach.
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MIAME: minimum information about a microarray exper-
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MRS: median rank scores
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RFE: recursive feature elimination

SVM: support vector machine
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Additional material

Additional File 1

Barplot of results from a classification analysis where all data of one study
is used to built a classifier (training), which is then used to classify all
samples of the other study (test), using PAM classifiers. The names below
the bars indicate which study was used for classifier training (left name)
and testing (right name). The bars represent the achieved classification
accuracies, i.e. the fraction of samples correctly classified. The colour of a
bar indicates the method used for data integration. P-values are obtained
by a statistical test with the null hypothesis that the two marked classifi-
cation approaches perform equally well on the given test set (see methods
for details). The target variable for classification analysis of the prostate
cancer data was 'tissue type' (normal vs. tumor tissue), for the breast can-
cer data the estrogen receptor (ER) status (ER positive vs. ER negative),
and for the leukemia data the karyotype of the samples (one of the chro-
mosomal aberrations t(8;21), t(15;17), inv(16) or normal karyotype,
respectively). Abbreviations: MRS, median rank scores; QD, quantile dis-
cretization, PAM, prediction analysis of microarrays.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-6-265-S1.png]
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Additional File 2

Classification results observed by cross validation using PAM classifiers.
Figures represent achieved classification accuracies, i.e. the fraction of
samples correctly classified. The upper table shows results for cross valida-
tion analysis of both data sets of a pair, where samples for training and
testing are selected randomly from both studies. For this, data sets were
integrated by either MRS or QD. The bottom table contains the results of
a cross-validated classification analysis performed separately for each
study, using all available gene expression data after pre-processing (with-
out application of MRS or QD). Abbreviations: MRS, median rank scores;
QD, quantile discretization, PAM, prediction analysis of microarrays.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-265-S2.pdf]

Additional File 3

The overlap between lists of genes found by RFE analysis based on single
sets (Bullinger et al. or Valk et al.) and based on both data sets integrated
by MRS or QD. Abbreviations: MRS, median rank scores; QD, quantile
discretization, RFE, recursive feature elimination.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-6-265-S3.pdf]

Additional File 4

All six lists of genes found by RFE analysis (see Methods for details). In
every list, the corresponding UniGene identifiers of the genes are ordered
according to their rank as determined in the RFE analysis. Abbreviations:
RFE, recursive feature elimination.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-265-S4.csv|

Additional File 5

Workflow for calculation of the presented class prediction accuracies. (a)
Classifier performance evaluation on an independent data set as applied
for calculation of the results presented in Figure 3 and Additional File 1.
(b) Classifier performance evaluation by repeated cross validation as
applied for calculation of the results presented in Table 2 and Additional
File 2.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-265-85.pdf]
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