BIVIC Bioinformatics moml.?@mral

Research article

Ancestral sequence alignment under optimal conditions
Alexander K Hudek* and Daniel G Brown

Address: School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada

Email: Alexander K Hudek* - akhudek@cs.uwaterloo.ca; Daniel G Brown - browndg@cs.uwaterloo.ca
* Corresponding author

Published: 17 November 2005 Received: 28 July 2005
BMC Bioinformatics 2005, 6:273  doi:10.1186/1471-2105-6-273 Accepted: 17 November 2005
This article is available from: http://www.biomedcentral.com/1471-2105/6/273

© 2005 Hudek and Brown; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Multiple genome alignment is an important problem in bioinformatics. An important
subproblem used by many multiple alignment approaches is that of aligning two multiple alignments.
Many popular alignment algorithms for DNA use the sum-of-pairs heuristic, where the score of a
multiple alignment is the sum of its induced pairwise alignment scores. However, the biological
meaning of the sum-of-pairs of pairs heuristic is not obvious. Additionally, many algorithms based
on the sum-of-pairs heuristic are complicated and slow, compared to pairwise alignment
algorithms.

An alternative approach to aligning alignments is to first infer ancestral sequences for each
alignment, and then align the two ancestral sequences. In addition to being fast, this method has a
clear biological basis that takes into account the evolution implied by an underlying phylogenetic
tree.

In this study we explore the accuracy of aligning alignments by ancestral sequence alignment. We
examine the use of both maximum likelihood and parsimony to infer ancestral sequences.
Additionally, we investigate the effect on accuracy of allowing ambiguity in our ancestral sequences.

Results: We use synthetic sequence data that we generate by simulating evolution on a
phylogenetic tree. We use two different types of phylogenetic trees: trees with a period of rapid
growth followed by a period of slow growth, and trees with a period of slow growth followed by
a period of rapid growth.

We examine the alignment accuracy of four ancestral sequence reconstruction and alignment
methods: parsimony, maximum likelihood, ambiguous parsimony, and ambiguous maximum
likelihood. Additionally, we compare against the alignment accuracy of two sum-of-pairs algorithms:
ClustalW and the heuristic of Ma, Zhang, and Wang.

Conclusion: We find that allowing ambiguity in ancestral sequences does not lead to better
multiple alignments. Regardless of whether we use parsimony or maximum likelihood, the success
of aligning ancestral sequences containing ambiguity is very sensitive to the choice of gap open cost.
Surprisingly, we find that using maximum likelihood to infer ancestral sequences results in less
accurate alignments than when using parsimony to infer ancestral sequences. Finally, we find that
the sum-of-pairs methods produce better alignments than all of the ancestral alignment methods.
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Background

Multiple genome alignment is an important problem in
bioinformatics. It is used in comparative studies to help
find new genomic features such as genes and regulatory
elements. Current multiple genome alignment programs
[1,2] use progressive alignment [3], with a phylogenetic
tree as a reference.

The primary operation of progressive alignment is the
alignment of two multiple alignments. Most genome
aligners have two main phases: anchoring and aligning
between the anchors. Here, we focus on the algorithms
used to align between anchors. Many popular alignment
algorithms for DNA use the sum-of-pairs heuristic, where
the score of a multiple alignment is the sum of the
induced pairwise alignment scores. However, Just [4] has
shown that finding the optimal alignment of two multiple
alignments under the sum-of-pairs heuristic is NP-hard.
Of course, since the problem is important, numerous heu-
ristic algorithms [5-7] exist for alignment of alignment
under sum of pairs.

The biological meaning of the sum-of-pairs of pairs heu-
ristic is not obvious. Additionally, many heuristic algo-
rithms are complicated and slow, compared to pairwise
alignment algorithms [5-7]. An alternative approach to
the strategy of aligning alignments under the sum-of-pairs
heuristic is to first infer ancestral sequences for each align-
ment and then align the two ancestral sequences. In addi-
tion to being fast, this method has a clear biological basis
that takes into account the evolution implied by the
underlying tree.

Bray and Pachter use this approach to align alignments in
MAVID [1]. MAVID uses maximum likelihood to infer
ancestral sequences for alignments. In our previous work
[8], we infer ancestral sequences for anchoring multiple
alignments, but not for aligning alignments. Instead of
maximum likelihood, we use parsimony to infer ancestral
sequences, but we also allow these sequences to keep
some ambiguity. The idea behind allowing ambiguity is to
retain as much information about the underlying multi-
ple alignment as possible. A natural question is whether
aligning such ambiguous ancestral sequences leads to bet-
ter alignments than aligning unambiguous ancestral
sequences.

In this study, we explore this idea as well as other aspects
of aligning alignments by ancestral sequence inference.
We compare four ancestral alignment methods with two
sum-of-pairs alignment algorithms. We infer ancestral
sequences using parsimony and maximum likelihood,
and study the effect of allowing ambiguity in these
sequences. Since we are interested in the performance of
these methods under optimal conditions, we use data
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generated by a very simple evolution simulation. For
aligning full alignments with the sum-of-pairs heuristic,
we use ClustalW [5] and a newer heuristic by Ma, Wang,
and Zhang [6].

We find that alignment algorithms based on the sum-of-
pairs heuristic are more accurate than all of our methods
based on ancestral sequence alignment. However for
alignment of inferred ancestral sequences, parsimony out-
performs maximum likelihood in this application. Using
maximum likelihood to infer ancestral sequences results
in final alignment accuracies that are more unpredictable.
Also, computing log-odds for ancestral sequences inferred
with maximum likelihood is far more computationally
intensive than computing log-odds scores for ancestral
sequences inferred with parsimony. Finally, we find that
allowing ancestral sequences to have ambiguity does not
result in more accurate final alignments.

Results

To determine whether using ambiguous symbols in ances-
tral sequences inference improves multiple alignment, we
have performed experiments on simulated sequences. We
propose five hypotheses, explain our experimental
method, and finally discuss results and give conclusions.

Our hypotheses

The first hypothesis is that by using ancestral sequences
with ambiguity, we obtain more accurate multiple align-
ments. Ambiguous symbols may allow us to retain more
information about the underlying multiple alignments,
which may make it easier to identify matching positions.
Combined with an appropriate log-odds scoring system,
this extra information may allow for more accurate align-
ment of ancestral sequences, and by extension, for more
accurate multiple alignments.

Our second hypothesis is that alignment of ancestral
sequences is more sensitive to gap open costs than align-
ment of alignments using the sum-of-pairs heuristic.
When aligning ancestral sequences, existing gaps in the
underlying alignment are not considered when inserting a
new gap, so the first position of a new gap always costs the
gap open cost. Incorrect gap penalties may cause too
many gaps to be inserted between ancestral sequences.
During progressive alignment, errors at each step propa-
gate leading to an incorrect final alignment. In contrast,
when aligning alignments using the sum-of-pairs heuris-
tic, the cost of adding a new gap depends on all underly-
ing gaps as well as the gap open cost. An incorrect gap
open cost affects the cost of gaps less and new gaps may
still be correctly inserted based on the structure of the
existing gaps.
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Example random trees. Example of a random tree with early growth (A) and a random tree with late growth (B).

Our third hypothesis is that the function used to estimate
the gap open cost during progressive alignment is impor-
tant to alignment accuracy when aligning ancestral
sequences. When aligning ancestral sequences, the fre-
quencies of gaps in the ancestral sequences depends on
the amount of mutation between the sequences. There-
fore, it is important to modify the gap open cost based on
the distance between the ancestral sequences being
aligned.

Our fourth hypothesis is that we expect that aligning
alignments using the sum-of-pairs heuristics gives more
accurate multiple alignments than aligning inferred
ancestral sequences. There are two reasons for this. First,
as stated in hypothesis two, using an incorrect gap open
cost affects the sum-of-pairs heuristic less than it affects
the alignment of ancestral sequences. Since choosing the
correct gap open cost can be difficult in practice, we expect
that aligning alignments using the sum-of-pairs heuristic
results in a more accurate final alignment because it is less
sensitive to this parameter. Additionally, the ancestral
sequences we infer are not completely accurate, which
compounds the errors made in the process of progressive
alignment. Thus, the much slower run times of algorithms
based on the sum-of-pairs heuristic are acceptable.

Finally, we expect that the maximum likelihood methods
result in better multiple alignments than the parsimony
methods. Unlike parsimony, maximum likelihood uses
the edge distances on the phylogenetic tree. Thus we
expect maximum likelihood to better infer ancestral
sequences.

Experimental data

We use synthetic data in order to have correct alignments
to test our methods against. Additionally, by generating
our own data we ensure that the data is generated from the
same model of evolution that is required for the align-
ment algorithm. Therefore, we consider the performance
of the algorithms on this data to be the the best possible
for algorithms of their type.

Phylogenetic trees

Despite our use of synthetic data, we want our data to
mimic the basic properties of real biological sequence.
Thus we generate random trees that resemble real trees,
and assign mutation rates based on analysis of real
sequences.

Specifically, we are interested in algorithm performance

on two different types of random trees: trees with a period
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of heavy growth followed by a period of no growth, and
trees with a period of light growth followed by a period of
heavy growth. The first type of tree, which we refer to as
early growth, is similar to the tree of placental mammals
from Eizirik, Murphy, and O'Brien [9]. The second type of
tree, which we refer to as late growth, is similar to the type
of tree formed in a coalescent process of neutral mutation
and speciation. We generate two sets of twenty phyloge-
netic trees, one set for each tree type. Each individual tree
has eight taxa. We have chosen to limit our trees to trees
with four taxa in each subtree of the root, both for ease of
programming and to keep the time required to compute
the log-odds scores for maximum likelihood reasonable.

We generate these in two steps. First, we generate one large
tree of each type using a random birth-death process
implemented in Phyl-O-Gen v1.2 [10]. To generate the
early growth tree we start with a pure birth process with a
birth rate of 0.35 events per million years. After we pro-
duce 100 lineages we switch to a birth-death process with
both the birth and death rate set to 0.04 per million years.
This episode lasts seven times as long as the first episode.
We sample 66 lineages from the result, and this becomes
our final tree, in Figure 3. We chose these values such that
the tree resembles the tree of placental mammals both in
topology and time scale. To generate the late growth tree
we start with a pure birth process with a birth rate of 0.01
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Phylogenetic tree with early growth. Phylogenetic tree with a period of rapid growth followed by a period of slow
growth. This tree resembles the tree of placental mammals and the distance from the root to taxa is approximately 100 million
years.
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speciation events per million years. After eight speciation
events, we switch to a birth rate of 0.20 speciation events
per million years. We continue the process until we obtain
100 lineages. Again, we obtain a final tree by sampling 66
lineages from the result of the random process. This tree is
shown in Figure 4. Here we choose values such that the
tree has the same time scale and taxa as the early growth
tree, but with a different topology.

From each final tree, using the method of Kearney,
Munro, and Phillips [11], we randomly sample subtrees
of eight taxa subject to the constraint that the amount of
simulated time from the root to each taxon is between 90
to 110 million years. We then filter the resulting trees and
only keep trees where the the left and right children have
four descendants each. Examples of two of these trees are
in Figure 1.

Random sequences

For each of the eight taxon trees in our two data sets, we
generate twenty random sequence sets by simulating evo-
lution over the tree. We use a program written by us, but
similar to ROSE [12], to generate our sequences. For a
given input tree, our program starts with an initial ran-
dom sequence and mutates that sequence into new
sequences down the tree. The program simulates Jukes/
Cantor mutation events [13] as well as geometrically dis-
tributed insertion and deletion events with a mean length
of 5.6. At the end, we have a set of sequences suitable as
input to a multiple alighment program, and we have the
original multiple alignment of the sequences.

Since we wanted our mutations, insertions, and deletions
to be as close to real sequences as possible, we calibrated
our simulator with parameters estimated through analysis
of homologous human and baboon sequences. This gives
us two sets of 400 random input sequences, one for each
set of trees.

We chose the CFTR region in human and baboon for this
parameter estimation, so that we could ensure that our
alignment is mostly correct. We obtained human and
baboon sequences with repeats masked out from the
NISC Comparative Vertebrate Sequencing project [14].
We aligned a 10 kB region from each sequence and
trimmed the ends of the alignments to obtain a final good
alignment. From this final alignment, we measure the
number of mutations as well as the length and number of
gaps. Assuming that humans and baboons diverged
approximately 25 million years ago (MYA), [15], and
using the equation

Pr[mutation] = 3/4 (1 -eT®), (1)

http://www.biomedcentral.com/1471-2105/6/273

where ¢ is the time in millions of years [13], we estimate
the mutation rate orto be 7.1 x 104 mutations per site per
million years. We observe a rate of 4.1 x 10-3 insertions or
deletions per site. Assuming that insertions and deletions
are equally likely and that we have only one possible
insertion or deletion at a particular site, we find that
Pr[insertion] = Pr[deletion] = 4.1 x 10-5 events per site per
million years. Additionally, we create another two sets of
random input sequences using the same sets of trees, but
with double the mutation rate on each tree branch.

Experimental methods

We use the same insertion and deletion rates from our
evolution simulator to compute the log-odds scores for
the maximum likelihood methods. For a mean gap length
of 5.6, we compute the optimal gap extension penalty to
be 0.57 by standard methods [13]. When aligning align-
ments using the standard sum-of-pairs heuristic, any sin-
gle gap cost is wrong for many pairs. Therefore, we should
ideally use a different gap cost for each pair. However, as
this increases the time complexity of Ma, Wang, and
Zhang's algorithm, we instead use a single, unscaled gap
cost for all pairwise alignments.

We test our first hypothesis by running all ancestral align-
ment methods and sum-of-pairs methods on all data sets
using the optimal gap extension costs and a base gap open
cost of 7. We use the Expected gap open cost estimation
function since later tests show it to be better than the Max
estimation function. To test our second hypothesis, we
expand the previous test by exploring gap costs of 5 and 9.
We test our third hypothesis by using two different scaling
methods for each of the ancestral alignment methods.
Our fourth and fifth hypothesis are also answered by the
above three tests.

Measuring success

We take the fraction of correct columns in an alignment to
be the measure the alignment's accuracy. A correct col-
umn is one which contains the exact same nucleotides,
from the same positions in the sequences, as a column in
the correct alignment; a column with the same bases as a
correct column, but from different positions, is incorrect.
For a given data set and algorithm, we use the mean align-
ment accuracy of all 400 sequence data sets as a measure
of the algorithm's accuracy.

We also considered an accuracy measure based on the
pairwise alignments induced by the multiple alignment.
In this, we compute the alignment accuracy of all induced
pairwise alignments as in the previous paragraph and take
the mean of these.

Page 6 of 14

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:273

http://www.biomedcentral.com/1471-2105/6/273

M

e ®w N a0 e oW N

5

B

S

&

W@ oW oW oW oW NN NN N NNNNRNRS B BB
BB R R B8EERE IR REEINREEELEE S & &R

&

Figure 4

@
&

@
4

@
8

@
8

8

M \111 mﬁ?ﬁ
“ \323323353532553

Phylogenetic tree with late growth. Phylogenetic tree with a period of slow growth followed by a period of rapid growth.

The distance from root to taxa is approximately 100 million years.
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Discussion

Before we discuss our results, we compare the two accu-
racy measures: column accuracy and mean pairwise col-
umn (MPC) accuracy. Tables 1 and 4 show that both
measures have the same trends. Additionally, Figure 2
shows that the column accuracies and the MPC accuracies
have a roughly linear relationship; the MPC accuracies are
strictly higher than the column accuracies. Therefore, we
do not give MPC accuracies for the experimental results in
Tables 2 and 3. We now describe our experimental results
with respect to our five hypotheses.

It is not clear that including ambiguity in ancestral
sequences improves alignment. Looking at Tables 1 and 4,
we see that on more than half the data sets, the ambiguous
versions of parsimony and maximum likelihood have
lower mean accuracies than their unambiguous counter-
parts. Additionally, ambiguous methods are less consist-
ent in their scores, as evidenced by the larger standard
deviations in the results for the ambiguous methods.

Table 2 shows mean alignment accuracies for the different
data sets using a gap opening costs of 5, 7, and 9. For each
data set and method, we measure the change in mean
accuracy from a gap open cost of 5 to a gap open cost of
9. It is clear that the mean accuracy of the ambiguous
methods changes far more than the mean accuracy of the
unambiguous methods. Looking at the difference in mean
accuracy of the ambiguous methods versus the unambig-
uous methods, we again see that the ambiguous methods
are often lower than the unambiguous methods. There-
fore, we conclude that the ambiguous methods are more
sensitive to the gap open cost than the unambiguous
methods.

Our experiment confirmed our hypothesis that the gap
cost scaling function is very important to the resulting
alignment accuracies. When changing from scaling based
on the largest value in the ancestral sequence scoring
matrix to the expected cost for related positions, we see a
significant increase in alignment accuracy on all data sets
and all methods. See Table 3 for results.

In Tables 1, 2, and 4, we see that both Ma, Wang, and
Zhang's algorithm and ClustalW perform consistently bet-
ter than the ancestral alignment methods. Also, Ma et al.'s
algorithm performs better than ClustalW in most cases.
However, the gap open cost affects Ma et al.'s algorithm
and ClustalW differently. Depending on the choice of gap
open cost, ClustalW may perform better than Ma et al.'s
algorithm. Looking at all examined gap costs, Ma et al.'s
algorithm achieves the highest alignment accuracy on
each data set.
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Surprisingly, the maximum likelihood methods per-
formed worse than parsimony methods in the context of
ancestral alignment. In Tables 1, 2, and 4, unambiguous
maximum likelihood always performs worse than unam-
biguous parsimony. In some cases, such as on the Late
Growth data set in Table 1, maximum likelihood per-
forms drastically worse obtaining a mean alignment accu-
racy of 64.76% versus 86.71%. Looking at the mean
alignment accuracy alone, it is not clear that ambiguous
maximum likelihood is worse than ambiguous parsi-
mony. However, on the late growth data set ambiguous
parsimony does much worse than ambiguous parsimony.
On other data sets, it performs similarly. Therefore, we
conclude that ambiguous parsimony is more reliable than
ambiguous maximum likelihood, if not more accurate.

Conclusion

We have tested four ancestral alignment methods as well
as two sum-of-pairs alignment methods on simulated
data. The data mimics evolution on two types of evolu-
tionary trees: trees with a period of rapid growth followed
by a period of slow growth, and trees with a period of slow
growth followed by a period of rapid growth. The four
ancestral alignment methods we have tested are unambig-
uous parsimony, ambiguous parsimony, unambiguous
maximum likelihood, and ambiguous maximum likeli-
hood. The sum-of-pairs alignment methods we have
tested are the ClustalW [5] algorithm and the algorithm of
Ma, Wang, and Zhang [6].

We have found that, contrary to our hypotheses, allowing
ambiguity in ancestral sequences does not lead to better
alignments. When we use ambiguous ancestral sequences,
we find that the multiple alignment is more sensitive to
our choice in gap costs than to the form of ancestral
sequence chosen. Reinforcing this conclusion, we find
that the gap open cost scaling function is also extremely
important to obtaining good scores when aligning ances-
tral sequences. Finally, to our surprise, using maximum
likelihood to infer ancestral sequences resulting in less
accurate alignments than using parsimony. The reason for
this is that the maximum likelihood method is far more
sensitive to the underlying data and therefore resulting in
alignments accuracies that have a large amount of varia-
tion. Also, on the data set generated from the tree that has
a small amount of growth followed by a large amount of
growth, the maximum likelihood based methods did par-
ticularly poorly compared to the parsimony based meth-
ods.

Finally, both the sum-of-pairs approaches did better than
all the ancestral alignment methods, as expected. Addi-
tionally, we found that Ma, Wang, and Zhang's algorithm
[6] outperformed ClustalW [5] by a small amount.

Page 8 of 14

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:273

Methods

Our multiple alignment framework uses progressive
alignment up a specified phylogenetic tree. At each inter-
nal node we perform an alignment of two multiple align-
ments. We test six different algorithms for aligning
alignments: ClustalW, the recent algorithm of Ma, Wang,
and Zhang, and four algorithms that align inferred ances-
tral sequences. Our four ancestral alignment algorithms
explore the use of both parsimony and maximum likeli-
hood to infer ancestral sequences, and also allow the use
of both ambiguous and unambiguous ancestral
sequences. We include ClustalW, as it is widely used in
practice, and the algorithm of Ma, Wang, and Zhang,
whose output more accurately approximates the optimal
alignment under sum-of-pairs scoring.

In this section, we describe how we align two alignments
using ancestral sequence inference, as well as our four
ancestral sequence inference techniques and associated
log-odds scoring frameworks.

Alignment by ancestral sequence inference

Given two multiple alignments, we first infer an ancestral
sequence for each alignment. Then, we remove gaps in the
inferred ancestral sequences and align the them with the
classic Needleman-Wunsch dynamic programming algo-
rithm [16,17], under an appropriate log-odds scoring
framework. Finally, we map the alignment of the two
ancestral sequences to an alignment between the two
alignments by inserting a column of gaps into each align-
ment for each gap inserted into the respective ancestral
sequence. Given a length n alignment of k sequences, we
can infer an ancestral sequence in time ©(kn). To align
two length n alignments, one with k sequences and with
€ sequences, requires O((k + €)n + n2) time; this contrasts
with the much larger run time of O (n2 (k + €)) required
by Ma, Wang and Zhang's algorithm [6].

We explore four different methods of inferring and align-
ing ancestral sequences. First, we infer sequences using
parsimony, finding both ambiguous and unambiguous
ancestral sequences. Second, we infer sequences using
maximum likelihood, again finding both ambiguous and
unambiguous ancestral sequences. We call these methods
parsimony, ambiguous parsimony, maximum likelihood,
and ambiguous maximum likelihood. For each method,
we also compute a log-odds scoring framework, which we
use when we align two ancestral sequences.

To infer an ancestral sequence for a multiple alignment,
we assume we have a correct edge weighted phylogenetic
tree relating the sequences in the alignment. We work
with a Jukes/Cantor 1-parameter evolution model [13],
but our approach easily extends to more realistic models
of evolution. We represent ambiguity in ancestral
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sequences using the 15-letter IUPAC alphabet. For exam-
ple, if a position in an ancestral sequence is either an A or
a T, we encode it as the [UPAC symbol W.

Let T represent the IUPAC alphabet and let X = {A, C, G,
T} be the DNA alphabet. We represent a gap with the '-'
character and define a third alphabet X, = ZU{-}. We use
the symbol b to represent alphabet symbols from X or X,
and c¢ to represent symbols from T

Parsimony and ambiguous parsimony

The most parsimonious ancestral sequence is the
sequence that requires the least number of mutations
down the tree to obtain the sequences in the alignment.
There can be multiple most parsimonious ancestral
sequences for a given alignment. We take the union of
these ancestral symbols at each position of the sequence,
and thus obtain an ambiguous ancestral sequence. When
we require an unambiguous ancestral sequence, we ran-
domly choose a position at each point. We use an efficient
algorithm by Fitch [18] to reconstruct both ambiguous
and unambiguous ancestral sequences. We now briefly
describe this algorithm.

Consider a single column of the alignment where the
leaves of the tree are assigned the corresponding base, or
gap from the column. Starting at the leaves of the tree we
work upwards assigning an ambiguous symbol to each
internal node. We do this with a consensus operation. If we
consider each ambiguous symbol to be a set of possible
bases, then the consensus of two symbols is the intersec-
tion of the sets, or the union if the intersection is empty.
At a node z with children x and y, we assign z the consen-
sus of the symbols at x and y. On completion, the symbol
assigned to the root of the tree represents the set of most
parsimonious ancestral bases for the column. Note that
gaps are handled naturally: the consensus of a gap with
any other symbol is the other symbol. Since each align-
ment column has at least one non-gap symbol, the recon-
structed ancestral sequence contains no gaps.

To obtain an unambiguous ancestral base, we choose one
of the bases represented by the root symbol uniformly at
random. A consensus operation takes constant time, and
so the above algorithm runs in O(n) time for a alignment
column of n sequences.

Log-odds scoring framework

When aligning two ancestral sequences, we use the log-
odds scoring framework from Brown and Hudek [8],
explained in more detail in Hudek's thesis [19]. when
aligning two ancestral sequences. We modify this frame-
work slightly for unambiguous parsimony, and describe
the framework and modification here.
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Table I: Alignment accuracies using correct gap costs. Alignment accuracies using a gap open cost of 7 and the optimal gap extension
cost of 0.57. P-values are computed using a paired Student's t-test.

Data Set Measure Parsimony Ambiguous Parsimony ML Ambiguous ML Ma et al. ClustalW

Early Growth Mean 88.43% 83.83% 87.86% 86.26% 91.74% 91.25%
Std. 2.89% 5.94% 2.79% 4.27% 1.69% 2.28%

P-value 1.6461 x 10-65 1.1992 x 10-17 N/A
Early Growth Double Length Mean 64.68% 57.24% 63.54% 59.89% 74.29% 72.35%
Std. 5.23% 8.25% 4.99% 7.59% 4.62% 4.30%

P-value 1.5922 x |0-103 1.9161 x 10-2! N/A
Late Growth Mean. 95.76% 96.01% 89.44% 87.52% 96.63% 96.79%
Std 1.29% 1.28% 5.44% 7.03% 0.99% 1.10%

P-value 7.7818 x 10-10 1.0404 x 10-12 N/A
Late Growth Double Length Mean 86.71% 88.12% 64.76% 55.67% 89.68% 89.54%
Std. 2.71% 2.85% 7.94% 12.62% 2.42% 2.11%

P-value 2.1699 x 10-43 2.5033 x 10-50 N/A

Suppose we want to find an alignment at node z, with
children x and y at which we have already computed mul-
tiple alignments. To do this, we align the inferred ances-
tral sequence at x to the inferred ancestral sequence at y.
We score pairs of symbols from the two ancestral
sequences using a log-odds framework based on the
underlying phylogenetic tree.

We compute two probabilities: the probability
Pr[d,,d,|related] of seeing the observed symbols d, and d,
in ancestral sequence positions related by evolution
according to the given tree, and Pr|d,, d,|unrelated], the
probability of seeing observed symbols d, and d, in ances-
tral sequences positions unrelated by evolution. Here, d,
and d, are either from the ambiguous or unambiguous
alphabet depending on the type of ancestral sequence we
use.

We start by computing C,(c, b), the probability that we see
an ambiguous symbol ¢ € T in the ancestral sequence for
node z, given that the true value of the ancestral sequence
is the DNA base b.

Theorem 1. For all nodes z and symbols ¢ €T and b € Z, the
probability C(c, b) can be computed in O(m) time where m is
the number of descendants of node z and we treat T and X as
constant in size.

Proof. At the leaves, the ancestral symbol is the same as the
associated alignment symbol. Therefore, we initially set
C,(c, b) =1 for all ¢ and b where ¢ = b, and C(c, b) = 0 for
all others.

Let T,(b) be the event that the true value of the ancestral
sequence at node v is the DNA base b. Let C_be the set of

Table 2: Alignment accuracies for differing gap open costs. Alignment accuracies for various gap open costs using a gap extension cost

of 0.57.
Data Set Gap Open Cost  Parsimony ~ Ambiguous Parsimony ML Ambiguous ML Maetal. ClustalW

Early Growth 5 89.27% 88.41% 88.43% 88.09% 92.77% 90.48%
7 88.43% 83.83% 87.86% 86.26% 91.74% 91.25%

9 86.17% 76.04% 86.13% 82.58% 90.42% 91.48%

Change 3.10% 12.37% 2.3% 551% 2.35% 1.00%

Early Growth Double Length 5 63.43% 63.32% 63.01% 63.05% 78.19% 69.63%
7 64.68% 57.24% 63.54% 59.89% 74.29% 72.35%

9 61.40% 46.72% 60.02% 52.33% 68.44% 73.59%

Change 2.03% 16.6% 2.99% 10.72% 9.75% 3.96%

Late Growth 5 95.95% 96.35% 92.06% 91.70% 96.97% 96.50%
7 95.76% 96.01% 89.44% 87.52% 96.63% 96.79%

9 95.21% 95.39% 84.95% 80.71% 96.12% 96.91%

Change 0.74% 0.96% 7.11% 10.99% 0.85% 0.41%

Late Growth Double Length 5 86.21% 88.91% 73.21% 68.18% 91.43% 88.17%
7 86.71% 88.12% 64.76% 55.67% 89.68% 89.54%

9 85.58% 86.16% 54.36% 43.02% 87.08% 90.15%

Change 0.63% 2.75% 18.85% 25.16% 4.35% 1.98%

Page 10 of 14

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:273 http://www.biomedcentral.com/1471-2105/6/273

Table 3: Alignment accuracies using different gap open cost scaling functions. Alighment accuracies using two different gap cost
scaling functions. The unsealed gap open cost is 7 and the unsealed gap extension cost is |. The Max method scales gap open costs
according to the maximum value in the scoring matrix. The Expected method scales gap open costs according to the expected score of
a related symbol pair from the two ancestral sequences.

Data Set Gap Scaling Method Parsimony Ambiguous Parsimony ML Ambiguous ML
Early Growth Max 86.92% 85.07% 86.59% 86.13%
Expected 89.95% 89.79% 89.17% 89.31%
Early Growth Double Length Max 66.10% 64.51% 67.17% 66.10%
Expected 71.12% 73.48% 72.02% 73.81%
Late Growth Max 95.02% 95.21% 93.52% 92.31%
Expected 96.04% 96.35% 95.03% 94.68%
Late Growth Double Length Max 85.95% 86.39% 82.74% 75.98%
Expected 88.38% 89.91% 87.17% 85.35%

pairs of symbols (c,, c,) from T, whose consensus symbol

is ¢. Consider a node z with children x and y for which we prl 1., [unelated | = 1 S Culenh) T Cylendy). (5)
have already computed C,(c, b) for all values of ¢ € T and 16, cx bex

b € X. We compute C,(c, b) using the equation

Finally, the log-odds score for aligning consensus symbols

c;and ¢, is
C(c b) = 2 Dz,b(x'bxfcx)Dz,b(br yrbylcy)' (2)
(??;26 S(¢;, ¢,) = log, (Pr[c;, c,|related]/Pr[c;, c,|unrelated]),
e (6)
where in bits.

Du,b (U, bu’ Cu) = Pr[Tv(bu”Tu(b)]Cv(Cw bv) (3) Unambiguous probabilities

If we use unambiguous ancestral sequences, the situation
is similar. Let V(b, c) be the probability that we randomly
choose base b from the set of bases represented by consen-
sus symbol ¢ e T. That is, if c is a symbol corresponding
to a set of k symbols from X, and b is in this set, then V(b,
¢) = 1/k, otherwise it is zero. Then,

is the the probability of seeing ¢, at node v given the true
value is b,, times the probability that the true value at node
v is b, given that the true value at node u is b. We compute
Pr[T,(b,)|T,(b)] using the length of the edge (u, v) and the
probabilistic mutation model. We compute C,(c, b) for
each node of the tree, and obtain C,(c, b) in O(m) time,
where m is the number of leaves. [

p,[b,,bz\mlm]:’ h; zPr[Tdbx),T,r(b,,)\n(bz)]cx(cl,bx)vwl,cl)c,,(cz,bﬂvtbz,cz) (7)

el

Ambiguous probabilities

When we use ambiguous ancestral sequences, the proba-

bility of seeing consensus letters c; and c, at a positions is the probability that we see DNA base b, at x and DNA

arising from a common ancestor is base b, at y given that we are looking at positions arising
from a common ancestor.

Pf[ﬁlCz\relaledlzb bzb ZPf[Tx(bx)rTy(by)\Tz(bz)]Cx(Clrbx)Cy(Czrbyl (4) At positions unrelated by ancestry, we assume that the
o true value for the ancestral sequence is equally likely to be
any of the four DNA bases. Therefore, the probability of

That is, over all choices of the true value at x, y, and z, we seeing DNA base b, and b, s

compute the conditional probabilities of seeing consen-
sus pair (c;, ¢,) at positions related by ancestry.

1
At positions unrelated by ancestry, we assume that the  Prltbz|unrelaied = 7 2, ClabViba) 3, Gleaby)Vibz ca). (8)
true value for the ancestral sequence is equally likely to be bex e

any of the four DNA bases, though this model can be

made more complex to model more realistic sequences. The log-odds score for DNA symbols b, and b, is
Therefore, the probability of seeing consensus letters ¢,

and ¢, is
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Table 4: Mean pairwise alignment accuracies using correct gap costs. Mean pairwise alignment accuracies using a gap open cost of 7
and the optimal gap extension cost of 0.57. P-values are computed using a paired Student's t-test.

Data Set Measure Parsimony Ambiguous ML Ambiguous ML Ma et al. ClustalW
Parsimony
Early Growth Mean 95.64% 92.61% 96.19% 95.41% 97.61% 97.48%
Std. 1.43% 3.47% 1.08% 1.98% 0.48% 0.64%
P-value 1.3830 x 10-¢7 9.6503 x 10-17 N/A
Early Growth Mean 84.33% 78.29% 84.30% 82.19% 91.20% 90.58%
Double Length
Std. 2.99% 5.50% 291% 4.95% 1.75% 1.51%
P-value 9.1586 x [0-!14 3.5959 x 1018 N/A
Late Growth Mean 98.13% 98.26% 94.73% 93.74% 98.65% 98.67%
Std. 0.62% 0.62% 3.14% 4.05% 0.39% 0.44%
P-value 5.9142 x 1000 1.1169 x 10-10 N/A
Late Growth Mean 93.63% 94.45% 80.79% 75.51% 95.50% 95.44%
Double Length
Std. 1.37% 1.47% 4.85% 791% 1.14% 0.95%
P-value 2.1676 x 104 6.5523 x 1047 N/A

S(b,, b,) = log, (Pr|b;, b,|related]/Pr[b,, b,|unrelated]),
)

in bits.

Maximum likelihood

For a given alignment column, we compute the most
likely ancestral DNA base as in Felsenstein [20], but mod-
ified to consider gap characters in the column. We model
the gap symbol as other symbols in the alphabet, but use
special probabilities when considering changes to and
from gap characters. Specifically, we use an insertion/dele-
tion probability whenever we consider a mutation from a
non-gap symbol to a gap symbol, or a gap symbol to a
non-gap symbol. The probability of going from a gap
symbol to a gap symbol is one minus the probability of an
insertion.

Upon completion of the basic inference algorithm, we
have a vector at the root that gives, for each position and
each DNA base, the likelihood of that base. Assuming
independence, the likelihood of a given ancestral
sequence is the product of these. We obtain an unambig-
uous ancestral sequence from this by taking the base with
maximum likelihood, randomly choosing between ties.
To obtain an ambiguous maximum likelihood, which in
effect is an approximation of the posterior Bayesian distri-
bution of the ancestral symbol at that site, where we
assume a uniform prior distribution over all alphabet
symbols, we map the vector to an IUPAC symbol as fol-
lows. For each IUPAC symbol, we define a vector over the
DNA alphabet where we have a one for each DNA symbol
described by the IUPAC symbol, and a zero for all other
DNA symbols. For example, the IUPAC symbol W repre-
sents an A or a T. We define associated vector (1,1,0,0),

scaled to a probability distribution, where the numbers in
the vector refer to A, T,C, and G, in that order. We then
map the likelihood vector, also scaled to a probability vec-
tor (which, again, corresponds to computing the posterior
probabilities, assuming a flat prior on all four DNA bases
though this assumption can easily be removed), to an
IUPAC symbol, choosing the IUPAC symbol with associ-
ated vector that has the closest euclidean distance to the
likelihood vector scaled to a probability distribution.

Log-odds scoring framework

We desire a log-odds scoring framework similar to that
developed for parsimonious ancestral sequences. While
an appropriate scoring matrix can be obtained by sam-
pling, we want to eliminate any sampling error from our
study and so choose to compute the log-odds scoring
framework directly.

Assume we are at node z with children x and y in a tree
rooted at node r. First, consider the sub tree rooted at x. Let
L, 4 be the set of all assignments of symbols from X to
the leaves of the sub tree rooted at x such that maximum
likelihood infers symbol d at x.

Let O,(a) be the probability that a particular assignment a
of bases to the leaves of sub tree x occurs by evolution. We
compute the probability that the true DNA base at node x
is b by considering the probability all possible bases for
the root of the tree, and simulating evolution down to b.

In the following, as we compute scores for unambiguous
ancestral sequences, d, and d, refer to symbols from X. To
compute scores for ambiguous ancestral sequences, d; and
d, refer to symbols from I". We compute Pr[d,,d,|related],
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the probability of seeing symbols d, and d, in positions
related by a common ancestor, as

Pr(d),d; | related] = 3, Pr[Oy(a) | Ty (b)IPr{O, () | T, (b)IPr(T, (b;)], (10)

ae L, dy
a,eL,dy
beXg

where we compute the probability that the true value at
nodezis b as

Pr[Tz(b)]: z Pr[Tz(b)‘Tr(br)] Pr[Tr(br)]' (11)

beX;

That is, for each possible true value at root r, we compute
the probability that the value mutates to b on the path
from r to z.

We now compute Pr[d;,d,|unrelated], the probability that
we see symbols d, and d, in positions unrelated by a com-
mon ancestor. First, let ML (d) be the event that maxi-
mum likelihood infers symbol d at node x. We compute
ML, (d) as

Pr[ML (d)] = 3, Pr{O.(a)| T, (b)IPr[T,(b)]
ae Lx,d
beX.

(12)

where we compute Pr[T,(b)] in the same way as Pr[T,(b)]
previously. We compute Pr|d,, d,|unrelated] as

Pr[d,, d,|unrelated] = Pr{ML,(d;)] Pr[ML,(d,)].  (13)

Finally, the log-odds score of symbols d; and d, is

S(d,, d,) = log, (Pr|d,, d,|related]/Pr[d,, d,|unrelated]).
(14)

To compute the above scores, we must examine every pos-
sible assignment of bases to leaves for both the left and
right children of the root. For a particular tree, let k be the
maximum of the number of taxa below the left child of
the root and the right child of the root. We require time
O(]Z¢|*) to compute the log-odds scores for this tree.

Gap open cost scaling

When aligning alignments with ancestral sequences, gap
open costs play a major role. In a tree with differing edge
lengths, the gap open cost should also be able to vary.
Since existing gaps are not considered when inserting a
new gap in ancestral alignments, the gap open cost has a
large influence over the quality of the resulting alignment.
It is therefore important that we estimate an appropriate
gap open cost for each node of the tree.

http://www.biomedcentral.com/1471-2105/6/273

Consider creating alignment for node z with children x
and y. We scale the gap open cost according to the distance
between the nodes x and y. We test two slightly different
scaling functions. The first function multiplies the gap
open cost by the largest score value in the log-odds scoring
matrix for node z. We call this the Max method. The sec-
ond function computes the expected score of two symbols
from unrelated positions and uses this value to scale the
gap open cost. We call this the Expected method.
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