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Abstract

Background: In expressed sequence tag (EST) sequencing, we are often interested in how many
genes we can capture in an EST sample of a targeted size. This information provides insights to
sequencing efficiency in experimental design, as well as clues to the diversity of expressed genes in
the tissue from which the library was constructed.

Results: We propose a compound Poisson process model that can accurately predict the gene
capture in a future EST sample based on an initial EST sample. It also allows estimation of the
number of expressed genes in one cDNA library or co-expressed in two cDNA libraries. The
superior performance of the new prediction method over an existing approach is established by a
simulation study. Our analysis of four Arabidopsis thaliana EST sets suggests that the number of
expressed genes present in four different cDNA libraries of Arabidopsis thaliana varies from 9155
(root) to 12005 (silique). An observed fraction of co-expressed genes in two different EST sets as
low as 25% can correspond to an actual overlap fraction greater than 65%.

Conclusion: The proposed method provides a convenient tool for gene capture prediction and

cDNA library property diagnosis in EST sequencing.

Background

An expressed sequence tag (EST) set surveys a cDNA
library for two important types of information: the tran-
script sequence and transcript abundance [1]. Both of
these can be obtained through EST clustering, a process
that identifies and assembles sibling ESTs (ESTs from the
same gene) [2-8]. The assembly of ESTs in each cluster is
a partially or completely restored transcript (if there is no
clustering error), and the number of ESTs within each

cluster then represents the abundance of this transcript or
mRNA species in the cDNA library. The sequence infor-
mation has greatly facilitated numerous applications in
genomic research including the construction of gene
indexing systems, novel gene discovery, genome annota-
tion, SNP typing, splicing detection and microarray probe
design [9-18]. The transcript abundance information con-
veyed by the EST data has been used for gene expression
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differentiation and gene discovery rate estimation [19-
21].

In this paper we consider multiple applications that
require modeling of the expression data for inference of
cDNA library properties. Key questions of interest include,
(a) how many new genes can be captured in an additional
sample of a targeted size based on the current EST data
from the same library? (b) how many genes are expressed
in one tissue or multiple tissues given the EST data? and
(c) how many genes are co-expressed in two tissues?
Answers to these questions, we believe, will provide not
only new clues to the diversity of expressed genes in a
wide diversity of organisms that have been subject to EST
sequencing, but also a way to predict sequencing out-
comes. For example, the overlap of expressed genes can be
indicative of functional similarity of two tissues; the
expected gene capture from an additional sample can be
useful for budgeting future sequencing efforts.

As "expression evidence", EST data already plays a crucial
role in gene annotation and inference of the number of
expressed genes in the transcriptome of an organism [22-
25]. However two major challenges exist in direct estima-
tion of gene capture or the total number of genes
expressed in a tissue based on EST data alone. The first
challenge arises from EST clustering error. Errors from dif-
ferent sources can bias the number of observed genes
upward by 35% - 40% [25-27]. For 5' ESTs, the false sep-
aration error is especially problematic; insufficient over-
lap between sibling ESTs (ESTs from the same gene) can
explain a fraction up to 80% of these clustering errors
[27]. In this paper, the gene cluster profile data (defined
below) for 5' ESTs was obtained after correcting for insuf-
ficient overlap error (ISO error) using the method intro-
duced in [27].

Given that good data has been generated from EST cluster-
ing, it remains a challenge to make accurate predictions of
gene capture that will be expected in future sequencing
experiments. Question (a) was recently addressed by [21]
where prediction of gene capture in an additional sample
of size larger than the initial sample requires parametric
fitting of the transcript abundance distribution to avoid
wild variability of the estimator (i.e., data are fit to a Neg-
ative Binomial model derived from a Poisson-Gamma set-
ting that allows the o parameter in the Gamma to be < 0,
see also [28,29]). However an inappropriate assumption
of the transcript abundance distribution (Gamma here)
could result in systematic bias in estimation [30]. The per-
formance of this approach in the EST problem has yet
been well established.

In this paper we propose a compound Poisson process
approach for accurate prediction of gene capture in EST
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sequencing. The superior performance of the new predic-
tion method over the existing method implemented by
[21] in a computer program egene is established with a
simulation study. We discuss how this method can be
applied to estimate the number of genes expressed in one
cDNA library, or co-expressed in two libraries. Finally we
illustrate the new prediction method with four EST sets
from the flowering plant Arabidopsis thaliana.

Results and Discussion
Compound Poisson process model

Let N be the number of genes represented with transcripts
in the cDNA library. X = {X, ..., Xy} will be the number
of tags observed from each distinct gene species. If gene i
is not captured in the EST sample, then X; = 0. Let

nj=ZZII(Xi=j),forj=O,1, ...... , be the number of
genes that had j ESTs in the sample, D = X, n; be the

observed total and S = X, jn; be the current EST sample
size. Estimation of N is equivalent to estimation of the
zero class size n,. We call the summary data n = {n,, n,,

...} gene cluster profile data.

Let p; be the transcript abundance for gene i, i.e.

21{11 p; =1. The capture of ESTs from each gene in EST
sequencing can be regarded as a Poisson process where
the EST sample size S measures the "time" and p; plays the
role of Poisson mean parameter rate, i.e., the probability
of observing «x; ESTs from gene i equals

e—Spl' (Spl )xi
1

1

. The Poisson distribution can

f(xi:Spi) =

be regarded as an approximation to the actual Binomial
distribution Bin(S, p;) for a large S and a tiny p;[31]. With-
out loss of generality, we would treat the current sample
size as one unit time, and let A, = Sp;. Hence sampling an
additional S, ESTs corresponds to a Poisson process on
time interval [1, 1+t] where t = S,/S. Considering substan-
tial heterogeneity in the transcript abundance p; (and
hence %;), we further assume that A, follows an unknown
non-degenerate distribution Q(A). The marginal distribu-

tion of X then follows a compound Poisson process
[29,32], i.e.

e Mx
x!

f(xQ)=] dQ(1).

Let D be the number of distinct genes captured on the
Poisson process [0, 1] and D, be the additional distinct
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Relative abundance distributions of mMRNA transcripts in the simulation. (I) log normal: f(p; )=
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genes captured on [1, 1+t], then (D, D,) has a Multinomial
distribution as follows

N N-D-D,
f(D'Dt?N'Q):(D/Dt)qPth[(l_ql—‘h) ’

where

®

41=0,(Q) = (1-eM)dQ(1), 4,=4,(Q) = [ e*(1 - e*)dQ().

In words, ¢, is the probability of observing at least one tag
from a random gene on [0, 1], and g, is that of observing
zero tags on [0, 1] but at least 1 tag on [1, 1+t].

In the EST problem, one focal interest is the expectation of
additional distinct genes that can be captured in the time
period [1, 1 +t] given the current EST data. The distribu-
tion form in equation (1) implies that the conditional
capture D, given the current sample only depends on D.
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Table I: Comparing CPP method with nonparametric eB method in estimation of the unconditional mean E(D,). The theoretical
unconditional mean at t was calculated based on the compound Poisson process model, i.e. E(D,) = Nq, where q, was calculated based
on the CPP model. The entries in the row of CPP or SR are the Mean and root of Mean Squared Error(rMSE) (in parentheses) based
on 200 Monte Carlo samples. A -(-) indicates that the mean or rMSE was not calculated because of extremely large or negative
estimates from the SR method. For (1), N q, and S were 5000, 0.36 and 3000; for (II), 10000, 0.375, 6000, and for (lll) 10000, 0.221, 5000

respectively.

t 0.5 | 1.5 2
) E(D) 497 873 1168 1406
CPP 500(16.4) 873(35.6) 1160(58.8) 1386(85.8)
SR 501(17.3) 877(43) -() -0
(I E(D,) 988 1707 2253 2682
CPP 985(21.4) 1697(48.8) 2230(83.7) 2639(125.6)
SR 985(22.1) 1698(58.4) 2218(183.3) )
()] E(D] 464 801 1062 1273
cPP 462(15.9) 793(36.5) 1045(62.5) 1242(93.5)
SR 463(16.7) 799(45.2) -(-) -(-)
More explicitly, the conditional distribution of D,|D is a
. . q; q
Binomial (N - D, , and hence —
( - E(D,)=D,
q
E(D,|D)= (N—D)lq—t. (2) which is the same as E/(‘D:|\D) derived above. In other
-0 R

To calculate the expectation, one needs to estimate N and
Q first. If Q is known, we have

E(D) = Ng,.

The observed total D is a natural estimate of E(D). The

~ D
maximum likelihood estimator of N is N = —[33]. Since
h

Q is unknown, we can obtain an estimate (Q by nonpara-

metric maximum likelihood estimation (see Methods).
Replacing ¢, q, by ¢ qu(é)'at eq(é) and N by

~ D
N == in (2) gives an estimator of E(D,|D) as
T

e D
E(D, |D):(__D)q_t:Dq_t_
T I-q qQ

From a different perspective, since E(D,) = Ng,, replacing

~ D N
Nby N =— andg,by g, gives an estimator of the uncon-
h

ditional mean E(D,) as

words, the quantity Dq—t can be used as an estimator for
h

either the conditional or unconditional mean. In the sim-
ulation study section, we will investigate the performance
of this estimator with respect to these two roles.

To measure the sequencing efficiency, we define the
expected sequencing redundancy p as the average EST count
per gene. An estimate of p at time 1 + ¢ would be

(1+1)S
E(D,|D)+D
The methods for Q estimation, confidence interval con-

struction and ¢cDNA library overlap estimation are pre-
sented in METHODS.

P1+: =

()

Simulation studies

Estimating unconditional mean E(D,)

To investigate the performance of the proposed com-
pound Poisson process method (to be called CPP below)
as an unconditional mean estimator, we created three
pseudo cDNA libraries from the following three settings:
(I) N = 5000 and the transcript abundance followed a log

o Lioa(r: )-2] /2

Jan(p;)

normal distribution as f(p; )= ; (I N
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= 10000 and p; had an exponential distribution with mean
0.5, i.e. f(pi) = 2e2i; and (III) N = 10000 and p; had a

gamma distribution with a = 02, B = 3, ie

f(pi)=

—0.8 ,-3p;
r(o.z)pl o

Two hundred Monte-Carlo samples were drawn from
each setting with sample size S = 3000 for (I), S = 6000 for
(II) and S = 5000 for (III) according to the relative abun-
ﬁ; These three distribu-
21‘:1 pi
tions are all rightward skewed (See Figure 1), which
appears to be a reasonable characterization of the expres-
sion pattern as observed from most EST data sets. The
results from the CPP method are compared in Table 1
with the existing nonparametric empirical Bayes method
due to [29,34], (which has been implemented by Susko
and Roger [21] in the EST data analysis program egene
available at [35] (to be called the SR method below).

dance of the transcripts, i.e.

The simulations under the three different transcript abun-
dance distributions reached very similar conclusions. The
CPP method provides very reliable estimates for ¢t < 2
while the SR method only works well for ¢ < 1 (but less
precise than the CPP method in terms of rMSE). When ¢ <
1, the SR method cannot be recommended because it fre-
quently produced negative or extremely variable esti-
mates.

Estimating conditional mean E(D D)

Since our focal interest is the additional distinct genes that
can be captured over the time period [1, 1 + t] conditioned
on the current capture D, i.e. E(D,|D), we now investigate
the performance of the CPP method for this end based on
two typical EST samples simulated from situation (I) and

(1n).

The first EST set was simulated from situation (I) at sam-
ple size S = 3000. The resulting gene cluster profile data
wasn = (n,..ny) = (1162, 392, 170, 63, 21, 12,8, 5,1, 1),
and D = 1835 accounting for 36.7% of N = 5000. The
point estimate of the total number of expressed genes was

N =5023 with 95% bootstrap confidence interval (3617,
5492). With the initial sample fixed, we had resumed
sampling of additional 1500, 3000, 4500 and 6000 ESTs
(corresponding to time t = 0.5, 1, 1.5, 2), 200 times for
each. The actual capture of additional new genes was
recorded for each sample at each t. The sample mean of
the 200 Monte Carlo estimates was used to approximate

http://www.biomedcentral.com/1471-2105/6/300

the true conditional mean E(D,|D) below (Note: the
Monte Carlo mean for D,|D based on 200 samples is an
accurate estimate for E(D,|D) since D,|D follows a Bino-
mial distribution (Equation (1)).

Our method predicted that about 495, 870, 1171 and
1421 additional distinct genes would be expected to cap-
ture in these additional samples with 95% confidence
intervals for E(D,|D) as (470, 514), (801, 908), (1043,
1227) and (1223, 1501) respectively, which well covered
the corresponding expected conditional mean 502, 876,
1168 and 1403.

Though the SR method in egene was defined for E(D,), in

EST sequencing one intends to use it to produce approxi-
mate estimates of the conditional capture E(D,|D), which

is of direct interest given the current EST sample. The
point estimates and corresponding standard errors (in
parentheses below) of E(D,) from egene were 501 (17.63),

889 (42.67), 1128 (144.96), 244 (1333.8) at t =
0.5,1,1.5,2 with 95% confidence intervals (calculated

—

based on E(Dt) +£1.96* standard error) are (466,536),

(805,973), (844,1412) and (0,2857) respectively. We set
the lower limit of the last confidence interval as zero
because E(D,) must be greater than zero. The point esti-

mate at t = 2 from the SR method was 244; this was unrea-
sonable because it predicted fewer genes at t = 2 than at t
=0.5.

The second example was generated from setting (II) with
S = 6000 and gene cluster profile data n = (n;...n;,) =
(2349, 888, 321,133,50,11,5,1,1,1). The total of sampled
genes was D = 3760, accounting for 37.6% of N. The esti-
mated total number of expressed genes was 8185 with
95% bootstrap confidence interval (7455,10441).

Our model predicted that with additional samples of size
3000, 6000, 9000 and 12000, we would expect to capture
991, 1715, 2266 and 2697 distinct genes with 95% confi-
dence intervals (954,1005), (1626,1761), (2118, 2375)
and (2479, 2884) respectively, again well covering the
expected conditional capture 988, 1699, 2238 and 2660.

The egene program gave the point estimates of E(D,) and
standard errors (in the parentheses) as 986 (25.4), 1692
(61.3), 2158 (202.8) and -718 (4082), corresponding to
95% confidence intervals (936,1036), (1572,1812)
(1761, 2555) and (0, 7446) (for the same reason as in the
first example, the lower limit of the last interval was set as
0).
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Table 2: Number of expressed genes in four cDNA libraries of Arabidopsis thaliana. This table lists the gene cluster profile data (n)),

EST sample size(EST.total), observed gene number (Gene.obsvd), estimated total number of expressed genes (Gene.estd) and 95%
confidence interval (95% C.1.) for 4 EST sets including Silique, ABGR, Root, Flower bud; and 2 pooled sets including ABGR + Root

(A+R), Silique + Flower bud (S+F).

n; Silique ABGR Root Flower bud A+R S+F
n, 2963 1969 2187 1801 3333 3749
n, 994 459 490 367 951 1270

n3 440 182 133 140 312 566

ng 222 69 121 69 211 295

ns 124 58 37 40 122 182

nNg 73 28 51 25 66 109

ny 59 17 22 22 40 80

ng 42 20 19 10 35 49

ng 27 7 7 I5 29 48

Ny 19 19 8 12 25 33

" 130 55 51 63 119 214

M1
EST.total 12330 5812 5891 5503 11529 17784
Gene.obsvd 5093 2883 3126 2564 5243 6595
Gene.estd 12005 9492 9155 9232 12720 15333
95% C.I. (11137,15300) (7823,11585) (8160,11444) (7780,11381) (11987,15579) (13202,17400)

The two case studies are typical among many simulations
we have conducted, where the abundance distribution
was highly rightward skewed and only a small fraction of
the genes were captured in the initial EST sample. Based
on our experience, we found that the bootstrap confi-
dence interval for E(D,|D) always well covered the true
mean E(D,|D) (approximated by the mean of Monte
Carlo samples in our simulations) for t < 2. Although the
SR method was defined for E(D,), it can be used to provide
approximate estimates for the conditional capture
E(D,/|D) for t < 1, but in general it cannot be recom-
mended fort> 1.

Real data

We now apply the proposed methods to four cDNA librar-
ies of Arabidopsis thaliana including green silique (3' EST),
2-6 weeks above-ground organs (5', to be called ABGR),
root (5') and flower bud (3') obtained from NCBI dbEST
(available at Supplementary Material). All the four cDNA
libraries were normalized and size-selected [36]. ESTs
were clustered using CAP3 with an overlap rule O = 40 bp,
identity rule P = 90% and other parameters left at default.

For the ABGR and root data (5' ESTs), the observed cluster
counts were ISO error corrected using the correction
matrix P;,simulated from Arabidopsis thaliana EST data by
[27] (see Supplementary materials). For the silique and
flower bud sets (3'), the gene cluster profile n was directly
summarized from the CAP3 clustering results. The n data
and the estimated number of expressed genes for these
four sets are presented in Table 2 (complete list of the gene
cluster profile data n can be found in the Supplementary
Materials).

The results in Table 2 suggest that about 12005 genes were
present in the green silique tissue library, in contrast to
9492, 9155 and 9232 in the ABGR, root and flower bud
cDNA libraries respectively. It is possible that the green sil-
ique expressed more genes than the other three. However
we lack confidence to conclude this because library
screening (e.g., size selection) may cause such difference;
in addition, under-estimation is likely in the latter three
sets because of relatively small sample size. The 95% boot-
strap confidence intervals for the four data sets were
(11137,15300), (7823,11585), (8160,11444) and

Table 3: Prediction of gene capture in an additional sample of size 0.5S, IS, 1.5S and 2S. This table presents the estimates of E(D,|D) in
additional samples of size 0.5S, IS, 1.5S and 2S (or t = 0.5,1,1.5,2) with 95% bootstrap confidence interval(in the parentheses), where S

is the sample size of original EST samples.

0.5

IS

1.58

N

Silique
ABGR
Root
Flower

883 (854,906)

1274 (1235,1302)

989(964,101 1)

820 (795,837)

2253 (2159,2328)
1616 (1540,1674)
1806 (1737,1863)
1518(1453,1557)

3037 (2878,3172)
2238 (2106,2345)
2488(2363,2611)
2126 (2009,2198)

3678 (3450,3873)
2776 (2577,2941)
3060(2871,3256)
2659 (2480,2781)
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Figure 2

Gene capture and redundancy prediction for green silique data. The estimate of the total number of expressed genes

is N = 12005. Plot (A) shows how the expected gene capture E(D,|D) with 95% confidence limits would increase with EST

sample size; plots (B) and (C) show how the expected EST redundancy p,., would increase with the expected gene capture (=

D + E(D,|D)) and EST sample size (= (I + t)S)

(7780,11381) respectively, which also failed to support
the significance of the difference.

In practice, the prediction is often made for sequencing in
the near future, for example, for t < 2 (sequencing an addi-
tional < 2S ESTs where S is the original sample size). In
this situation the prediction can be adequately accurate

even if bias exists for N based on our experience (see
more in Discussion). We now use the green silique, ABGR,
root and flower bud data to predict gene capture in the
additional samples of size 0.5S, 1S, 1.5S and 2S (or t =
0.5,1,1.5,2, note: S is different for different EST sets). The

results are presented in Table 3. In Figure 2, we plot gene

capture (D + m )) versus EST sample size ((1 +t)

*S), expected redundancy (p;4;) versus expected gene

capture (D + m ) ) and expected redundancy versus

EST sample size ((1+t)*S) for the green silique (results are
similar for the other three sets).

For the silique data, if an additional sample of 12330 ESTs
(t = 1) was sequenced, we would expect to capture an extra
of 2253 distinct genes. The average gene capture per EST
in the second sample is 0.18(= 2253/12330). For the
ABGR, root and flower bud sets, this quantity (att=1) is
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0.28, 0.31 and 0.28 respectively. The gene capture plot for
the silique in Figure 2A shows a concave pattern in EST
sample size, indicating an expected declining trend of effi-
ciency with additional sequencing. The sequencing redun-
dancy, defined as the average EST count per gene shows a
slightly convex relationship in gene capture (Figure 2B)
and a roughly linear one in EST sample size (Figure 2C).
Note that these four cDNA libraries were generated under
the same normalization protocol [36]; for non-normal-
ized libraries, the redundancy would likely have increased
at a greater rate as sequencing proceeded.

Now we turn to estimation of the number of genes jointly
expressed or co-expressed in two pairs of tissues: silique +
flower (3') and ABGR + root (5'). If we let D,, D, and D, ,
be the observed total number of genes in library 1, 2 and
the pooled set, then the number of observed co-expressed
genes is D, =D,+D,-D,_,, in analogy with the estimated

overlap Nmz = Nl +N2 _N1u2- The estimate of N in

the silique and flower bud pair is 15333, suggesting an
estimate of 5904 (= 9232+12005-15333) genes that are
co-expressed in contrast to 1062 (= 5093+2564-6595) as
observed. That is, about 64% (5904/9232) of the genes in
flower bud tissue are actually co-expressed in the green sil-
ique tissue, much higher than 41% (1062/2564) as
observed. For the second pair, the estimated total for the
pooled set is 12720, suggesting an overlap of 5927 (=
9492+9155-12720) genes accounting for 65% of the total
in the root tissue in contrast to 766 (= 2883+3126-5243)
as observed for a fraction of 25%. Clearly the true
between-library similarity in terms of the percentage of
co-expressed genes is much higher than what is directly
observed.

Discussion

Several important factors could affect the accuracy and
precision of gene capture prediction and gene number
estimation. For applications of interest here, special care
must first be taken to minimize the impact of errors from
different sources. A good gene cluster profile data n
should reflect the true sampling distribution of the tran-
scripts in the cDNA library. We have suggested that inves-
tigators cluster 5' and 3' ESTs separately and then correct
for errors attributable to insufficient overlap (ISO errors)
of sibling 5' ESTs [27]. For the two 5' EST sets, root and
ABGR, the estimates of N before and after ISO error cor-
rection were 12030 vs 9155 and 12085 vs 9492 respec-
tively (see data before ISO error correction in the
Supplementary Materials). The substantial difference in

N is mainly due to the reduced singleton estimate (7, )

http://www.biomedcentral.com/1471-2105/6/300

in the corrected version of gene cluster profile data A . In

the gene capture prediction, we have treated R as the true
data for confidence inference. However estimating n itself
by the ISO correction method could result in extra varia-
bility of predicted gene capture. This component of varia-
bility has not been taken into account in the bootstrap
procedure.

Gene number estimation and gene capture prediction are
sensitive to parametric assumptions of the transcript
abundance distribution Q. A bad parametric assumption
could yield a wildly biased estimate. For example, the
Poisson-Gamma model due to Fisher [28] has been a pop-
ular choice in species number estimation problem, under
which an analytical confidence interval can be obtained.
However we found this assumption can yield extremely
wild bias when the true Q deviates from Gamma [30]. The
egene program by SR which implements the nonparamet-
ric empirical Bayes method by [34] and [29] has been
shown unsatisfactory for prediction of additional gene
capture E(D,) for t > 1 due to extreme variability. The Neg-
ative Binomial model discussed in [29] and [21] could
potentially overcome the variability issue, however its per-
formance has not been established in literature. We are
unable to compare it with the CPP method since it is not
integrated into egene.

The nonparametric maximum likelihood approach is typ-
ically robust to the form of transcript abundance distribu-
tion Q. For example, the gene capture prediction method
worked remarkably well when Q was a log normal, expo-
nential or gamma distribution. The nonparametric maxi-

mum likelihood estimator (NPMLE) of Q, i.e, Q,
provides a concise characterization of the transcript abun-

dance distribution in the underlying cDNA library. In The-
ory the NPMLE Q is consistent for Q ([37]), implying that

Q will become adequately accurate in approximating Q
as the sample size S is sufficiently large. For many EST
libraries however, shallow sequencing provides little
information of the rare genes. Consequently the NPMLE

Q is often not accurate enough in characterizing the tran-
script abundance distribution at low levels. Thereby the
number of rare genes was often under-estimated. The
point estimate in the second simulated EST data set was

N =8185, appearing to be biased downward, though the
bootstrap confidence interval covered the true N. For the
ABGR, root and flower bud EST sets, we suspect that
under-estimation exists owing to the relatively small sam-

ple size. Note in the CPP approach, N =D +
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lim_,.E(D, | D). Even if N (at t — ) were an under-

estimate, the under-estimation effect would attenuate as t
— 0. Therefore for gene capture prediction in the near
future (e.g. t < 2), the CPP method often works adequately
well as shown in the second simulated EST set.

We have also demonstrated applications of the proposed
method for estimating the number of expressed genes in
one cDNA library or genes co-expressed in two libraries.
The analysis of four EST data sets from normalized cDNA
libraries of Arabidopsis thaliana disclosed a very similar
concave pattern of gene capture together with a roughly
linear increasing redundancy if sequencing had pro-
ceeded, both suggesting a rapid decay of sequencing effi-
ciency. It seems to us that under-estimation is likely for N
estimation if the EST sample size is relatively small. How-
ever the estimated gene expression overlap of two libraries
still can be very informative for the true expression simi-
larity provided the sample size is reasonably large.

The gene number estimation can be inflated if many genes
have multiple splicing forms in the expression pool. ESTs
from different splicing forms can fall into different con-
tigs, causing an upwardly biased frequency of small clus-
ters. In particular, the singleton count n, will be inflated

[27]. In general the singleton count is a sensitive indicator
of the rare genes. Inflation of the singleton count n, usu-

ally results in inflation of N . If we had defined a "gene"
as a distinct transcript, then this estimate will be biased
downward because ESTs from different splicing forms of
the same gene can fail to be distinguished in the cluster-
ing.

Conclusion

We have proposed a compound Poisson process model
for gene capture prediction and showed its superior per-
formance over an existing approach in estimating the
unconditional capture E(D,) by Monte Carlo simulations.
We also showed its remarkable performance in predicting
the future gene capture given the current EST sample. The
analysis of four Arabidopsis thaliana EST sets showed that
the number of expressed genes present in the parental
cDNA libraries could vary from 7800 to 15000, while the
fraction of co-expressed genes between two libraries can
be much higher than the observed overlap. The approach
can be used as a convenient, robust and reliable predic-
tion tool in EST sequencing.

Methods

Estimating Q

To estimate QQ, we adopt a penalized conditional nonpar-
ametric maximum likelihood (NPML) approach pro-

http://www.biomedcentral.com/1471-2105/6/300

posed in our previous work for species number estimation
problem [30]. Note the likelihood in this problem can be
written as

oo

UNQ) = (ONl JH Q)"

j=0
N\ 0.0 foon® < 1| L]

oc(D Jf(O,Q) 1-f(0:Q) Xg[l—f(O;Q)}

=Ly (N, Q)X L:(Q),
where L, (N, Q), is from the marginal distribution of D,
depending on both N and Q and L (Q) is from the condi-
tional distribution of X given D, depending upon Q alone.
Briefly the nonparametric MLE Q is first obtained based
on the conditional likelihood L (Q) modified by a penalty
term which was designed to stabilize the estimation. A
conditional MLE of N ( Ny, in [30]) would be one that

maximizes L, given Q, which coincides with N from the
Poisson process model proposed here, i.e. in the extrapo-

. D . .
lation form — . From this perspective, the compound

N
Poisson process model can be regarded as a generalization

or extension of the mixture model in [30]. Details of Q

estimation and remarkable performance of N are referred
to [30].

Confidence inference
Since in the NPML estimation, analytical confidence inter-
val is not obtainable, we construct the confidence interval

for N, E(D,|D) and p,,, by a bootstrap procedure. Since D

is fixed in the conditional capture estimation, for each
bootstrap sample, we would like to create D non-zero
observations from the Poisson mixture distribution

f(x; Q) (discard zeroes from f(0; Q) or directly simulate D
observations from the zero-truncated Poisson mixture, i.e.
f(x;Q)
1-f(0:Q)

fix the bootstrap EST sample size (i.e. sb) = ZIDzl X;i)

for x = 1,2...). Ideally one would also like to

at S such that each sample strictly corresponds to a Pois-
son process at time interval [0, 1] as defined earlier. The
bootstrap sample size S(t) however, is a random variable
and the sampling probability at S, i.e. Prob(S® = S) is usu-
ally close to 0. We propose realizing this approximately by
choosing bootstrap samples of size close to S, i.e. [S®)- S|
< T for some small integer T, e.g. T = 5 was used through-

Page 9 of 11

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:300

out this paper. Bootstrap samples were repeatedly gener-
ated until a total of 200 satisfying this constraint were

obtained. For the bth sample, we obtain N (b),E(DEb) |D)

and ;31(2 forb =1, ... 200. The confidence interval for each

quantity is constructed using Efron's percentile method
[38].

Joint expression estimation

In some situations, the number of genes jointly expressed
in multiple tissues is also of interest. For example, one
might want to know how many genes are expressed in an
organ that has been sampled repeatedly, or at different
developmental stages. Our method can be directly applied
to estimate this quantity by pooling multiple EST sets. If
the expression of gene i in the jth library, X;; follows a Pois-

son process with mean rate A, then the total number of

ijr

observed ESTs for this gene across J libraries, namely

ijlxij , will also follow a Poisson with pooled mean

Zl A;; given that X;; are independent across j. Hence we
j=1""1 ]

can still model the gene cluster profile in the joint set with
a Poisson mixture.

Overlap expression estimation

We now consider to estimate the number of genes co-
expressed in two libraries, say L, and L,. Let X; = X;;+X;, be
the observed count of ESTs from the ith gene in the pooled
set, and Xj; be that from EST set j, for j = 1, 2. If the joint
expression profile X;; can be accurately obtained (without
clustering error), one could apply the method by [39] to
estimate the number of co-expressed genes in two cDNA
libraries. Unfortunately, because of clustering error, the
observed X Xj can be inaccurate. For example, if we
observe X; = X;;+X;, =3 + 4 = 7, then 7 can be separated
from a larger cluster of size 8, 9, ..., due to insufficient
overlap error in the 5' EST case [27]. Consequently, the
observed X;, X; all have measurement error, and must be
corrected simultaneously. This could be quite compli-
cated.

We here take an indirect way to tackle this problem. Sup-
pose N, and N, are the numbers of genes present in cDNA
library L, and L, respectively, and N, , is the number of
genes that are jointly expressed. Then the overlap of the
two, denoted as N, -,, can be expressed as:

Niqa=Ni+N,-Ny,  (4)

For 5' ESTs, although the joint cluster profile X; = X;;+X;,

cannot be obtained accurately for all 4, one can still obtain

http://www.biomedcentral.com/1471-2105/6/300

estimates of the marginal gene cluster profile for L,, L, and
L,_, separately in an unbiased fashion by the ISO correc-
tion method [27]. To do so, we first cluster ESTs within
each library separately and then cluster the pooled set.
One can obtain the ISO-error corrected gene cluster pro-

files n;,n, and N0y, and thereafter the estimates of gene

number for these three sets, say Nl,NQ_ and Nluz- A

point estimate for N, ., would be

Ning =Nj+ Ny = Nyoo. (5)

Availability

The methods have been integrated into a web-based tool
EST stat, which is available at [40]. The supplementary
materials are also available at [41]. The current version of
EST stat software provides two options for input file(s):
(1) CAP3 clustering results including .ace and .singlets
files; (2) the gene cluster profile data n. If the user chooses
option (1), ESTstat will parse out the gene cluster profile
data from CAP3 results; and for 5' ESTs, it will simulate
ISO error and make ISO-error correction to generate n.If
one has better gene cluster profile data n, he (she) can
choose option (2) to obtain statistical analysis directly.
Finding NPMLE is computationally intensive. The boot-
strap function is currently not integrated into the web-
based EST stat interface. A JAVA program is available at the
Supplementary materials website allowing to obtain
bootstrap confidence intervals for the total number of
expressed genes, the additional capture and redundancy at
the user-specified sample size.
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