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Abstract
Background: It is common for the results of a microarray study to be analyzed in the context of
biologically-motivated groups of genes such as pathways or Gene Ontology categories. The most
common method for such analysis uses the hypergeometric distribution (or a related technique)
to look for "over-representation" of groups among genes selected as being differentially expressed
or otherwise of interest based on a gene-by-gene analysis. However, this method suffers from
some limitations, and biologist-friendly tools that implement alternatives have not been reported.

Results: We introduce ErmineJ, a multiplatform user-friendly stand-alone software tool for the
analysis of functionally-relevant sets of genes in the context of microarray gene expression data.
ErmineJ implements multiple algorithms for gene set analysis, including over-representation and
resampling-based methods that focus on gene scores or correlation of gene expression profiles. In
addition to a graphical user interface, ErmineJ has a command line interface and an application
programming interface that can be used to automate analyses. The graphical user interface includes
tools for creating and modifying gene sets, visualizing the Gene Ontology as a table or tree, and
visualizing gene expression data. ErmineJ comes with a complete user manual, and is open-source
software licensed under the Gnu Public License.

Conclusion: The availability of multiple analysis algorithms, together with a rich feature set and
simple graphical interface, should make ErmineJ a useful addition to the biologist's informatics
toolbox. ErmineJ is available from http://microarray.cu.genome.org.

Background
A difficulty experienced by many (if not all) users of gene
expression microarrays is making sense of the complex
results. After analyzing each gene in a data set, an experi-
menter is often left to the task of summarizing the results
with little assistance. It is common for experimenters to
ask questions at the level of molecular pathways or other
functionally relevant groupings of genes. While "ad hoc"
manual annotation of data sets is a common approach,

there are numerous advantages to using a computational
and statistical approach to analyze groups of genes.

The most common means of performing this analysis is to
ask whether certain Gene Ontology (GO) [1] terms are
"over-represented" in a set of genes selected by fold-
change or statistically-motivated approaches such as a t-
test. This is easily implemented by using the properties of
the hypergeometric distribution (often referred to as
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Fisher's exact test for two categories) or its binomial
approximation. In our work, these methods are more
generically referred to as "over-representation analysis" or
ORA. In addition, as the GO is just one way of organizing
genes, we refer to the general goal of these methods as
"gene set analysis", where a gene set is any grouping of
genes not derived from the data itself, typically based on
biologically-motivated criteria.

The need to perform ORA has led to the emergence of a
variety of tools. A list of many such tools is available from
the Gene Ontology Consortium [2], and a large number
of them were recently reviewed [3]. However, to our
knowledge these tools all implement ORA methods; other
methods or algorithms are not available, with the excep-
tion of the Perl script Catmap [4]. Thus these tools prima-
rily differentiate themselves through user interface
features, ease of use, supported data types, and speed [3].
Most tools surveyed by [3] were reported to have one or
more significant limitations, including slow performance,
an inability to analyze gene annotations other than those
directly annotated (that is, other levels of the GO hierar-
chy are not considered), requiring web access to use, are
difficult to install (limiting their usefulness to biologists),
or lack the ability to visualize the GO hierarchy [3].

In this paper we describe ermineJ, a stand-alone tool that
implements methods described by [5] and [4] in addition
to ORA, has a rich feature set, and does not have the lim-
itations cited above. One of the offered analysis methods
in particular is complementary to ORA analysis, which we
now call Gene Set Resampling or GSR (the "experiment"
score in Pavlidis et al. (2002)). In GSR, the gene-by-gene
scores (e.g., t-test p-values) are not thresholded. Instead,
for each gene set an aggregate score is computed, such as
the geometric mean of the p-values for genes in the cate-
gory, and the significance of that score determined by ran-
dom sampling of the data. We have recently presented
some evidence that GSR can provide better results than
ORA in some situations [6].

ErmineJ also has methods for analysis of genes based on
rankings (the receiver operator characteristic, or ROC) [4].
ROC can be thought of as a version of ORA where all pos-
sible thresholds are considered simultaneously. Like GSR,
the ROC method utilizes non-thresholded gene scores,
but considers only their ranking, which might be consid-
ered more robust than using the raw gene scores. Finally,
ErmineJ offers an analysis based on the correlation of gene
expression profiles, gene group correlation analysis
(GCA) [5]. GCA can be used as an alternative to the use of
ORA for the determination of whether genes in particular
functional categories are "clustering together".

The first version of ermineJ was made available in 2003.
Recently we have completely revamped the user interface
and updated the feature set, releasing ermineJ 2.0 in Octo-
ber 2004 and 2.1 in June 2005.

Implementation
ErmineJ is implemented entirely in the Java programming
language [7]. It uses the Java Swing libraries to create a
graphical user interface that can run on many different
platforms. Architecturally, an effort has been made to sep-
arate analytical and algorithmic concerns from user pres-
entation concerns. Besides being a design best practice,
the architecture was also driven by the need to support
command-line interfaces as well as application program-
ming interfaces to the methods. The structure of ermineJ
also lends itself to fairly easy extensibility, so new algo-
rithms can be added to the software as requirements
change. The analysis algorithms in ermineJ were previ-
ously described [4,5].

In addition to using the Java SDK, ermineJ depends on a
number of free third-party libraries, most notably the Colt
library [8]. Colt is a high-performance numerical comput-
ing library that includes implementations of many linear
algebra and statistical methods, as well as useful data
structures which we rely on heavily in our software. Other
libraries ermineJ uses include various Jakarta Commons
libraries [9], and the Xerces XML parsing engine [10],
which we use to parse the Gene Ontology XML descrip-
tion. Many of the low-level numerical and utility routines
(e.g., for file parsing and string manipulation) are tested
in an extensive unit test suite.

Results and discussion
Inputs
All interfaces to ermineJ use the same basic inputs. The
first is a description of the Gene Ontology in XML format,
obtained from the GO consortium web site [11]. The sec-
ond is a description of the microarray platform (the "array
annotation file", which contains tab-delimited text),
which associates probe identifiers with Gene Ontology
terms and additionally associates each probe with a gene
(used in the statistical analysis to account for repeated
genes, as described below) and descriptions that are useful
for viewing in the context of the results. The third required
input is the user's own data. For ORA, GSR and ROC
applications, this takes the form of a list of gene scores,
one for every probe set on the array design. Alternatively
(for expression profile correlation analysis), the input can
be the expression profile matrix, as might be used as an
input to a clustering tool. The gene scores can be p-values
or another score such as fold-change. ErmineJ is purpose-
fully largely agnostic about the meaning of the gene
scores, and focused on the distributional properties of the
scores.
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We maintain on the order of 30 different mouse, human
and rat array annotation files for different platforms, as
well as generic files for RefSeq [12] genes that can be used
to construct annotation files for other platforms (availa-
ble from our web site [13]). The native annotation file for-
mat is very simple and new files can easily be constructed
with a modicum of bioinformatics skill. ErmineJ can also
read Affymetrix "CSV" (comma-separated-value) annota-
tion files available from the manufacturer's web site. We
gladly entertain requests to add support for other arrays.
When an annotation file is read in, the software automat-
ically associates each probe with all parent terms of each
directly annotated terms. For example, all genes anno-
tated with the term "regulation of cell size" are also asso-
ciated with the higher-level terms "cellular
morphogenesis" and "morphogenesis". This feature is
only supported by some of the tools reviewed by [3].

There are a number of parameters to set and decisions the
user must make in order to run the software. The choice of
analysis method is the most obvious, and each method
has a few other settings that the user can choose to change.
For example, for ORA analysis a threshold score must be
defined. This is in contrast to most ORA software packages
which take as input a list of "genes of interest"; instead,
ermineJ takes as input all the gene scores for the experi-
ment. This lets ermineJ avoid the problem of selecting the
correct "null" gene set [3]: it is defined strictly by the genes
analyzed in the experiment but not meeting the user-
defined score threshold.

For GSR, the method used to compute the score for a gene
set is a key parameter. The two options currently sup-
ported are the mean and the median. During the analysis,
GSR uses the selected method to compute a summary of
the gene scores for each resampled or real gene set, and
this aggregate score is used to represent the gene set.
Choosing the median will tend to yield slightly more con-
servative results, as individual genes with very high scores
are not given as much weight as in the mean computation.

Some settings are used for multiple methods. For exam-
ple, when a gene is represented more than once in the data
set, a decision has to be made as to how to treat these "rep-
licates" (which might not be replicates per se but represent
different transcripts). The options supported are to use the
"best" score among the replicates to represent them as a
group; to use the mean; or to treat them as separate enti-
ties. Use of the "best" option is somewhat anti-conserva-
tive, but is reasonable when most "replicates" are in fact
assaying different biological entities. In contrast, treating
replicates completely separately is not generally advised as
it can lead to spurious positive findings in cases of true
replicates, as the gene set gets "adulterated" with multiple
copies of the same high-scoring gene. For this reason the

last option is not available from the GUI, though it can be
accessed from the other interfaces. Another important set-
ting is the range of gene set sizes to analyze. Gene sets that
are very small are unlikely to be very informative, because
the goal of the analysis is to study genes in groups, while
large gene sets may be too non-specific to provide useful
information. In addition, analyzing too many gene sets
reduces the power of the analysis due to multiple testing
costs. In practice we often use a range of 5–100 or 5–200.

In addition to the pre-defined gene sets as defined by the
Gene Ontology, users are free to input their own gene sets.
These are defined in simple text files that are placed in a
directory that ermineJ checks at startup. These text files
can be created "off-line" or within the ermineJ GUI. In
addition, users can modify gene sets from within ermineJ.
This functionality can be used to correct errors or omis-
sions in the Gene Ontology annotations, though care
must be exercised to avoid introducing biases into the
results.

Types of analysis
Gene-score based methods
The ORA, GSR and ROC methods are closely related in
that they are based on the gene-by-gene scores, with the
goal of finding gene sets that are some sense "enriched" in
high-scoring genes (which typically might be "differen-
tially expressed genes"). ORA is sometimes used to ana-
lyze genes which are selected by clustering, rather than a
continuous score. In this situation, GSR and ROC are not
appropriate. However, the correlation method is specifi-
cally designed to address this situation. GSR and ROC
have the benefit of not requiring a threshold to divide
genes into "selected" and "non-selected" genes. The
choice of the threshold for ORA can have a substantial
effect on the results obtained, because the "selected genes"
change [4].

Correlation analysis
Gene group correlation analysis (GCA) is based on the
similarity of the expression profiles of genes in a gene set:
loosely speaking, how well they "cluster together". Thus
we propose that GCA can be used as an alternative to
using ORA to analyze clusters. There are some differences
to be noted between the typical application of ORA to
clusters and the ermineJ correlation analysis. GCA is
group-centric, not cluster-centric. Thus we ask whether the
correlation among the members is higher than expected
by chance, not whether a given set of correlated genes is
enriched for the genes in the group; GCA does not involve
clustering. This is not a trivial distinction, because while
the highest scores will be obtained for gene groups that
have uniform and high correlations among all the mem-
bers, groups that have two or more "sub-clusters" can also
obtain high scores. In the current implementation of
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GCA, the absolute value of the correlation is always used,
which allows. In future versions we may expose this as a
user-settable option, as well as implementing other possi-
ble correlation metrics other than the current Pearson cor-
relation.

In all methods, for each gene set analyzed, ermineJ com-
putes a score and, based on that score and the gene sets
size, a p-value representing the "significance" of that gene
set with respect to the null hypothesis. The definition of
the raw score and the null hypothesis depends on the
method being used. Note that the raw scores are of limited
use because it cannot be evaluated in the absence of infor-
mation about the gene set size. However, they can provide
the user with a helpful indication the strength of the
result, not just its statistical significance.

For ORA, the null hypothesis is that the genes in the gene
set are distributed randomly between the "selected" genes
and the "non-selected" genes. The raw score reported by
ErmineJ is the number of genes in the set which pass the
threshold for gene selection. For GSR, the null hypothesis
is that the mean (or median) gene score (which forms the
gene set score; for p-values negative-log-transformed val-
ues are used) is drawn from the global (data-wide) distri-
bution of possible gene set mean (or median) gene scores,
as determined by resampling [5]. For ROC analysis, the
null hypothesis is that the genes in the gene set are distrib-
uted randomly in the ranking; p-values are computed

using the fact that the ROC is equivalent to the Wilcoxon
rank-sum test [4]. The raw gene set score is simply the area
under the receiver operator characteristic curve [14],
which ranges from values of 0.5 (random ranking) to 1.0
(all genes in the gene set at the top of the ranking). Finally,
for correlation analysis, the null hypothesis is that the
mean pairwise correlation of profiles in the gene set is
drawn from the global distribution of gene set correlation
scores, as determined by resampling [5]. The raw score is
the mean absolute value of the pair-wise correlation of the
genes in the set (comparisons of a probe to itself, or to
other probes for the same gene, are always ignored).

ErmineJ includes implementations of three multiple test
correction methods (though currently only one of these,
Benjamini-Hochberg false discovery rate (FDR) [15], is
made available through the GUI). The additional options,
available from the command line, are Bonferroni correc-
tion and a resampling-based family-wise error rate correc-
tion [16]. The FDR is used in the GUI as a rapid and
reasonable guide to which gene sets are likely to be of
highest interest.

The ermineJ GUI
Most users of ermineJ will access it through its graphical
interface. The GUI of ermineJ was designed to be simple
to use and provides "wizards" to guide users through com-
mon tasks such as running an analysis. Many settings
made by the user during operation of the software are

A: The main panel of ErmineJ after several analyses have been performedFigure 1
A: The main panel of ErmineJ after several analyses have been performed. Gene sets selected at low FDR levels are indicated 
in color. B: The tree-view panel of ErmineJ, illustrating the ability to browse gene sets in the GO hierarchy. The icons at each 
node have specific meanings. For example, the yellow "bull's-eye" icon indicates a gene sets selected at an FDR of 0.05 or less. 
Purple diamonds indicate nodes that have "significant" sub-nodes.
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remembered between sessions, facilitating repeated anal-
ysis of the same data files and maintaining the user's pre-
ferred window sizes, for example. A complete manual is
provided and is accessible via an on-line help function, as
web pages on our web site, or in portable document for-
mat (PDF).

Some aspects of the ermineJ graphical user interface is
illustrated in Figures 1, 2, 3. The main panel of the soft-
ware can be viewed either as a table of gene sets (Figure
1A) or in a hierarchical (tree) view (Figure 1B). These
views are linked so changes in one are reflected in the
other. To facilitate navigation of these displayed, gene sets
can be searched by the name of the gene set or by the

names of genes they contain. User-defined gene sets are
displayed in contrasting colors. Not shown in the figures
is the initial startup screen in which the user chooses the
gene annotation file to use for the session.

Double-clicking on a gene set in the main panel opens a
new window that displays the genes in the gene set, along
with the expression profiles in a "heat-map" view (if the
user has provided the profile data; Figure 2). The appear-
ance of the heat map is configurable through menus and
toolbar controls. The data displayed in the table, as well as
the image of the matrix, can be saved to disk using addi-
tional menu options. The hyperlinks to external web sites
can be configured by the user to point to a web site of their

A gene set details viewFigure 2
A gene set details view. The controls at the top allow adjustment of the size and contrast of the heat map. The gene scores (in 
this case p-values) are shown in the second text column. The grey and blue graph, shown only for experiments using p-values, 
shows the expected (grey) and actual (blue) distribution of p-values in the gene set. This display is provided as an additional aid 
to evaluation of the results. The last two columns provide information about each gene. The targets of the hyperlinks are con-
figurable by the user.
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choosing, again through a menu option. All of these capa-
bilities are available even if the user has not performed
any analysis, so ErmineJ can be used as a "gene set
browser" as well as for analysis.

An important feature of the GUI is the capability to rap-
idly define and edit gene sets, which is accomplished in a
"wizard" that takes the user through the process set-by-
step. Alternatively, the user can simply populate the gene
set directory with files they have obtained from other
sources, for example created in bulk with a Python script
or obtained from another user. As far as we know, no tool
surveyed by [3] affords the user the ability to define or
modify the categories. ErmineJ also allows the user to
choose which of the GO aspects (Biological Process, etc.)
to use in the analysis.

The GUI version of ermineJ can be installed on the user's
computer or run via Java WebStart. The latter option sim-
ply involves clicking on a link in the user's web browser,
and ensures that the users have the most up-to-date ver-
sion of the software. The drawback of using WebStart is
that the user must be connected to the internet to use the
software. With a local installation, no internet connection
is needed.

Running an analysis
Running an analysis using the ErmineJ GUI involves using
a "wizard" to set the parameters (Figure 3). The user is
asked to choose an analysis method, select the data file to
analyze, choose any user-defined gene sets to include in
the analysis, and set the various parameters required for
the particular analysis. All settings are documented via
"tool tips" and in the manual.

Once an analysis is initiated, the user is informed of its
progress via a status bar. An analysis can be cancelled any
time. On completion, the results are added to the tabular
and tree views (Figure 1). Multiple results can be dis-
played simultaneously in the tabular view, allowing easy
comparison of different runs. The tree view can display
only a single analysis result set at a time, but offers a pull-
down menu to selected among the results sets to display.
In the tree and tabular views, high-scoring (i.e., signifi-
cant) gene sets are highlighted in color. The tree view uses
a simple system of icons for each node to indicate whether
a significant node is contained within a given higher level
node. Finally, the results of an analysis can be saved to a
tab-delimited file for use in other software or to be
reloaded by ermineJ at a later time.

Other interfaces
In addition to the GUI, ermineJ offers a command line
interface (CLI) and a simple application programming
interface (API). The CLI exposes some features of ermineJ
that are not available in the GUI, such as different meth-
ods for multiple test correction. The CLI is suitable for
scripting runs of ermineJ. For example, a simple Perl script
can be used to automate runs of ermineJ with different set-
tings or on different data sets. In contrast, the API was
introduced to allow programmers to include the analyses
available in ermineJ in their own software. The API cur-
rently provides more limited access to the functionality of
the software than the command line version, but will be
expanded in future versions.

Performance
We tested the performance of ermineJ using the HG-
U133_Plus_2 Affymetrix array design. This is a particu-

Examples of screens from ErmineJ WizardsFigure 3
Examples of screens from ErmineJ Wizards. A: Analysis wizard. This illustrates options to set the range of gene set sizes to 
analyze, and the method of treating "replicates" of genes. See text for details of the latter. B: Gene set modification wizard. In 
this screen the user is selecting genes to delete from a gene set. The list of all probe available on the platform is available in the 
left panel. A "find" function simplifies the location of genes and probes.
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larly large array design with over 54,000 probe sets, and
represents a something of a worst-case scenario with
respect to performance. With our current annotation set,
4844 different GO categories (gene sets) are available for
analysis in this array design. We limited our analysis to
gene sets with between 5 and 100 genes, leaving about
2700 gene sets. The times reported below are for analyzing
the complete set of over 54,000 probe sets with respect to
these 2700 gene sets on a on a 1.7 GHz Pentium laptop.

With this array, ermineJ has an initial startup phase that
lasts 15–20 seconds, most of which is consumed by time
it takes for the gene annotation file to be read in and proc-
essed for analysis. The time for analysis once startup is
completed depends on the method used. For ORA, a com-
plete analysis is completed in 8 seconds (average of 3
runs; times are wall clock seconds timed from within the
software). While it is difficult to directly compare our
benchmarks with previously published benchmarks
because the number of gene sets analyzed and the size of
the "null" gene set was not reported, and the times
reported might in some cases include initial startup times
[3], the fastest reported methods on the largest data sets
tested completed ORA analyses in under 10 seconds. This
indicates that ErmineJ is at least competitive with and pos-
sibly faster than the fastest previously reported tools.

GSR analysis took about 370 seconds if a full resampling
is performed (100,000 resampling trials per gene set size
in our tests). However, ermineJ implements an approxi-
mation, where limited resampling is used to estimate the
parameters of a normal distribution. This normal is used
to compute the p-values for each gene set. It also takes
advantage that, especially for larger class sizes, the shape
of the resampled distribution is very similar for similar
class sizes, so not all of them need to be computed. In this
mode the analysis takes approximately 80 seconds. ROC
analysis, which does not involve resampling, took about
100 seconds. Correlation analysis is the most computa-
tionally intensive resampling method; even with the
approximations enabled it currently takes about 400 sec-
onds to run on the test data set (which contained 12
microarrays). This is because computing correlations is
computationally intensive, compared to the methods
which use pre-computed gene scores such as p-values.

ErmineJ is fairly memory-intensive, because it holds in
memory a complex data structure describing the annota-
tions, as well as the microarray data and information
about the results for thousands of gene sets and tens of
thousands of genes. For the large HG-U133_Plus_2
design, after startup ermineJ occupies approximately 85
Mb of RAM (determined using a Java heap profiler under
Windows). After running the correlation analysis, this
grew to 105 Mb, reflecting the loading of the complete

expression profile set and the results. Therefore we recom-
mend running ermineJ on machines that have at least 256
Mb of RAM.

Future plans
At this writing, the current version of ermineJ is 2.1.6.
New features planned for the software include expanding
the API and allowing more flexible creation of user-
defined gene sets, including allowing support of alterna-
tive nomenclatures such as the Plant Ontology [17]. We
also plan to provide annotation files for more platforms
and organisms.

We have been interested in the possibility of including
other resampling-based methods such as GSEA [18] or the
similar resampling method implemented in Catmap [4]
in ermineJ. The primary reason to consider these methods
is that they examine the distribution of gene scores by
resampling over the samples, which is more correct than
merely resampling over the genes. This is because the null
hypotheses in the gene score analysis are some variation
on a random distribution of genes within the ranking of
genes. This assumption can be badly violated for gene sets
containing highly correlated genes (such as the ribosomal
protein genes); such genes will tend to have correlated
rankings, and in some situations (particularly when the
gene p-value distribution is close to uniform), spurious
false positives can occur [4]. The ORA, GSR and ROC
methods are all susceptible to this problem, though we
stress that this is only an serious issue for gene sets that
show high correlations not related to the experimental
design.

It would be challenging to provide a general-purpose
implementation of GSEA or Catmap that is easily accessi-
ble to biologists with limited computational skills. These
methods require either that users can provide the gene
scores for hundreds (if not thousands) of resampled data
sets [4], a task that is difficult to accomplish for the tar-
geted user base of ermineJ, or computation of gene scores
by the software. Because each experimental design might
have a different mechanism for computing gene scores
(fold-change, t-test, ANVOA, Cox regression, etc), it
would be difficult to provide a fully flexible tool without
including a full-fledged statistical analysis package as well.
A feasible solution we are considering is to cover the most
frequently-encountered situations (e.g., t-test and one-
way ANOVA).

Conclusion
ErmineJ is a fast, full-featured, user-friendly, multi-plat-
form open source application for analysis of gene sets. It
implements multiple algorithms for performing the anal-
ysis, and permits easy modification and creation of new
gene sets. These features afford users considerable flexibil-
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ity in testing different methods and parameters. Perhaps
the greatest current limitation to its usability at this date is
the availability of gene annotation files for non-Affyme-
trix array designs we have not encountered frequently.
Users who wish to develop annotation files for their plat-
form should contact us for assistance.

Availability and requirements
• Project name: ErmineJ

• Project home page: http://microarray.cu-genome.org/
ermineJ/

• Operating system(s): Platform independent

• Programming language: Java

• Other requirements: Java 1.4 or higher; 256 Mb RAM
recommended.

• License: GNU GPL and LPGL for helper library.

• Any restrictions to use by non-academics: None
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