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Abstract
Background: Normalization is a critical step in analysis of gene expression profiles. For dual-
labeled arrays, global normalization assumes that the majority of the genes on the array are non-
differentially expressed between the two channels and that the number of over-expressed genes
approximately equals the number of under-expressed genes. These assumptions can be
inappropriate for custom arrays or arrays in which the reference RNA is very different from the
experimental samples.

Results: We propose a mixture model based normalization method that adaptively identifies non-
differentially expressed genes and thereby substantially improves normalization for dual-labeled
arrays in settings where the assumptions of global normalization are problematic. The new method
is evaluated using both simulated and real data.

Conclusions: The new normalization method is effective for general microarray platforms when
samples with very different expression profile are co-hybridized and for custom arrays where the
majority of genes are likely to be differentially expressed.

Background
Microarray technology provides simultaneous measure-
ments of expression levels for thousands of genes. Each
step from sample preparation to data analysis, however,
contains potential sources of bias and variability. Proper
normalization adjusts for differences which interfere with
the comparison of intensities of different labels at a given
probe and with the comparison of intensities of corre-
sponding probes on different arrays. Proper data normal-
ization should allow for the comparison of expression
levels across different arrays. Subsequent data analysis
results are heavily dependent on effective normalization.

Normalization issues differ for dual-labeled platforms
compared to single labeled platforms such as the Affyme-

trix GeneChip arrays. In this paper we address normaliza-
tion for dual-labeled arrays with either cDNA or
oligonucleotide probes. The objective of normalization
for dual-labeled arrays is to correct for differences in inten-
sities for the two labels on the same array. These differ-
ences arise from factors such as differences in sample
concentrations, differences in photomultiplier tube set-
ting, and differences in the affinity of the two labels for
DNA.

Median or mean based global normalization methods use
a single normalization factor applied to all genes on the
array to adjust for labeling bias [1,2]. Such methods are
widely used because of their simplicity. Intensity-based
and location-based methods take into account intensity
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and spatial dependence on dye bias normalization factors
[3,4]. Both global and intensity/location based normali-
zation methods assume that most of the genes are not dif-
ferentially expressed between the two samples hybridized
on the array, and that for the differentially expressed
genes, the direction of the difference is symmetric
between the two samples. In many important cases, how-
ever, these assumptions are not appropriate because: 1)
more than half of the genes are differentially expressed on
the array; 2) the numbers of over- and under-expressed
genes on the array are unequal; 3) only genes of specific
biological interest are selected to make a customized
array, which are highly variable across the samples. In the
above cases, the global normalization methods and inten-
sity/location based normalization methods become less
accurate and a more sophisticated method is needed [5,6].

There are some methods which attempt to adaptively
identify the subset of 'housekeeping' genes [6-8]. These
methods require multiple arrays in order to identify the
'housekeeping' gene set, which does not always exist.

Newton et al. proposed a Gamma-Gamma-Bernoulli
model for identifying differentially expressed genes in
dual labeled arrays [9]. We have generalized Newton's
model and here propose an adaptive method based on
three-component mixture model for normalization of
dual labeled microarray data.

Results
As described in the Methods section, we have applied our
adaptive method to both the simulated data and real data.
We have also compared our method with the global
method and the intensity-based lowess method.

Results of the simulation studies are shown as bar plots in
Figure 1. Figure 1A shows the comparison of our adaptive
method, the global method and the lowess method when
no noise was added. When the majority of genes in the
array were non-differentially expressed (Case 1), or the
numbers of over- and under-expressed genes on the array
were equal (Case 2), the root mean squared error (RMSE)
of the adaptive method was comparable with the other
two methods; all were very small. When the array con-
tained unequal numbers of over- and under-expressed
genes and when the majority of genes were differentially
expressed (Cases 3–6), the RMSEs of the global normali-
zation method and the lowess method were much larger
than those of the adaptive method. The differences ranged
from around a two fold difference (0.895 in log2 scale)
when the number of under-, null, and over-expressed
genes were 200, 100, and 100, to more than a three fold
difference (1.617 in log2 scale) when the number of
under-, null, and over-expressed genes were 200, 50, and

50. The RMSEs for the adaptive method ranged from
0.078 to 0.159 in log2 scale.

We compared the histogram of observed intensities to the
fitted marginal density from the adaptive method as a
simple check to see whether the proposed model and the
estimation procedure are in line with available data. Fig-
ure 2 shows the histograms of log(ratio) and log intensi-
ties of red and green channels of the simulated data, and
the curve in each plot is the estimated density obtained
from the fitted model. It is seen the data fits to the model
quite well.

Gaussian noise with SD of 0.25 and 0.50 were added so
that the data was not generated from the same model used
for analysis with the adaptive method. The RMSEs of the
global normalization method and the lowess method
remained large, while the RMSEs of the adaptive method
remained small, ranging from 0.083 to 0.569 on the log2
scale (Figure 1B and 1C).

In the above simulation, no apparent groups could be
seen in the histograms of log(ratio) (Figure 2A). Better
results for the adaptive method were also obtained for a
simulation case where the three groups (under-expressed,
non-differentially expressed, and over-expressed) are
apparent in the histogram of log(ratio). The results can be
seen in Figure 4 and Figure 5 [see Additional files 3, 4].

Results comparing RMSEs for the adaptive method, the
global method and the lowess method with real data are
shown in Table 2. The RMSEs of the adaptive method on
data generated from ten different arrays ranged from
0.128 to 0.529, in comparison with RMSEs of around 1.0
using the global normalization method. The average
RMSE (0.607) of the lowess method is almost two times
that of our adaptive method (0.328), although the lowess
method performed better than the global method (aver-
age RMSE = 1.016). Figure 3 shows the histograms of
log(ratio) and log intensities of red and green channels of
the real data, and the curve in each plot is the estimated
density from the adaptive method.

Discussion
In this paper, we propose a new method for normaliza-
tion of dual-labeled arrays in cases where the number of
differentially expressed genes is substantial and not neces-
sarily symmetric in direction. The method performed
effectively with both simulated and real data.

We started our model building initially by introducing an
unknown constant c into Newton's Gamma-Gamma-Ber-
noulli model [9]. The mixture model consisted of two
groups: non-differentially expressed genes (Equation 1A)
and differentially expressed genes (Equation 1B).
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Bar plots show comparison of RMSEs by using the global method (black bar), the lowess method (grey bar), and the adaptive method (white bar) for normalization with simulated data generated from a mixture model with c = 1.5, a = 118, a0 = 410, γ = 31, γ1 = 23, and γ2 = 29 at three different noise levels (A) SD = 0; (B) SD = 0.25; and (C) SD = 0.50Figure 1
Bar plots show comparison of RMSEs by using the global method (black bar), the lowess method (grey bar), and the adaptive 
method (white bar) for normalization with simulated data generated from a mixture model with c = 1.5, a = 118, a0 = 410, γ = 
31, γ1 = 23, and γ2 = 29 at three different noise levels (A) SD = 0; (B) SD = 0.25; and (C) SD = 0.50.
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Histograms and the estimated densities of log(ratio) and log(intensity) for a set of simulated data generated from a mixture model with c = 1.5, a = 118, a0 = 410, γ = 31, γ1 = 23, and γ2 = 29. The superimposed curve on each plot is generated from the fitted modelFigure 2
Histograms and the estimated densities of log(ratio) and log(intensity) for a set of simulated data generated from a mixture 
model with c = 1.5, a = 118, a0 = 410, γ = 31, γ1 = 23, and γ2 = 29. The superimposed curve on each plot is generated from the 
fitted model.
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log(cRk) ~ Gamma(a, sk)

log(Gk) ~ Gamma(a, sk)  (1A)

sk ~ Gamma(a0, γ)

log(cRk) ~ Gamma(a, )

log(Gk) ~ Gamma(a, )  (1B)

 ~ Gamma(a0, γ)

 ~ Gamma(a0, γ)

We found that when the differential expression was sym-
metric between the two samples, the model worked well.
However, the error increased significantly when the ratio
of the numbers of under- to over-expressed genes shifted
from 1.

In order to make the model more flexible, we modified
the model by assigning different scale factors γR and γG for
the red channel and green channel intensities. For this
modified two-component mixture, the error still
remained large. We then extended the model into a three-
component mixture model listed as Equations 8A-8C in
the additional material [see Additional file 2]. The model
was then quite flexible but there were too many parame-
ters that needed to be optimized. After we tested it with
simulation data and real data, we found the estimated
model was not stable and difficult to optimize. We finally
simplified the model to our final model given by Equa-
tions 2A-2C (see Methods section). When applying it to
real data or simulated data, the estimates converged well

close to globe optima. When different start points were
used, the optimizations remained relatively robust.

Evaluation of normalization methods can be difficult
since the true normalization factors are unknown with
real data for custom arrays. We avoided this problem by
synthesizing customized arrays based on real data for
standard arrays containing thousands of genes. In order to
make the distribution of each component group look
smoother, we allowed certain range of overlap between
the adjacent groups. Additional sampling method was
tried to divide the whole distribution range into many
non-overlapping intervals. In each interval the number of
genes sampled increased when the absolute value of
log2(ratio) became larger (Table 3 [see Additional file 6]).
The model fitting results using data generated by this sam-
pling method are listed in Table 4 [see Additional file 7]
and Figure 6 [see Additional file 5].

We compared our adaptive method with the global
method and the intensity-based lowess method. The low-
ess method assumes that in each intensity interval either
the majority of genes are non-differentially expressed or
the numbers of up- and down-regulated genes are equal.
The global median normalization makes these assump-
tions only over the array as a whole. It is not surprising
that our method performed much better that the above
two methods, because the global median method only
works well when the assumptions are valid while the
intensity-based lowess method is only effective when
there are intensity-dependent biases.

Correlation structure is complicated for the thousands of
genes on a microarray. In our model, the intensity of each
channel is conditionally independent given the scale
parameter, but not marginally independent.Therefore, we
are not assuming the intensities in two channels are inde-

Table 2: Comparison of RMSEs by using the global method, the lowess method, and the adaptive method for normalization with real 
data.

Case Array ID Global Lowess Adaptive

1 svcc134 1.082 0.600 0.315
2 svcc104 1.023 0.601 0.508
3 svcc120 1.005 0.552 0.435
4 svcc64 0.999 0.593 0.516
5 svcc106 0.967 0.704 0.128
6 svcc89 1.018 0.593 0.284
7 svcc109 1.014 0.577 0.264
8 svcc103 1.011 0.653 0.138
9 svcc98 1.022 0.631 0.159
10 svcc82 1.017 0.567 0.529

Average RMSE 1.016 0.607 0.328

sRk

sGk

sRk

sGk
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pendent. Although we did not generate correlated genes
in our simulated data sets, correlations of genes do exist in
the real data sets we tested. Spatial correlations are also
possible but our method is not designed for that purpose.

Yang et al. proposed using the lowess normalization sep-
arately within each grid on the array [3]. Our algorithm
could be similarly applied within each grid to control for
spatial effects.

Histograms and the estimated densities of log(ratio) and log(intensity) for a set of real data generated from array svcc109Figure 3
Histograms and the estimated densities of log(ratio) and log(intensity) for a set of real data generated from array svcc109. The 
superimposed curve on each plot is generated from the fitted model.
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Limited simulations were performed in this study. We
also tried to use real data to test our method. Since an
appropriate data set with known normalization factor was
not available, we synthesized such data sets by sub-setting
large arrays in which the true normalization factor could
be accurately estimated. In the process of synthesizing
such small arrays we had to choose an empirical threshold
to stratify the differentially expressed genes and non-dif-
ferentially expressed genes. Although we do not believe
that the superiority shown for our algorithm depends
critically on the threshold chosen nor on details of the
synthesis, it would be preferable to evaluate the algorithm
on real data sets with know normalization factors.

Although our method is designed for dual-labeled cDNA
array, it can be extended to single channel Affymetrix chip
data. The most popular normalization method for the
Affymetrix chip compares each array to a single base line
array for probe set summaries. The assumptions behind
the normalization method are that the majority of the
genes are non-differentially expressed and the numbers of
over- and under-expressed genes are roughly equal; the
same assumptions as those for dual-labeled cDNA arrays.
We could treat the base line array as the 'reference chan-
nel' and the other array as the 'test' channel and apply our
algorithm to probe set summaries. For Affymetrix chip
data, there are multiple base pairs in a probe set and each
probe has an intensity measurement. Several alternative
normalization methods of Affymetrix arrays utilize the
probe level information. For example, method based on
an 'invariant set' proposed by Li and Wong assumes that a
probe of a non-differentially expressed genes in two arrays
to have similar ranks and uses an iterative procedure to
identify the invariant set which presumably consists of
points from non-differentially expressed genes [10].

Conclusions
Our new normalization method does not require that the
majority of genes be non-differentially expressed, and
doesn't require multiple array replicates, dye swaps,
spiked controls, or housekeeping genes. It appears much
more effective than standard methods when the numbers
of over- and under-expressed genes are unequal, and the
majority of the genes are differentially expressed. It can be
very useful for general microarray platforms when sam-
ples with very different expression profile are co-hybrid-
ized and for custom arrays where the majority of genes are
likely to be differentially expressed. In both of these set-
tings, standard normalization methods are problematic.

Methods
Model
We define true intensities for a specific gene k in two chan-
nels as Rk (red) and Gk (green). Let c be a positive constant
which is related to the normalization constant. The

observed intensities for gene k in two channels are cRk and
Gk. We assume the logarithm of intensity in each channel
has a Gamma distribution. The genes on the array belong
to three different groups: 1) non-differentially expressed;
2) under-expressed; and 3) over-expressed. The overall
data will be fitted into a mixture model listed below.

For a non-differentially expressed gene k,

log(cRk) ~ Gamma(a, sk)

log(Gk) ~ Gamma(a, sk)  (2A)

sk ~ Gamma(a0, γ).

For an under-expressed gene k,

log(cRk) ~ Gamma(a, )

log(Gk) ~ Gamma(a, )  (2B)

 ~ Gamma(a0, γ1)

 ~ Gamma(a0, γ2).

For an over-expressed gene k,

log(cRk) ~ Gamma(a, )

log(Gk) ~ Gamma(a, )  (2C)

 ~ Gamma(a0, γ2)

 ~ Gamma(a0, γ1).

In the above Gamma distributions, the parameters a and
a0 are shape factors, and the parameters sk, γ, γ1,γ2, ,

 are scale factors. The parameters a, a0, γ, γ1, γ2 will be
estimated from the data.

Let pu(Rk, Gk), po(Rk, Gk) and pn(Rk, Gk) be the densities of
(Rk, Gk) for under-expressed, over-expressed and non-dif-
ferentially expressed genes, respectively. The joint distri-
butions of (Rk, Gk) in three groups can be derived as
follows [details see Additional file 1]:

sRk
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Let θ denote the unknown parameter vector (a, a0, γ, γ1, γ2,
c), which can be estimated by maximizing the likelihood
function of observed data. We used the EM algorithm [11]
for this maximization. Let p1 be the proportion of under-
expressed genes and p2 be the proportion of over-
expressed genes. We define indicator binary variable zk1 to
be 1 if the kth gene is under expressed, 0 otherwise; and
zk2 to be 1 if the kth gene is over expressed, 0 otherwise.
The complete-data loglikelihood for all spots can be derived
as follows,

In the M-step, we first take derivative on Equation (4) with
respect to p1 and p2. This yields

where K is the total number of genes on the array.

To maximize Equation (4), we only need to maximize
Equation (6) because the left out terms do not depend on
the parameter θ.

In the E-step, we compute the conditional expectations of
zk1 and zk2 given the other parameters from the M-step.

Once the constant c was obtained, the normalization con-
stant for log intensity ratio data can be calculated as log(1/
c).

Model evaluation
Simulation studies were performed by generating two
channel intensities from the mixture model with c = 1.5, a
= 118, a0 = 410, γ = 31, γ1 = 23, and γ2 = 29. Six scenarios
were included using different proportions of non-differ-
entially expressed genes and different ratios of under- to
over- expressed genes, as listed in Table 1.

One hundred data sets were generated for each scenario

and the RMSE between the estimated log2(1/ ) and the
true log2(1/c) was calculated. The global method takes the
median log2(ratio) of all genes in each data set as the nor-
malization factor. The lowess method performs robust
locally linear fits of M-A plot and corrects the biases that
are dependent on spot intensity [3]. The RMSE between
the normalized log2(ratio) using the lowess method and
the normalized log2(ratio) using the global method with
the true normalization factor (log2(1/c)) for all genes was
also calculated for the same 100 data sets.

Table 1: Six scenarios using different proportions of non-differentially expressed genes and different ratios of under- to over-expressed 
genes with simulated data.

Number of genes
Case Under-expressed Non-differentially expressed Over-expressed

1 100 500 100
2 100 100 100
3 200 100 100
4 200 100 50
5 200 50 100
6 200 50 50
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Gaussian white noise was also added when generating the
simulated data. We used standard deviation of 0.25 in
log2 scale to reflect the experimental noise in inbred
strains of mice or cell line data and 0.5 in log2 scale to
reflect a larger experimental noise in human tissue data
[12].

In-silico studies were performed on real data. We tested the
method on ten arrays from publicly available breast can-
cer data [13]. Each array consists of 9216 genes. The com-
mon reference sample was a pool of RNA isolated from 11
different cultured cell lines (green channel, labeled with
Cy3). RNA from tissues of breast cancer patients were used
in the test channel (red channel, labeled with Cy5). The
array was first normalized by the global normalization
method. The median log2(ratio) of all genes was consid-
ered as the true normalization factor c. The genes were
then divided into three groups: over-expressed genes
(log2(ratio)>1), non-differentially expressed genes(-
1.5<log2(ratio)<1.5), and under-expressed genes
(log2(ratio)<-1). We randomly sampled a specified
number of genes from each group (100 non-differentially
expressed genes, 200 under-expressed and 100 over-
expressed genes) and then combined them into an in-silico
array. We constructed 100 datasets for each of the 10
arrays in this way and the RMSE between the estimated

log2(1/ ) and the true log2(1/c) was calculated.
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