BIVIC Bioinformatics moml.?@mral

Research article

A decoy set for the thermostable subdomain from chicken villin
headpiece, comparison of different free energy estimators
Federico Fogolari*!, Silvio CE Tosatto? and Giorgio Colombo3

Address: 'Dipartimento di Scienze e Tecnologie Biomediche, Universita di Udine, P.le Kolbe 4, 33100 Udine, Italy, 2Dipartimento di Biologia and
CRIBI Biotech Centre, Universita di Padova, Viale G. Colombo 3, 35131 Padova, Italy and 3Istituto di Chimica del Riconoscimento Molecolare,
CNR, Via Mario Bianco 9, 20131 Milano, Italy

Email: Federico Fogolari* - ffogolari@mail.dstb.uniud.it; Silvio CE Tosatto - silvio@cribi.unipd.it;
Giorgio Colombo - giorgio.colombo@icrm.cnr.it

* Corresponding author

Published: 14 December 2005 Received: 16 June 2005
BMC Bioinformatics 2005, 6:301  doi:10.1186/1471-2105-6-301 Accepted: 14 December 2005
This article is available from: http://www.biomedcentral.com/1471-2105/6/301

© 2005 Fogolari et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Estimators of free energies are routinely used to judge the quality of protein
structural models. As these estimators still present inaccuracies, they are frequently evaluated by
discriminating native or native-like conformations from large ensembles of so-called decoy
structures.

Results: A decoy set is obtained from snapshots taken from 5 long (100 ns) molecular dynamics
(MD) simulations of the thermostable subdomain from chicken villin headpiece.

An evaluation of the energy of the decoys is given using: i) a residue based contact potential
supplemented by a term for the quality of dihedral angles; ii) a recently introduced combination of
four statistical scoring functions for model quality estimation (FRST); iii) molecular mechanics with
solvation energy estimated either according to the generalized Born surface area (GBSA) or iv) the
Poisson-Boltzmann surface area (PBSA) method.

Conclusion: The decoy set presented here has the following features which make it attractive for
testing energy scoring functions:

) it covers a broad range of RMSD values (from less than 2.0 A to more than 12 A);

2) it has been obtained from molecular dynamics trajectories, starting from different non-native-
like conformations which have diverse behaviour, with secondary structure elements correctly or
incorrectly formed, and in one case folding to a native-like structure. This allows not only for
scoring of static structures, but also for studying, using free energy estimators, the kinetics of
folding;

3) all structures have been obtained from accurate MD simulations in explicit solvent and after
molecular mechanics (MM) energy minimization using an implicit solvent method. The quality of the
covalent structure therefore does not suffer from steric or covalent problems.

The statistical and physical effective energy functions tested on the set behave differently when
native simulation snapshots are included or not in the set and when averaging over the trajectory
is performed.
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Background

The correct estimation of the free energy of protein con-
formations has been the focus of intense research for over
20 years. Despite recent improvements, this goal remains
elusive. One important consequence of this is the limited
ability to judge the quality of protein models built by
homology or "ab initio". In particular, the estimators
need to be accurate enough to help in the selection of the
most native-like model from an ensemble of closely
related alternative conformations. This has been recently
identified as one of the bottlenecks limiting the quality
and usefulness of protein structure prediction [1].

Free energy estimators can be broadly divided in two dif-
ferent classes: physical effective energy functions based on
physical potentials and database derived statistical effec-
tive energy functions. Physical effective energy functions
(PEEFs) for discrimination of native structures [2-5] gen-
erally yield results comparable to statistical effective
energy functions (SEEFs) based on the Boltzmann
hypothesis [6]. SEEFs are commonly formalized as sets of
pairwise potentials of mean force [7-12].

An intuitive test for a free energy estimator is the recogni-
tion of the native structure among a large number of well-
constructed decoy structures. A number of standard decoy
sets, consisting of the native structure plus a large ensem-
ble of more or less incorrect models resembling real pro-
tein structures, have been established for benchmarking
purposes [13]. The method used for constructing the
decoys, which are generally minimized using a simple
energy function, introduces some systematic bias. It is
therefore important to benchmark a scoring function on
different decoy sets in order to assess its generality. As the
results for any decoy set are known beforehand, this test
does not prevent the scoring function from learning some
hidden characteristics shared by all decoy structures, thus
limiting its usefulness for practical purposes.

The presently available decoy sets are mainly, if not exclu-
sively, built from "ab initio" models and contain struc-
tures which do not cover the full range of root mean
square deviation (RMSD) values, with respect to native
structure. Most structures, in particular for the older decoy
sets, have high RMSD values and are obviously misfolded,
limiting the usefulness of the decoy sets. Moreover the
simple energy functions used during decoy construction
could also account for some systematic bias. For this rea-
son, we have decided to derive a new pool of decoy struc-
tures from the snapshots of different trajectories from
molecular dynamics simulations of villin headpiece ther-
mostable domain. This new decoy set is evaluated using a
battery of PEEFs and SEEFs to give a comparison of their
relative performance.
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Histogram of RMSD from native structure of the decoy set.

Villin headpiece thermostable domain is a small helical
domain, folding on a microsecond time scale. For its lim-
ited size, its stability and for fast kinetics of folding it has
served as a model for many theoretical studies. All-atom
molecular dynamics simulations of the villin headpiece
thermostable domain have been performed by several
groups using explicit solvent [14-16] and implicit solvent
[17-20]. Although simulations were able to produce
native-like conformations, the ability of free energy esti-
mators to recognize native structures among all conforma-
tions seems rather limited. In a pioneering work Kollman
and coworkers were able to identify structures close to
native based on MM/PBSA energy [21]. Although molecu-
lar mechanics/implicit solvent methods are able to con-
sistently assign low energy to native-like conformations
[19,20], their performance depends much on the force
field used, the protocol applied and the solvation model
adopted. In this context, the well-constructed native- and
non-native-like decoys described in this paper will pro-
vide a further benchmark for refinement of free energy
estimators.

Since this work was started X-ray structures for mutants of
the villin headpiece thermostable domain have been
deposited in the Protein Data Bank with pdb id.: 1yrf,
1yri, 1wy3, 1wy4 [22]. The RMSD of the trace of these
newly deposited structures with respect to the average
NMR structure used in the present work (pdb id. 1vii) is
1.92 to 2.09 A. In general, the results discussed hereafter
are essentially the same when any of the other structures
deposited in the PDB is used as a reference. Although
there are differences among the NMR and X-ray structures
[22] all conclusions based on ranking of models accord-
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Figure 2

RMSD from native structure, computed on all C ,atoms, ver-
sus time (ns) for simulations NATIVE (black), FI (red), F3
(green), F4 (blue), F7 (yellow).

ing to C, trace RMSD from native are not significantly
affected.

Results and discussion

Description of the decoy set

Snapshots from the five long time molecular dynamics
trajectories described by De Mori et al. [15,16], extended
to 100 ns here, provide a set of conformations which span
a large range of RMSDs from native structures. The histo-
gram of counts for each interval of 0.5 A is reported in Fig-
ure 1.

Although the distribution is not uniform, samples are
present for native- and non-native-like conformations.
Moreover, in one of the simulations (F1) the peptide
assumes a native-like conformation starting from a rather
different conformation (see Figure 2). Snapshots taken at
20 ns intervals from NATIVE and F1 simulations have
been superimposed on native structure in Figure 3. Super-
position of NATIVE snapshots on the starting native struc-
ture sets the overall limits for definining native-like
conformations (see later). It is evident from superposition
of F1 snapshots on native structure that this set qualifies
for being defined native-like.

The average radius of gyration of models in each F1, F3, F4
and F7 sets ranges from 9.58 A (F4) to 10.43 A (F3). These
values are comparable with the average radius of gyration
of models in the NATIVE set (9.55 A). All sets display,
after initial collapse at the beginning of the simulation,
rather compact structures, as witnessed also by the average

http://www.biomedcentral.com/1471-2105/6/301

Figure 3

Snapshots taken at 20 ns intervals from NATIVE (left) and FI
(right) simulations superimposed on native structure (pdb id.
Ivii).

solvent accessible surface areas (SASA) ranging from 3013
A2 (NATIVE) to 3216 A2 (F3).

The breakdown of SASA in hydrophobic and polar contri-
butions displays a more diverse behavior. NATIVE set has
the lowest hydrophobic SASA and the lowest ratio of
hydrophobic to polar SASA. Among other sets F1 has the
lowest hydrophobic SASA, while sets F4 and F7 show the
highest ratio of hydrophobic to polar SASA.

The average number of residues involved in helical con-
formations has been also monitored for all sets. For
NATIVE simulation the average number of residues in o~
or 3, -helices is dropping between 400 ns and 700 ns to
reach an average value of ca. 14. This number is compara-
ble to the average number of helical residues in F1 and F3,
13.7 and 13.0 respectively, but definitely higher than the
value of 5.4 and 0.3 for F4 and F7, respectively. The aver-
age number of hydrogen bonds, however, is not very dif-
ferent among the sets, ranging from 18.5 for F7 to 23.8 for
NATIVE.

The quality of structures can be assessed by subjecting the
minimized structures to the program Procheck [23] which
summarizes the analysis using so-called G-Factors for the
quality of dihedral angles, covalent geometry and overall
quality of the structure.

Few structures (6 out of 6255) had very high G-Factors
which appeared artifactual. These G-factors were reas-
signed as the average of the previous and next value in the
time series. The average overall G-Factor is -0.137, -0.146,
-0.183, -0.304, -0.375 for the minimized structures of
simulations NATIVE, F1, F3, F4 and F7, respectively. The
average G-Factor for dihedral angles is -0.29, -0.30, -0.35,
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Table I: Features of the various MD runs. Summary of the main features of the various MD runs. Columns list the average total
solvent accessible surface area (Total SASA), its hydrophobic (H-SASA) and polar component (P-SASA), the average radius of
gyration (r. gyr.), the average number of residues in 0~ or 3 -helices (hel. res.), the average number of hydrogen bonds (H-bonds) and

the overall G-Factor from Procheck (Procheck).

Simulation Total SASA H-SASA P-SASA
NATIVE 2990.81 1606.68 1384.12
FI 3072.17 1712.89 1359.28

F3 3193.06 1798.77 1394.29

F4 3117.71 1815.73 1301.98

F7 3088.72 1825.99 1262.72

r. gyr. hel. res. H-bonds Procheck
9.55 17.39 23.8 0.14
9.74 13.69 24.1 0.15
10.43 13.04 24.1 0.18
9.58 5.45 20.9 0.30
10.07 0.29 18.5 0.38

-0.54, -0.64 for the minimized structures of simulations
NATIVE, F1, F3, F4 and F7, respectively. The average
number of residues in generously allowed or disallowed
regions is 0.52, 0.94, 0.59, 1.28, 3.02 for simulations
NATIVE, F1, F3, F4 and F7, respectively.

It should be noted that conformations from NATIVE sim-
ulation and F1 simulation, folding to a native-like confor-
mation, have higher (i.e. better) overall and dihedral G-
Factors than (non-native) conformations from simula-
tions F3, F4, F7. This confirms that statistics of model
dihedral angles and covalent structure may be an impor-
tant value for quality model assessment as recently dem-
onstrated [24-26].

The data discussed in this section are summarized in Table
1.

In the following we examine the behaviour of SEEFs and
PEEFs on pooled sets of conformations. We consider sep-
arately the set containing NATIVE snapshots and the set
not containing NATIVE snapshots. The latter set does not
contain any information about the native structure. It is
homogeneous, in that all snapshots are obtained using
the same procedure and it is representative of a realistic
prediction scenario. On the other hand, including snap-
shots from NATIVE simulation allows one to access a
lower range of RMSDs from native, which is not available
with snapshots from the other simulations.

The decoys arranged in five sets corresponding to the dif-
ferent molecular dynamics trajectories are available in the
Internet (see Materials and Methods section).

Statistical effective energy functions

Residue-residue mean contact energy

The contact energy computed according to the methodol-
ogy of Berrera et al. [10] has been supplemented with a
scoring function for the overall quality of the structure
(i.e. the G-Factors given by Procheck). The resulting
potential allows to separate NATIVE and native-like F1
snapshots from non-native snapshots for most of the con-
formations.

G-Factors (or any equivalent scoring of the quality of the
covalent structure of the protein) are necessary in order to
take into account other factors which may raise the energy
of a molecule. A few of these, like steric clashes and bad
covalent geometry should be removed by molecular
dynamics simulation and energy minimization, as per-
formed here. On the contrary, unusual torsion angles are
not necessarily removed both for the limited simulation
time and for possible inaccuracies in available force fields.

The running average of the contact energy for simulations
NATIVE and F1 is mostly separated from that of the other
simulations, although the structure is rather flexible and
fluctuations in the structure imply fluctuations in energy
and in RMSD. Based on this potential (without averaging)
a structure at RMSD of 4.0 A from native could be picked
up as the lowest energy structure out of the four simula-
tions F1, F3, F4 and F7.

Another way of looking at these results is to plot the
energy versus the RMSD from native. This is done in Fig-
ure 4 where the different simulations are roughly sepa-
rated. The correlation between contact energy
(supplemented by the overall Procheck G-Factor) and
RMSD is apparent, although it is hidden by fluctuations.
The appearance of the plot greatly improves when the run-
ning average of the contact energy is plotted against the
RMSD of the structure at the center of the averaging win-
dow (Figure 4). This shows that even for such coarse
grained potential averaging of fluctuations greatly
improves the performance of the scoring function.

The contact energy is strongly correlated with the hydro-
phobic SASA. The correlation coefficient is 0.67 much
larger than the same coefficient for the polar SASA which
is -0.40. A similar positive correlation coefficient is found
also within each different set of models, showing that this
correlation is not artifactual (Table 2). Although this was
somehow expected based on the table of pairwise residue-
residue contact energies favoring contacts between hydro-
phobic resiudes, this correlation shows that a simple crite-
rion like burial of hydrophobic SASA may be an effective
feature in model quality assessment.
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Figure 4

Residue-residue contact energy for simulations NATIVE
(black), F1 (red), F3 (green), F4 (blue), F7 (yellow) versus
RMSD from native structure. In the upper plot no averaging
is applied, in the lower plot a moving average is applied over
a window of 50 molecular dynamics snapshots.

The correlation with helical content is less pronounced
and largely artifactual because sets NATIVE, F1 and F3,
which have the lowest contact energy are also similar in
helical content and quite different from sets F4 and F7.
When single sets are considered the correlation vanishes.

FRST

The most striking feature of the FRST energy appears to be
the high energy fluctuation between closely related struc-
tures. This behaviour, which is more similar to PEEFs, is
induced by the torsion angle term of the FRST function. In
order to pass from one local minimum to another, it
appears necessary to overcome an energy barrier formed

http://www.biomedcentral.com/1471-2105/6/301

by distorsions in local geometry. This effect accounts for
the better discrimination of the most native-like confor-
mations in Figure 5. On the other hand it creates some
noise in the energy evaluations for the simulations F1, F3
and F4 in particular where FRST has a slight preference for
some higher RMSD structures. Overall this SEEF is reliable
at discriminating native-like conformations when at least
some are present, but it is not as effective at choosing the
less erroneous between those with high RMSD.

FRST energy is not correlated with the sets features
selected in Table 2, due to the above mentioned fluctua-
tions in the energy. However, it is worth noting that the
RAPDF component of FRST energy correlates well with the
more coarse grained residue-residue contact energy (cor-
relation coefficient 0.8).

Physical effective energy functions

Molecular mechanics (MM) energy

It is instructive to consider the molecular mechanics
energy because it shows how important solvation effects
are. With no consideration of solvation effects the ener-
gies for all simulations are comparable. The plot of MM
energy versus RMSD from native structures (averaged over
awindow of 50 snapshots) shows no correlation. The best
model that could be picked up from the sets of simula-
tions F1, F3, F4, F7 has 7.4 A RMSD from native. When the
average energies are considered, the best model has 8.6 A
RMSD from native. Fluctuations here are rather large, in
the range of 100 kcal/mol. No native-like conformation
from simulation F1 can be distinguished based on MM
energy, as it could be expected.

Molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA)
energy and molecular mechanics/Generalized Born surface area
(MM/GBSA) energy

The performance of the scoring function drastically
improves when solvation effects are added to the MM
energy function either through the Poisson-Boltzmann
model or through the Generalized Born solvent accessibil-
ity model. It is apparent that a procedure for smoothing
fluctuations should be employed for better reliability. We
have previously used the colony energy approach pro-
posed by Honig and co-workers [27] coupled with MM/
PBSA energy estimation [5] and we showed that it could
greatly improve the energy vs. RMSD curve for a small
number of decoy sets. The peculiar nature of the structural
models described here makes a simple running average
procedure effective.

The MM/GBSA energy for NATIVE and folding simulation
F1 is lower than for non-native simulations in a consistent
portion of time. The plots of MM/PBSA and MM/GBSA
energy versus RMSD from native structure display a very
good correlation. This feature is better displayed in the
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Table 2: Energy — feature correlation coefficients. Correlation between energy and selected features of the sets. Correlation
coefficients are listed for the sum of contact energy and overall G-Factor from Procheck (contact + pc), the FRST energy (FRST), the
molecular mechanics energy (MM), molecular mechanics/generalized Born surface area energy (MM/GBSA) and molecular mechanics/
Poisson-Boltzmann surface area energy (MM/PBSA). Selected features are: hydrophobic solvent accessible surface area (H-SASA),
radius of gyration (r. gyr.), number of residues in - or 3 ,-helices (hel. res.), number of hydrogen bonds (n. H-bonds). The upper table
reports correlation coefficients for the pooled set. The lower table reports the correlation coefficient averaged over the sets NATIVE,

Fl, F3, F4, F7.
Energy H-SASA r. gyr. hel. res. H-bonds
contact + pc 0.671 0.305 -0.771 0.575
FRST 0.402 0.014 -0.797 0.597
MM 0.365 0.282 -0.197 0.074
MM/GBSA 0.618 0.273 -0.756 0.535
MM/PBSA 0.719 0.460 -0.621 0.421
Energy H-SASA r. gyr. hel. res. H-bonds
contact + pc 0.466 £ 0.162 0.340 £ 0.213 0.077 + 0.203 -0.051 +0.180
FRST -0.065 £ 0.115 -0.092 + 0.126 -0.097 £ 0.180 0.016 £ 0.106
MM 0.278 + 0.103 0.488 + 0.088 -0.062 + 0.097 -0.020 £ 0.116
MM/GBSA 0.290 + 0.140 0.256 + 0.152 0.019 +0.248 0.005 + 0.088
MM/PBSA 0.533 £0.129 0.548 + 0.148 0.078 + 0.185 -0.056 £ 0.071

MM/GBSA energy versus RMSD plot (see Figure 6) rather
than in the MM/PBSA plot (Figure 7). This is most proba-
bly due to the fact that the: i) structures are optimized
using MM/GBSA energy and changing the solvation
model for energy evaluation may introduce noise; ii) the
MM/GBSA method does not suffer from all the numerical
approximations implied by the numerical finite difference
solution of the Poisson-Boltzmann equation. In this case
the best model that could be picked up, based on the
energy running average, from simulations starting from
non native conformations has a RMSD from native struc-
ture of 4.8 A and 4.4 A for MM/PBSA and MM/GBSA
energy model, respectively. It is worth noting that non-
native models in the set F3 have even lower MM/PBSA
energy than native-like models of set F1. The running
average favors native-like models by few tenths of kcal/
mol, largely within the numerical inaccuracies of the
methodology. Both MM/GBSA and MM/PBSA energies
anticorrelate with the burial of hydrophobic SASA. The
correlation with the number of helical residues and
number of hydrogen bonds is artifactual, as discussed
above, and disappears when single sets are considered.

Comparison of different effective energy functions

For the present decoy set native-like conformations may
be conveniently defined in terms of the RMSD from native
structure. The long time simulation of the native structure
has an average RMSD compared to the deposited structure
of 3.4 A + 0.7 A with a maximum RMSD of 4.8 A. The lat-
ter could be arbitrarily defined as the RMSD for consider-
ing a structure native-like.

Tables 3 and 4 report the performance of the SEEFs and
PEEFs tested, evaluated with different criteria and accord-
ing to the RMSD from native of the lowest energy model.
Two sets, alternatively including or not snapshots from
native simulation, are considered and the energy or scor-
ing function values are considered as they are or averaged
over 50 continuous snapshots.

For the set with native simulation snapshots included,
averaging improves significantly the performance of the
FRST scoring function and MM energy function. For the
set not including native simulation snapshots, averaging
improves significantly the performance of MM/GBSA and
MM/PBSA energy functions which are known to be
affected by large fluctuations (see the previous sections).

For the set including native simulation snapshots the
FRST scoring function, MM/GBSA and MM/PBSA energy
functions show the best performance and they all recog-
nize native-like models with RMSD from native less than
3.0A.

The poor performance of MM energy points out the need
to consider solvation effects. For the set not including
native simulation snapshots SEEFs appear superior to
PEEFs. Averaging makes MM/GBSA and MM/PBSA more
effective while it worsens the performance of atom-based
FRST scoring function. The sensitivity of FRST to molecu-
lar details is greater than that of the residue-based contact
energy [10] for which, indeed, averaging has an overall
beneficial effect.
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Figure 5

FRST energy for simulations NATIVE (black), FI (red), F3
(green), F4 (blue), F7 (yellow) versus RMSD from native
structure. In the upper plot no averaging is applied, in the
lower plot a moving average is applied over a window of 50
molecular dynamics snapshots.

Since FRST is trained on native structures it is likely that
while assigning low scores to native features, it assigns
exceedingly bad scores to non-native-like features. This
would explain the effect of averaging the score over closely
related structures. Overall from the set not including
native simulation snapshots it is seen that most methods
are able to detect models with reasonably low RMSD from
native (4.0 A to 5.3 A).

Conclusion
The decoy set presented here displays features which make
it attractive for testing energy scoring functions:
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Molecular mechanics/generalized Born surface area energy
for simulations NATIVE (black), FI (red), F3 (green), F4
(blue), F7 (yellow) versus RMSD from native structure. In the
upper plot no averaging is applied, in the lower plot a moving
average is applied over a window of 50 molecular dynamics
snapshots.

1) it covers a broad range of RMSD values (from less than
2.0 A to more than 12.0 A);

2) it has been obtained from molecular dynamics trajec-
tories, starting from native and different non-native con-
formations which have diverse behaviour, with secondary
structure elements correctly or incorrectly formed, and in
one case folding to a native-like structure. This allows not
only for scoring of static structures, but also for studying,
using free energy estimators, the kinetics of folding;

3) All structures have been obtained from accurate MD
simulations in explicit solvent and after molecular
mechanics (MM) energy minimization using an implicit
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Molecular mechanics/Poisson Boltzmann surface area energy
for simulations NATIVE (black), FI (red), F3 (green), F4
(blue), F7 (yellow) versus RMSD from native structure. In the
upper plot no averaging is applied, in the lower plot a moving
average is applied over a window of 50 molecular dynamics
snapshots.

solvent method. The quality of the covalent structure
therefore does not suffer from major steric or covalent
problems.

Different free energy or scoring functions have been tested
on the sets. The performance of SEEFs and PEEFs depends
strongly on the decoy set. Here we have a decoy set with
native, native-like and non-native structures. The set not
including decoys from the native trajectory is representa-
tive of a realistic prediction scenario. Moreover a simple
running averaging procedure can be employed in order to
smooth free energy fluctuations, because decoys are
obtained by sequential sampling of molecular dynamics
trajectory. These features are not common for decoy sets.

http://www.biomedcentral.com/1471-2105/6/301

The performance of free energy estimators may be
assessed therefore in different contexts: 1) when snap-
shots from native simulation are included in the set; 2)
when only snapshots from simulations starting from non-
native conformations are included in the set.

Moreover the effect of averaging may be easily assessed.

When native structures are included in the set, i.e., when
the set includes models very close to native structure,
atom based energy functions perform very well. The atom-
based FRST SEEF compares well with atom-based MM/
PBSA and MM/GBSA PEEFs.

When snapshots from native simulation are not included
in the set, the performance of residue based SEEF less sen-
sitive to molecular details improves over atom-based SEEF
and PEEFs. For MM/GBSA and MM/PBSA averaging has a
beneficial effect being able to smooth large fluctuations
expected in the methodology. The effect of averaging on
FRST SEEF is dominated by relatively poor discriminative
power on non-native free energy.

Overall these results suggest that different free energy esti-
mators, possibly in a hierarchical scheme, should be used
depending on the expected quality of predictive models.
Application of some form of averaging in order to smooth
fluctuations due to molecular details, should be consid-
ered carefully depending on the energy function
employed.

Methods

Molecular Dynamics simulations and analysis

The structures and trajectories used in this work were
selected as described in a previous paper [15,16], which
we briefly outline here. Seven uncorrelated conformations
were chosen from a coarse-grained Monte Carlo (MC) tra-
jectory thermalised at the transition temperature T,. The
MC evolution occurs in a simplified free-energy landscape
in which an off-lattice representation of the protein with
every residue represented by a bead is used to allow an
efficient selection of marginally-compact structures,
which are subsequently taken as viable initial conforma-
tions for the subsequent all-atom MD. The coarse-grained
MC structural representation is connected to the one with
atomic resolution through a "fine-graining" reconstruc-
tion algorithm described in De Mori et al., 2005 [16].
Starting from different reconstructed MC structures, seven
all-atom simulations (F1, F2, ... F7) were carried out. We
have concentrated on four of them, whose length was
extended to 100 ns, namely F1, F3, F4 and F7, which
examplify the variety of observed dynamical behavior. To
obtain a reference trajectory, a 100 ns long simulation was
run starting from the NOE derived minimized average
structure (pdb code 1VII.pdb). This trajectory is labeled
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Table 3: Evaluation of free energy estimators (native trajectory included). Performance of SEEFs and PEEFs on the set including native
simulation. Performance is evaluated according to different methods (see Methods section). The lower part of the table refers to
scores averaged over a moving window of 50 molecular dynamics snapshots.

NATIVE+F|+F3+F4+F7 — no average

Score funct. logP(B,) logP(B,o) F.E. corr. coeff. RMSD (A) best score
contact + pc -1.08 -1.08 13.8 0.62 3.03
FRST -1.38 -1.94 232 0.48 2.6l
MM -0.25 -1.39 10.6 0.21 745
MM/GBSA -1.71 -2.02 29.6 0.66 2.40
MM/PBSA -1.79 -2.02 23.2 0.58 235

NATIVE+F|+F3+F4+F7 — with average

Score funct. logP(B)) logP(B,o) F.E. corr. coeff. RMSD (A) best score
contact + pc -0.91 -0.91 16.3 0.65 3.77
FRST -1.79 -2.78 43.2 0.54 2.39
MM -0.70 -1.61 14.8 0.25 4.25
MM/GBSA -1.14 -1.67 36.1 0.72 2.88
MM/PBSA -1.54 -2.12 28.6 0.67 2.52

NATIVE throughout the text. Every all-atom model
obtained was subjected to Molecular Dynamics simula-
tions (simulations NATIVE, F1, F3, F4, F7), using the same
simulation protocol and conditions. All basic NH, groups
were considered protonated while all the acidic COO-
groups were considered deprotonated. These conditions
resulted in a total charge of +2 on the protein. The protein
in each simulation was solvated with explicit water mole-
cules in a periodic octahedral box large enough to contain
the protein and 1.0 nm of solvent on all sides. The simple
point charge (SPC) [28] water model was used to simulate
the solvent. Electroneutrality of the system was ensured by
the addition of two negatively charged chloride ions.

The same equilibration protocol was used in all simula-
tion:

1. Each system was initially energy minimized with a
steepest descent method for 1000 steps. The calculation of
electrostatic forces utilized the PME implementation of
the Ewald summation method [29]. The GROMOS96
force field [30,31] was used.

2. To release excess strain in simulations F1, F3, F4, F7 due
to possible artifacts in the reconstruction procedure, three
sequential MD runs of 50 ps each with position restraints
on the protein, backbone and sidechains, respectively,
were performed. In the first, the protein atoms were kept
fixed with the solvent molecules free to move. In the sub-
sequent run, the backbone of the protein was kept fixed

with both the sidechains and solvent free to move in MD.
In the third and final simulation, the sidechains were kept
fixed, while the backbone and solvent atoms were allowed
to move.

3. After these first relaxation steps, each system was heated
to 300 K by 200 ps of MD simulation under NPT condi-
tions, with no restraints, by weak coupling to a bath of
constant pressure (P, = 1 bar, coupling time 7, = 0.5 ps)
[32].

4. Each of the systems was then equilibrated by 50 ps of
unrestrained MD with coupling to an external tempera-
ture bath [32] with coupling constant of 0.1 ps.

5. The production runs at 300 K, using NPT conditions
were all 100 ns long in the case of the simulation starting
from the NMR determined structure 1VIL.pdb (NATIVE)
and simulations F1, F3, F4, F7.

The number of explicit water molecules and the structural
features of the simulations are reported in Table 5. In all
production runs, the temperature was maintained close to
the intended values, by weak coupling to an external tem-
perature bath [32] with a coupling constant of 0.1 ps. The
protein and the rest of the system were coupled separately
to the temperature bath. The LINCS algorithm [33] was
used to constrain all bond lengths. For the water mole-
cules the SETTLE algorithm [34] was used. A dielectric per-
mittivity, € = 1, and a time step of 2 fs were used. All
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Table 4: Evaluation of free energy estimators (native trajectory not included). Performance of SEEFs and PEEFs on the set not
including native simulation. Performance is evaluated according to different methods (see Methods section). The lower part of the
table refers to scores averaged over a moving window of 50 molecular dynamics snapshots.

F1+F3+F4+F7 — no average

Score funct. logP(B)) logP(B,o) F.E. corr. coeff. RMSD (A) best score
contact + pc -2.55 -2.55 29.8 0.40 4.03
FRST -0.70 -1.44 1.9 0.17 5.31
MM -0.34 -0.64 23 -0.07 745
MM/GBSA -1.20 -1.70 232 0.38 4.37
MM/PBSA -0.04 -1.02 15.1 0.32 8.90

F1+F3+F4+F7 — with average

Score funct. logP(B)) logP(B,o) F.E. corr. coeff. RMSD (A) best score
contact + pc -1 -1.6l 39.2 0.43 443
FRST -0.15 -0.31 10.7 0.21 791
MM -0.07 -0.08 0.0 -0.14 8.59
MM/GBSA -1.20 -1.83 34.5 0.44 4.37
MM/PBSA -0.85 -1.23 24.6 0.38 4.80

atoms were given an initial velocity obtained from a Max-
wellian distribution at the desired initial temperature of
300 K.

All the minimization, MD runs were performed using the
GROMACS software package. [35].

Description of the decoy set

All snapshots from the five trajectories described above
have been energy minimized in a two-step fashion using
the program CHARMM and the CHARMM forcefield (ver-
sion 27b2) [36,37]. First all C, coordinates have been
fixed and the energy minimized with 20 steepest descent
and 30 conjugate gradients steps with 10 conjugate gradi-
ent cycles, in order to remove high energy spots, like van
der Waals clashes. During this minimization a distance
dependent dielectric constant has been employed (&= 1r)
with a cutoff on non-bond interactions of 12 A. In the sec-
ond step the structure is totally unrestrained and a more
accurate solvent model (the Generalized Born model) has
been employed using the parameters suggested by Qiu et
al. [38], in order to reduce artifacts ensuing from missing
solvent. First 50 steepest descent minimization steps have
been performed followed by 200 conjugate gradients
minimization steps with 10 conjugate gradient cycles. The
energy minimized structures have been deposited in the
Decoys'R'us database with the name vhp_mcmd (villin
headpiece - Monte Carlo molecular dynamics) (http://

dd.stanford.edu/, [13]).

Amino acid empirical contact energy
Residue-residue contact energies have been computed
according to the methodology described by Berrera et al.

[10]. A contact between two residues exists when these are
not adjacent and when a heavy atom of the sidechain of
one of the residues is closer than a threshold distance to a
heavy atom of the sidechain of the other residue. The
threshold was chosen, according to Berrera et al., 2003
[10] as the sum of the van der Waals radii of the two atoms
plus 1.0 A. The table of contact energies of Berrera et al.
[10] has been used and the total energy has been divided
by the number of aminoacids. In order to take into
account the overall quality of each model the overall G-
factor (with changed sign) from Procheck has been added
to the contact energy.

FRST

The FRST energy function is a potential covering the main
features of native protein structures. It has been fully pre-
sented elsewhere [26]. Briefly put, the energy function
uses a linear combination of four different statistical
potentials to calculate a pseudo-energy which can be used
to estimate the quality of a protein structure. The most
important feature is the quality of the local geometry of
the protein backbone, expressed by a residue-specific tor-
sion angle potential. The (@ ) angles of each residue are
used to construct a 10 x 10 degree propensity map for
each of the twenty amino acids. The RAPDF potential [7]
is a statistical pairwise potential used as the second most
important feature in the total energy. The remaining two
energy terms are a statistical solvation term constructed in
analogy to ref. [39] and a simple count of intra-chain
backbone hydrogen bonds. The weighting factors were
derived from optimizing the results for a training set of
3,757 models submitted during CASP-4, covering the full
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Table 5: Features of the various MD simulations. Summary of the main feature of the various MD runs. Number of solvent particles in
each of the simulations. For trajectories FI-F7 are also provided the fraction of local and non-local native contacts at the beginning of
the MD run, as well as the initial RMSD over the core of the protein (residues 9-32).

Simulation Water Molecules 0 0 initial core RMSD
q qni
Fl 6568 0.67 0.1 8.4
F3 3892 0.6l 0.15 6.1
F4 3140 0.50 0.10 4.5
F7 2911 0.46 0.04 5.5
NATIVE 2768

range from easy comparative modelling all the way to dif-
ficult novel folds targets.

MM energy, MMIGBSA and MM/PBSA free energy

The MM/PBSA methodology, as applied here, has been
described at length and its performance has been tested
[5,40]. In this methodology the free energy of a system is
written as the sum of an intrasolute term, computed
according to one of the available molecular mechanics
forcefield, and a solvation term which is further split in an
electrostatic term and a hydrophobic term. The latter term
is taken as proportional to the solvent accessible surface
area. The electrostatic solvation term is computed accord-
ing to the Poisson-Botzmann theoretical framework [41].

In summary, the free energy of the macroscopic state C,
unless a constant term and entropic contributions, is:

AGE =U(®R, .,7,)+AGTB (7, 7))+ AGSA (7, .. 7))

AGPB(1,.., 1, )is the free energy difference computed

according to the Poisson-Boltzmann equation for charg-
ing the rigid molecule in solution and in gas phase. This
electrostatic term has been computed either according to
the Poisson-Boltzmann equation or according to the Gen-
eralized Born (GB) model [38]. AG®A(7 ..., T, ) is the so-
called hydrophobic energy and may be taken propor-
tional to the solute-solvent interface area, i.e. AGSA = jA,
where A is defined as the area of the solvent accessible sur-
face. There is no agreement in the literature on the propor-
tionality coefficient (i.e. the surface tension coefficient). A
value of 50 cal mol-! A-2 has been proposed by Nicholls et
al. [42] for proteins. This value has been significantly
decreased by us for use in MM/PBSA framework because
van der Waals intramolecular interactions will account for
a large part of this surface tension. Based on simple con-
siderations we have proposed a value of 20 cal mol-! A2
[43].

If we assume that entropic contributions are the same for
all sampled conformations, we can use AG¢ for estimating
the stability of each conformation. We have used both the
MM energy computed using CHARMM [36,37], the MM/
GBSA energy computed using CHARMM and MSMS [44]
for solvent accessible surface area and MM/PBSA com-
puted using CHARMM and the program UHBD [45,46].
The linear version of the PB equation has been used as jus-
tified by the low charge density of the protein [47]. A pro-
cedure using focusing makes the computation of PB
energies rather efficient [43,48].

Averaging over molecular dynamics simulations

The values of MM, MM/GBSA and MM/PBSA energy dur-
ing a simulation are affected by very large fluctuations,
typically in the range of 100 kcal/mol. In order to damp
fluctuations, a running average within a window of 50
snapshots contiguous in time was performed and the
average energy or score was assigned to the model at the
center of the moving window.

Performance evaluation

The performance of the scoring functions used has been
evaluated using the parameters recently proposed and
employed by Samudrala and coworkers [11]. We summa-
rize here the definitions and features of the scoring func-
tions employed:

1) the logP(B,) is defined as:

-
logP(B;) = loglo(ﬁl)

where r, is the rank in RMSD from native for the best scor-
ing model, normalized by the number of decoys in the set.

2) the logP(B,,) is defined as:

o
log P(Byg) = 10%10(w)
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where rllo is the rank in RMSD from native of the struc-

ture with lowest RMSD from native among the ten best
scoring models, normalized by the number of decoys in
the set.

The values of logP(B,) and logP(B,,) depend on the frac-
tion of models with RMSD from native similar to the best
model. These values are the logarithm of the probability
of scoring the best model as the lowest or among the ten
lowest energy models [11].

3) the fraction enrichment parameter defined as the frac-
tion of the 10% lowest RMSD models which is found
among the 10% best scoring models. This parameter pro-
vides evidence for the tendency of the scoring system to
assign low RMSD models best scores.

4) the correlation coefficient between score and RMSD
from native. This parameter may be ineffective if the scor-
ing function is sensitive to minor model details and if it is
not accurate in all the range of RMSDs.

5) the RMSD from native of the best score model. This
parameter is directly related to the performance of the
scoring function in recognizing native-like models.

These five parameters have been considered for the pool
of NATIVE, F1, F3, F4 and F7 minimized snapshots and
for the same pool not including snapshots from NATIVE
simulation. The decoys from the latter ensemble do not
include any information on native structure. The same
analysis has been repeated taking for each model the aver-
age of the energy or scoring function in a window of 50
snapshots.
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