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Background
With the sequencing of entire genomes and the exponen-
tial growth of sequence databases on the one hand, and

Abstract

Background: Structure-dependent substitution matrices increase the accuracy of sequence
alignments when the 3D structure of one sequence is known, and are successful e.g. in fold
recognition. We propose a new automated method, EvDTree, based on a decision tree algorithm,
for automatic derivation of amino acid substitution probabilities from a set of sequence-structure
alignments. The main advantage over other approaches is an unbiased automatic selection of the
most informative structural descriptors and associated values or thresholds. This feature allows
automatic derivation of structure-dependent substitution scores for any specific set of structures,
without the need to empirically determine best descriptors and parameters.

Results: Decision trees for residue substitutions were constructed for each residue type from
sequence-structure alignments extracted from the HOMSTRAD database. For each tree cluster,
environment-dependent substitution profiles were derived. The resulting structure-dependent
substitution scores were assessed using a criterion based on the mean ranking of observed
substitution among all possible substitutions and in sequence-structure alignments. The
automatically built EvDTree substitution scores provide significantly better results than
conventional matrices and similar or slightly better results than other structure-dependent
matrices. EvDTree has been applied to small disulfide-rich proteins as a test case to automatically
derive specific substitutions scores providing better results than non-specific substitution scores.
Analyses of the decision tree classifications provide useful information on the relative importance
of different structural descriptors.

Conclusions: We propose a fully automatic method for the classification of structural
environments and inference of structure-dependent substitution profiles. We show that this
approach is more accurate than existing methods for various applications. The easy adaptation of
EvDTree to any specific data set opens the way for class-specific structure-dependent substitution
scores which can be used in threading-based remote homology searches.
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the significant number of known folds compared to the
putative number of possible folds in the fold space on the
other hand, sequence-structure comparison is currently
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one main challenge of the post-genomic era. To this goal,
3D-environments were used by Eisenberg and coll. in the
early 90s to build statistical potentials indicating the prob-
ability of finding each amino acid in a given structural
environment as described by the secondary structure, the
solvent accessibility and the polarity of neighboring
atoms [1]. Such statistical potentials were successfully
applied to protein fold recognition [1-4] or protein model
evaluation [5,6], and were shown to improve the quality
of sequence-structure alignments [7].

Statistical potentials describing the propensity of a residue
pair to be at a given spatial distance have proved success-
ful as well [8-14], but are more difficult to use as informa-
tion to guide sequence-structure alignments using
dynamic programming. On the contrary, residue prefer-
ences for position-dependent structural environments are
easily implemented in alignment programs [7,15]. Recent
improvements in this field were achieved by (i) optimiz-
ing definition and classification of the 3D-environments,
and (ii) by constructing substitution matrices instead of
residue preferences, i.e. taking into account the native res-
idue type [15-17]. Indeed, it has been shown that amino
acid substitutions are constrained by the structural envi-
ronment, each environment displaying a distinct substitu-
tion pattern [18,19]. The use of 64 distinct substitution
matrices corresponding to different 3D environments
based on secondary structure, solvent accessibility and
hydrogen bonding, combined with structure-dependent
gap penalty and with global or local alignment algo-
rithms, provides good performance to the FUGUE soft-
ware in fold recognition approaches [15]. In this paper we
investigate the use of decision tree algorithms to automate
and improve the classification of structural environments.
The automation will allow easy adaptation to any partic-
ular selected data set, opening a way for the construction
of various specific substitution matrices. Indeed, it
appears that one problem in the use of statistical poten-
tials for structure prediction is their lack of universality
[13]. It may thus be worthwhile to derive potentials spe-
cific to prediction problems or to protein classes. The
automated derivation proposed here will facilitate such
developments.

In the first part of the work we focus on automatically
building and evaluating structure-dependent substitution
scores. The emphasis is given to the development of a
method for automatic selection of the most informative
classifications of 3D environments in order to set up a ver-
satile method allowing easy compilation of structure-
dependent substitution scores for any given set of pro-
teins. In a second part, the method is applied to a specific
protein class, the small disulfide-rich proteins.
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Decision trees have attracted our attention for several rea-
sons. Knowledge acquisition and description language are
optimized automatically and do not require human
expertise during the learning process. Thanks to the hier-
archical organization of the inferred trees, classifications
are obtained quickly and the chain of decisions leading to
the prediction is explicit and can be easily interpreted (in
contrast to artificial neural networks for example). Deci-
sion tree learning algorithms are also robust since they
partition the data recursively. The first dichotomies near
the tree root are then based on many examples and are
therefore statistically reliable. To handle noise and uncer-
tainty, the trees can be pruned during a post-processing
step to remove possible misleading clusters at the bottom
of the tree. The research field on this topic is well-estab-
lished and the number of applications of decision trees to
real world is huge.

Methods

Structure-dependent substitution profiles

Standard substitution matrices are deduced from multiple
sequence alignments of similar sequences [20-22]. To
derive structure-dependent substitution matrices, multi-
ple sequence alignments are also needed as well as a
description of the 3D structure at each position in the
alignment [15,17]. A schematic overview of the EvDTree
method is displayed in Figure 1. Since we want to make
sure that all residues at the same position in the alignment
do share similar 3D structures, we will only use multiple
alignments obtained from structural superimpositions
(step 1 in Figure 1). From this, we extract all observed
"substitutions" for each residue type and the correspond-
ing structural environment (step 2 in Figure 1). The word
"substitution" here is used to describe the residue replace-
ment observed at an equivalent position in two structur-
ally similar proteins. Then, for each residue type, the
structural environments and associated substitutions are
classified using a decision tree algorithm and substitution
scores are computed from residue distributions observed
in each cluster of the classification tree (step 3 in Figure 1).

Standard structure-dependent substitution matrices
report the probability of 20 x 20 or 21 x 21 possible sub-
stitutions in a given structural environment [15]. In this
work we classify 3D-environments and associated substi-
tutions derived from alignments separately for each of the
21 residues (the 20 standard residues plus the half-cys-
tine) using a decision tree algorithm (Figure 1, step 3 and
Figure 2). As a result, we get several structure-dependent
substitution profiles for each type of residue, that each
indicates the relative probabilities of all 21 possible sub-
stitutions of one residue type in a given structural environ-
ment. Since the selected structural environments differ
between residue types, the substitution profiles cannot be
gathered into structure-dependent substitution matrices.
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protein structures
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- Classify structural environments into clusters using Decision Trees (Figure 2)
- For each cluster, compute log-odds substitution scores
from residue distribution (Methods and data)

3- Environment-dependent substitution scores
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Figure |

Flow-chart of the EvDTree method. |- Initial data are pairs of superimposed protein structures. For each position, the
"native” residue in the reference protein, the "substituted" residue in the superimposed protein and structural parameters are
tabulated. 2- The data are filtered and grouped according to the "native" residue type, resulting in root clusters for classifica-
tions. 3- For each residue type, a hierarchical classification is achieved using a decision tree algorithm. Substitution scores are
computed for all resulting clusters from residue distribution in the cluster.
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Tree root
pol<53%
.:.z .. -.": pac>6%,.-" res '.:-
Cluster
Edge labels
Subclusters
Cluster | Structural environment
Co Any
c pol<=53%, pac>6%

Cq pol<=53%, pac>6%, dy>TA
Co pol<=33%, pac>6%, d,;<=TA

Figure 2

Decision tree classification of all observed substitu-
tions for Leucines. Similar trees are built for each of the 21
residue types, including half-cystine. The structural environ-
ment for a given cluster is defined by the edge labels along its
path from the root cluster ¢,. For example, the nodes
colored in gray indicate the partial classification path of a
Leucine observed in a native structural environment whose
descriptors s,3, 5|5 and s, verify s,3 = pol = 3%, 5,5 = pac = 7%
and s,o = d, = 5.4A.

As an example of how structural environments may differ
between residues, a solvent-exposed environment might
refer to a solvent accessibility > 6% if the residue is a leu-
cine, but to a solvent accessibility > 33% if the residue is a
glutamine.

Learning and test data sets

Several data sets of structure-structure superimpositions
and the corresponding alignments are available [23-25].
We have selected the database of homologous structure
alignments, HOMSTRAD [23] for constructing both the
learning and the test data sets of sequence-structure align-
ments. Main HOMSTRAD strengths are (i) a selection of
accurate protein structures, (ii) a combination of auto-
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matic procedures and of manual inspections that guaran-
tee low data noise, and (iii) its successful use in the
derivation of the structure-dependent substitution matri-
ces used in FUGUE [15]. Moreover, to facilitate compari-
son between our method and FUGUE, we selected the
very same learning set previously used by Mizuguchi et al.
This subset consists of 177 families extracted from the
HOMSTRAD database and does not contain membrane
proteins. From this HOMSTRAD subset, a set of 2.5 mil-
lion of observed substitutions were extracted, one substi-
tution corresponding to a residue in a reference structure,
and the corresponding residue observed at the same posi-
tion in a structurally similar protein. Moreover, to remove
non-structural constraints from the sequence-structure
alignments, the following filters were applied:

- Residues involved in a domain-domain or chain/chain
interface, were excluded. Residues are considered to be
involved in an interface when their solvent accessibility
varies by more than 7 % when comparing the protein
environment in the complex and in the isolated chain/
domain. The cut-off value was taken from Mizuguchi et al
[15], who used a similar filter to remove residues at a
chain/chain interface.

- Residues that are not correctly superimposed in the struc-
tural superimposition were also excluded. The superim-
position was considered good enough when the deviation
between the two corresponding alpha carbons is below
3.5 A. We assume that larger deviations may correspond
to incorrect structural superimposition for the particular
residue even though other residues are correctly aligned.
Large deviations may also imply significant modifications
in the 3D-environment. Although this 3.5 A criterion is
sometimes too restrictive, it actually leaves enough data
for robust statistical estimations while removing most of
aligned amino acid pairs whose respective structural con-
texts are not superposable.

Application of the two above filters excluded about 20%
of the initial substitutions leaving about 2 million substi-
tutions for the learning process. This data set was split into
(i) a learning data set containing 950 000 substitutions
similar to the learning set used by Mizuguchi et al. (ii) a
pruning data set containing 325 000 substitutions, and
(iii) a test data set containing 355 000 substitutions. The
learning data set has been in some cases filtered further
based on the percentage of sequence identity between
superimposed proteins, resulting in smaller sets of 500
000 (0-40% id) or 700 000 (0-60% id) substitutions,
respectively.

- Since we only work with three-dimensional structures,
the oxidation state of any cysteine (free or disulfide
bridged) is known. The symbol 'C' refers to disulfide
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bridged cysteines (half-cystines), whereas the symbol 'J'
was used for free cysteines.

Structural descriptors

Since the decision tree algorithm is able to automatically
select the most discriminating structural descriptor at each
classification step (see below) we do not need to empiri-
cally determine the 'best' descriptors. In this work, twenty-
three structural descriptors were provided to the classifica-
tion algorithm. The secondary structure (ssl) was
assigned to each residue according to STRIDE [26] into
seven categories. Values are as follows: ss1 =1, 2, 3, 4, 5,
6 and 7 for a-helices (H), 3, helices (G), n-helices (I), iso-
lated bridges (B), extended conformations (E), turns (T)
and coils (C), respectively. We also used a simpler 3-state
description (ss2) deduced from the STRIDE assignment:
ss2 =1, 2 or 3 for helices (H or G), sheets (B or E) and coils
(I, T, or C), respectively.

Hydrogen bonds were determined using the Hbond soft-
ware [27]. Four different descriptors were used for
different type of interactions: side-chain...main-chain O
atom (hb1), side-chain...main-chain N atom (hb2), side-
chain acceptor...side-chain donor (hb3) and side-chain
donor...side-chain acceptor (hb4). For each interaction
type, the number of interactions was used as the descrip-
tor value. Here again a simpler description (lh) was also
implemented that takes value of 0, 1, 2, or 3 if the side-
chain of the residue makes no hydrogen bond, makes
hydrogen bond(s) with side-chain atom(s), makes hydro-
gen bond(s) with main-chain atom(s) or makes hydrogen
bonds with both side-chain and main-chain atoms,
respectively.

Other structural parameters were obtained using the local
program compilPDB [J.G.]. Beside the secondary struc-
ture, the local structure was also described by the Phi and
Psi dihedral angles, and by Ca-Ca distances: d3 = Ca -
Cay,5 d4 = Ca; - Coy,y, d5 = Ca; - Coy,s5, d6 = Cay; - Coui,g
d7 = Cg,; - Cay,,. Other descriptors were the buried surface
area (bur), percent of accessibility (pac), contact area with
carbon atoms (C), nitrogen atoms (N), oxygen atoms (O),
sulfur atoms (S), positively charged atoms (pp), nega-
tively charged atoms (nn), or polar atoms (pol).

For simplicity, these structural descriptors will now be
called s, to s,5.

It should be noted that some structural descriptors are cor-
related (e.g., the Phi and Psi dihedral angles versus the d3
and d4 alpha carbon distances). However, this descriptive
redundancy is not a problem since it is eliminated during
the tree construction where the most informative descrip-
tors only are selected, as explained below.
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Automated classification of structural environments using
a decision tree algorithm

The native structural environments observed in the learn-
ing data set were classified for each of the twenty amino
acids, plus the half-cystine, resulting in twenty-one inde-
pendent decision trees (Figures 1 and 2). The use of these
decision trees is as follows: let (a(k), s(k)) the position k
in a protein for which we want to score substitutions, a(k)
the residue type and s(k) = (s;(k),...,5,5(k)) the structural
environment description at this position. After the learn-
ing phase explained below, each tree node will be associ-
ated to particular structural descriptor s; and threshold S
and will be linked by edges to two subnodes whose struc-
tural environments will be constrained respectively by the
tests s;<S and s;>S. The classification of (a(k), s(k)) will be
obtained by selecting the decision tree corresponding to
residue type a(k) and then by running through the tree
from its root node to an appropriate leaf following at each
node the edge whose test, 5;<S or s;>S, is compatible with
the value of the corresponding structural descriptor s;(k)
(Figure 2). Contextual substitutions scores associated to
the selected tree leaf, as explained in a further paragraph,
will then evaluate each possible substitution of the amino
acid a(k).

According to the standard data mining terminology, the
predictive variables are therefore the native amino acid
type and its associated structural descriptors and the
dependent variable to be predicted is the substituted resi-
due at this position. During the learning phase which we
will now describe, the goal of the decision tree construc-
tion is to optimize the predictive power of the structural
descriptor test chosen at each node and therefore to max-
imize the bias of the statistical distributions of the substi-
tuted residues associated to each subnode towards a few
types of amino acids. Ideally, tree leaves should be associ-
ated to only one type of substituted amino acid, but this
never happens in practice because of the tree depth limi-
tation and the data set noise.

Let (a(i), s(i), b(i)) be the i-th example of the whole learn-
ing data set where a(i) is a native residue, s(i) =
(s1(i),...,.555(1)) is its structural environment description
and b(i) is the substituted residue as observed in a struc-
turally similar protein at the same position as a(i). The
main steps of the decision tree construction from the
learning data set are as follows (Figure 2):

1. The decision tree for a given residue type A is initiated
to a unique root node with an associated cluster ¢, = {i /
a(i) = A } grouping all examples with native residue type
A.

2. For each tree cluster c do :
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a. Test in turn each descriptor s; and each associated
threshold S that creates possible dichotomies of ¢ into two
subclusters ¢; and c,. If s;has continuous values, 9 possible
thresholds S are chosen to create dichotomies ¢, = {iec/
5;(1)<S} and ¢, = {iec/s;(i)>S} corresponding to the 10th,
20th, ., and 90t percentiles of the statistical distribution
of the considered descriptor. If s; is restricted to a few dis-
crete categories, all possible dichotomies ¢, = {iec/
5;(1)==S} and ¢, = {iec/ 5(i)! = S} are created, where S is
one of each possible value of s;.

b. Select the optimal dichotomy from previous step which
satisfies the tree constraints (see section (i) below) and
minimizes the chosen splitting criterion (see section (ii)
below).

c. Insert the new clusters ¢, and c, as nodes in the tree by
linking them to cluster ¢ with respective edges labeled
{s;())<S} and {s;(i)>S} or {s;(i) == S} and {s;(i)! = S}. The
structural environment associated to a particular cluster
will be defined by all edge labels from the tree root to the
considered tree node or leaf (see figure 2).

3. Finally, prune the tree according to the selected pruning
method and pruning data set (see section (iii) below).

It should be noted the choice of the optimal descriptor at
a given tree level will depend on both the amino acid
identity of the native residue and each structural descrip-
tor previously chosen as splitting criteria along the tree
path that leads to the considered node.

Main parameters in the classification are (i) the tree con-
straints, (ii) the splitting criterion, and (iii) the tree prun-
ing method.

(i) Tree constraints

- Tree depth: as the learning process goes deeper in the
tree, more and more specific clusters are created. Beyond
a certain depth, the chance that the corresponding rules
can be applied to new examples outside the learning set
drops significantly, resulting in an overfitting of the
available data since deep clusters won't have enough asso-
ciated examples to derive statistically significant distribu-
tions. Therefore, to avoid wasting time to partition the
data into smaller and smaller clusters, maximum tree
depths of 2 to 6 were tested.

- Cluster cardinal: For the same reason as above, a mini-
mum cardinal of examples was required for each cluster.
We tested values between 200 and 1200 with increments
of 200.

- Tree balancing: A restriction on uneven distributions of
samples among two clusters from the same parent was
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applied to prevent the creation of unbalanced trees which
would require higher depth to fully partition the data.
This restriction is achieved by the parameter sim . measur-
ing the cluster cardinal similarity between two subclusters
obtained by splitting :

. . n n
i, mm[_l,_ZJ
n, m

where, 1, is the cardinal of the subcluster 1 and #, the car-
dinal of the subcluster 2.

(ii) Three different splitting criteria were tested

- The Gini criterion evaluates the probability that two ran-
domly selected elements in a cluster correspond to two
different types of residues [28]:

Gini(c) = ¥ P(a|c)(1-P(a] ) =1- Y [P(a| )]

where P(a|c) is the relative frequency of residue type a in
cluster c.

To evaluate the quality of a given segmentation into sev-
eral clusters, the splitting criterion is given by

Gini(segmentation) = Zn—’:Gim’(c)
n
c

where 1, is the number of elements in the cluster ¢ and n
is the total number of elements in all clusters.

- The Shannon entropy [29] tries to limit the distribution
of elements of the same class among several clusters.

E(c) =~ P(a|c)log,(P(alc))

where P(a|c) is the relative frequency of residue type a in
cluster c.

- We also used a specifically developed splitting criterion
called the "mean rank" MR. Each class (residue type) in a
cluster is ranked according to the number of elements of
this class in the cluster (rank 1 is assigned to the most fre-
quent residue type and rank 21 to the least frequent one).
The mean rank MR evaluates the mean rank for a ran-
domly selected element in the cluster. Low MR indicates
clusters with only few well represented classes. Such clus-
ters would correspond to structural environments that
induce significant bias in the sequence and therefore
strong structural constraints.

MR(c) = ZR(a |c)P(a|c)
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where R(a|c) and P(a|c) are the frequency rank and prob-
ability of the residue type a in the cluster c.

(iii) Three different pruning methods were considered

- The Pessimistic Error Pruning (PEP) [30] consists in
recursively checking each cluster starting from the tree
root and in cutting its corresponding subtree if this
removal reduces the mean error rate estimated on the
independent pruning test set by :

N(c)—-n(c)

9=

where N(c) is the number of examples assigned to the
cluster ¢ and n(c) is the number of occurrences of the most
frequent amino acid in the cluster c. Let C be the father
cluster from which ¢ is derived in the tree, then ¢ and its
subtree will be removed if E(¢)>E(C).

- The Mean Rank Pruning (MRP) has a principle similar to
PEP, except that ¢ will be removed if R(c)<R(C) where R(c)
and R(C) are respectively the mean ranks of the current
cluster ¢ and of its father cluster C averaged over the prun-
ing test set.

- The pessimistic Mean Rank Pruning (PRP) is a more
stringent version of MRP using a confidence margin to
prevent statistically biased clusters to be kept in the tree.
The current cluster ¢ will now be removed if R(¢c)+ o
ts0<R(C), where & is the mean rank standard deviation
over the pruning test set and the scaling factor tg, = 1.82
corresponds to a 80% confidence level for a Gaussian
distribution.

Few other parameters were further optimized including

- A mutation weight o = 1/Ninversely proportional to the
total number of residues N;in each protein family f of the
learning data set. This insures that all structural families
have similar importance in the derivation of the substitu-
tion probabilities.

- A mutation weight B = 25/ide inversely proportional to
the percentage of identity ide between the two considered
proteins. If ide<25%, then the mutation weight is
decreased to 1. This reduces the importance of substitu-
tions observed in similar sequences and could be used
later to specialize EvDTree on different kinds of applica-
tions involving different sequence similarities.

Residue specific environment-dependent substitution
profiles

Once trees have been constructed, statistical distributions
of observed substitutions in each cluster are used to com-
pute cluster-specific environment-dependent substitution
profiles. As explained previously, the structural environ-
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ment associated to a particular cluster will be defined by
all edge labels from the tree root to the considered tree
node or leaf.

The probability for the amino acid a in the 3D environ-
ment s to be substituted by amino acid b is

S

N,
P(b|a,s)= —“bs
2 Na
X
where N, is the number of observed substitutions of
amino acid a by amino acid x in the 3D environment s.
Smoothed probabilities Q(b|a,s) are then calculated as

Q| a,s)=w"Alb|a,s)+ w5 P(b]a,s)

where A(b|q, s) is the a priori distribution of Topham et al.
[19]. Relative weights are calculated as

a,s _
(01 =

as _ 1 _ &S
; and ®,” =1-ay

1+—12
on

where N is the total number of occurrences of amino
acid a in 3D environment s, n is the number of classes (21
in this case), and o is a normalization constant. We used
the value of 5 previously used by Topham et al. [19]. It
should be noted that the weight of this "a priori" distribu-
tion is inversely proportional to the number of available

examples N and is therefore maximum for undersam-
pled substitutions.

Then the log odds scores are calculated as

Qb|a5s)

S(a,s > b)=log Pb)

where P(b) is the background probability of occurrence of
amino acid b in the whole database.

These log-odds are calculated for each node cluster of each
native amino acid tree.

Application and evaluation of environment-dependent
and standard substitution scoring functions

To evaluate the EvDTree scoring function, each example
of associated native residue, structural environment, sub-
stituted residue (a(k), s(k), b(k)) from the test data set is
classified by the tree corresponding to residue type a(k).
Then the tree leaf corresponding to the structural
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environment s(k) is searched and its associated log-odds
substitution scores are finally used to score the substituted
residue b(k).

To compare the EvDTree substitution scores with other
scoring methods, we have used the mean rank (MR) as the
criterion to evaluate the quality of scoring functions. For
each example in the test data set, the 20 possible substitu-
tions are scored as indicated above, and the observed
(real) substitution b(k) is ranked according to its score
among all other possible substitutions. The mean rank
over all examples in the test data set is indicative of how
well the scoring function is able to recognize as probable
the "real" substitutions. A MR of 1 would mean that the
scoring function always gave the better score to the
observed substitution. At the opposite, a MR of 10.5
would indicate that observed substitutions are scored ran-
domly. The main advantage of the mean rank criterion is
that it is fast to calculate and it is independent from the
absolute values of the scores, therefore allowing compari-
sons between very different scoring functions. Similar
criteria based on ranking were previously used to evaluate
1D-3D scoring functions [31].

The evaluation of environment-dependent substitution
matrices requires computing the 3D environments the
very same way they were computed when deriving the
scores. Thanks to Dr K. Mizuguchi who provided us with
all the necessary tools, we could include the FUGUE envi-
ronment-dependent substitution matrices into our evalu-
ation process.

To complement the MR evaluation, we also compared the
performance of EvDTree with other scoring functions in
sequence-structure alignments. To do this, 1000
sequence-structure alignments were selected from our test
data set derived from the HOMSTRAD database. Each
alignment was recalculated using a Smith and Watermann
algorithm with several different substitution scoring func-
tions. For each scoring function, the percentage of cor-
rectly aligned positions, according to the real alignments
in the test data set, was compiled and used for compari-
sons. For each method, the gap opening (Go) and gap
extension (Ge) penalties were optimized by comparing
the alignments for several penalty combinations (Go = 2,
5,10, 15, 20; Ge = 2, 5, 10, 15, 20).

Results and discussion

Decision tree classifications

Several learning data sets were compiled by filtering out
observed protein substitutions (Figure 1) with sequence
identity between superimposed proteins above thresholds
of 40%, 60% or 80%. For each learning set, several com-
binations of parameters were tested for the construction
of the EvDTree classifications and the calculation of the
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resulting structure-dependent substitution scores (Figures
1 and 2). For each run, a set of 21 decision trees was built
and the corresponding scoring function was evaluated on
the test data set using the mean rank (MR) criterion as
explained in Methods. Due to the amount of data, CPU
time limitations did not allow systematic examination of
all parameter combinations, and the best parameters were
determined through a limited trial and error protocol.

The variation of the mean rank over sixteen different runs
remained limited (6.74 <MR < 6.89) showing that the
method is robust and is not critically affected by slight
modifications of the parameters. The lowest MR (6.74)
was obtained with the following protocol:

- Minimum cardinal of any cluster = 600;

- The minimal cluster cardinal similarity between two sub-
clusters obtained by splitting of the parent cluster is

sim,. = 0.1.
- Segmentation criterion: mean rank
- The pruning method is MRP.

- Examples in the learning set are weighted according to
the number of residues in the protein family: o = 1/N;

- No weighting is done in relation to the sequence identity
(B =25/ide)

- Maximal sequence identity between superimposed pro-
teins in the learning set = 60%

The values of the obtained mean ranks could, at first sight,
appear rather high. However, it is worth noting that only
substitutions were ranked in the evaluations, i.e. protein
positions occupied by the same amino acid in the two
structurally superimposed proteins were not considered
in the evaluation process. They are included, however, in
the statistics during the calculations of the substitution
scores.

The evolution of the MR criterion along the learning proc-
ess for alanine is shown in Figure 3. As expected, the MR
decreases regularly when calculated on the learning set.
On the other hand, when calculated on the test data set,
the MR decreases in the first few learning steps, then
increases in the following steps. The difference between
the two curves in the last steps is due to overfitting, i.e.
learning specific rules from the learning set that cannot be
generalized, thus reducing the predictive power on the test
data set. Pruning the tree using an independent pruning
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Figure 3

Evolution of the Mean Rank criterion averaged over
Alanine residues at different tree depths. Values are
indicated for the evaluations of the learning set (filled dia-
monds), of the test set before pruning (filled triangles) and
after pruning the decision tree (open squares).
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data set removes clusters with reduced predictive power
resulting in a flat curve in the last steps.

Analysis of the EvDTree classifications

For each residue type, the maximal tree depth used was 6,
leading to a maximal number of leaves 21 x 64 = 1344,
each of them potentially leading to a substitution profile
that corresponds to one line in a classical substitution
matrix. In other words, the total amount of data corre-
sponds to 64 distinct substitution matrices, although it is
not possible to associate substitution profiles to matrices
since each profile corresponds to a different structural
environment. The overall amount of data is nevertheless,
in principle, comparable to the 64 environment-depend-
ent substitution matrices used in the FUGUE system.
However, the tree pruning step removed a significant
number of clusters that do not afford improved informa-
tion, leaving only 111 environments each associated to a
specific substitution profile (data available from http://
bioserv.cbs.cnrs.fr/HTMI, BIO/EvDTree.html).

Table I: Structural descriptors and associated values or thresholds used by EvDTree to partition the root cluster c, for each residue
type into two subclusters (see Figure 2). The EvDTreeDS columns refer to the decision tree classification of a learning set containing

only small disulfide-rich proteins (see text).

Amino acid2 EvDTree EvDTreeDS
Structural Value Structural Value
descriptor descriptor
subcluster | subcluster 2 subcluster | subcluster 2

Cb pac <=8 >8 pac =0 >0
Ab pac <=10 > 10 pac <=35 >35
| pol <= 4| > 4] C <=35 > 35
Le pol <=53 >53 ssl = =6
Fe C <=65 > 65 ss2 = #2
Ye (@ <=65 > 65 ss2 = #3
He C <=35 > 35 ss2 = #3
\" pol <=46 > 46

M ssl| = *4
w bur <= 155 > |55 N <= > |
Nd ss2 | =1 pac <=49 > 49
Dd ss2 =1 # | bur <=25 > 25
Ed ssl =4 +4 pac <=54 > 54
Kd ss2 =2 #2 pac <=53 >53
Rd ss| =1 # | bur <= 101 > 101
S pac <=3 >3

T pac <=49 > 49
G ssl =7 7
Q ss2 = #3
P C <=7 >7

2Only dichotomies for which the structural information improves the Mean Rank evaluation are shown (Tables 2 and 3). PResidues for which the
same descriptor is used in EvDTree and EvDTreeDS. <Residues for which a descriptor corresponding to the local structure has been used by the
EvDTreeDS but not by the EvDTree learning process. 4 Residues for which a descriptor corresponding to the local structure has been used by the
EvDTree but not by the EvDTreeDS learning process.
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Structural descriptors, thresholds and values used in the
first dichotomies of the root clusters for each residue type
are displayed in Table 1. Our main interest in using a deci-
sion tree classification is that, in principle, optimal split-
ting parameters and associated thresholds or values are
automatically selected for each residue. As an example, it
has been suggested that different boundaries on the frac-
tion of area buried should be used for different residue
classes when determining if a residue is exposed or buried
[17]. Several examples of this can indeed be found in the
EvDTree classifications: the selected structural descriptor
for splitting the root cluster of serine and alanine
substitutions is the percent of accessible area (pac), but
the threshold is 3% for serine, whereas it is 10% for
alanine (Table 1). The pac is also used as structural
descriptor in the second dichotomy in the glutamic acid
tree classification, with a threshold of 25%. The use of dif-
ferent accessibility thresholds by the decision tree algo-
rithm fully supports previous observations by Rice and
Eisenberg [17]. This observation also highlights the nice
feature of decision trees that can be easily interpreted.

Analysis of the most discriminating structural descriptor
selected in the learning process, i.e. the descriptor selected
for the first dichotomy of the root cluster for each residue
type (denoted ¢, in Figure 2), shows that the secondary
structure is the most discriminating parameter for aspartic
and glutamic acids, lysine, arginine and asparagine (Table
1). Although contact polarity or solvent accessibility have
been selected in subsequent dichotomies in most cases, it
is clear that the substitution profile of charged residues
primarily depends on the local structure. This result
appears to be consistent with previous work by Gilis &
Rooman [32] on the relative importance of local and non-
local interactions in mutant stabilities. These authors
showed that for solvent-exposed residues, the local struc-
ture is the most important factor, whereas distance poten-
tials (i.e. 3D interactions) appear more suited to
prediction of mutations in the protein core [32]. Here we
show that substitution profiles for charged residues
(which are largely solvent-exposed) mainly depend on the
local structure. Another observation leads to a similar con-
clusion: for alanine and serine, the first selected structural
parameter for splitting is the percent of accessibility (pac)
and the most exposed resulting cluster is then split using
secondary structure, whereas the most buried resulting
cluster is split using the polarity of the protein environ-
ment (pol). These results confirm that, for solvent-
exposed protein positions, the local structure is one main
parameter that determines which amino acid can occupy
this position.

Four substitution profiles (i.e. log-odds substitution
scores for one residue type into one structural environ-
ment) are displayed in Figure 4. Comparison of the sub-
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EvDTree substitution scores

ACDEFGHI KLMNPQRSTVWYJ

Residue

Figure 4

Substitution profiles for 4 different EvDTree clusters.
(A) Two profiles for different amino acids (Ala and Asp) in
similar structural environments corresponding approximately
to an exposed a-helix. Grey bars: Ala with pac > 38 and ss|
= |; Black bars: Asp with pac > 20 and ss2 = |. (B) Two pro-
files for the same amino acid (Leu) in different structural
environments. Grey bars: Leu with pol > 53 and ssl = [;
Black bars: Leu with pol > 53 and ssl! = I.

stitution profiles for alanine and aspartic acid in similar
environments (exposed a-helix) reveals significant differ-
ences (Figure 4A). This observation is not trivial since it
could be postulated that, except for functional residues,
the probability that a residue b occurs in a structural envi-
ronment s only depends on s but is independent of the
observed residue a in structurally similar proteins. The fact
that, for similar structural environment, substitution
profiles vary with the native residue probably indicates
that purely structural descriptions probably lack some
essential information, possibly related to the evolution
process. This observation also illustrates the limits of envi-
ronment-dependent statistical potentials in which the
native amino acid is not taken into account. As an exam-
ple, using data in Figure 4A, substitutions to Met in
exposed a-helices appear more likely than substitutions to
Leu when the native residue is Ala but the reverse is true
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Table 2: Mean rank evaluation of the structure-dependent EvDTree substitution scores and comparison with other scoring functions.

Amino acid DTOb DT= GON2 B622 Fug?
A 7.93 7.33 8.21 8.34 7.51
C 10.62 10.60 11.01 11.86 10.19
D 6.48 6.41 6.85 6.59 6.48
E 6.83 6.73 6.92 6.95 6.79
F 6.66 6.58 7.04 6.86 7.01
G 7.14 7.14 7.16 7.20 7.00
H 8.18 8.05 8.29 7.98 7.97
1 5.65 5.38 5.88 5.72 5.58
K 6.97 6.93 6.88 6.86 6.81
L 6.71 6.39 6.58 6.69 6.52
M 5.68 5.68 6.0l 5.84 5.87
N 6.82 6.73 7.20 7.03 6.90
P 7.15 7.15 7.58 7.80 7.33
Q 6.74 6.74 7.08 7.28 7.29
R 7.46 7.24 741 741 7.21
S 6.43 6.32 7.03 6.73 6.67
T 6.61 6.61 7.21 6.74 7.00
v 6.50 6.28 6.65 6.38 6.36

w 8.03 7.61 8.8l 9.04 7.63

Y 8.38 8.1 9.15 8.82 8.02

J 7.12 7.12 8.17 7.48 7.16
Average 6.90 6.74 7.15 7.06 6.87

aMean rank evaluation of the EvDTree (DT), Gonnet (Gon), Blosumé2 (B62) and FUGUE (Fug) substitution scores. ®PMean rank evaluation of
EvdTree0 (DTO), i.e. scores inferred from the root clusters before structural classifications. Bold numbers indicate the best values among the

methods.

when the native residue is Asp. Such differences cannot
appear in environment-dependent statistical potentials
such as 3D-1D scores that only describe the relative pref-
erence of residues for particular structural environments

[1].

On the other hand, the substitution profiles for leucines
in different structural contexts also display significant
differences (Figure 4B). Thus, substitutions Leu — Met are
favored in exposed a-helical positions whereas substitu-
tions Leu — Thr are favored in exposed non o-helical
positions (Figure 4B). This observation is not unexpected
since it is well-known that B-substituted residues do not
like to be in a-helices. Nevertheless it shows that EvDTree
was able to extract consistent knowledge on sequence-
structure relationships and it confirms previous observa-
tions that substitution scores are indeed structure-depend-
ent [18,33], explaining why structure-dependent
substitution matrices perform better than standard evolu-
tionary matrices in fold recognition processes
[1,15,17,34].

Structural information improves prediction of substitution
probabilities

The detailed impact of structural information for correct
prediction of substitution probabilities can be

approached by comparing the EvDTree substitution pro-
files with the evolutionary substitutions matrices
GONNET [20] and BLOSUM®62 [35]. To this goal, the
"Mean Rank" criterion has been used (the lower the Mean
Rank, the better the scoring function; see Methods and
Data). Results by residue type and averaged over all resi-
dues are shown in Table 2. Comparison of EvDTree with
the Gonnet and BLOSUMG62 matrices shows that EvDTree
performs clearly better on average, and individually for
most residues. Therefore, the use of the structural infor-
mation in EvDTree does improve the predictive power of
substitution profiles versus structure-independent
substitution matrices. Moreover, a substitution matrix was
built from the tree clusters of EvDTree, i.e. before any
structural information is taken into account. This matrix,
referred to as EvDTree0, is simply derived from the struc-
tural superimpositions in the learning data set and is thus
similar to other structure-derived substitution matrices
[36]. Interestingly, EvDTree0 performs better than evolu-
tionary matrices suggesting that, despite a lower amount
of data, structure-derived alignments can provide data of
higher quality than sequence alignments for derivation of
substitution matrices.

The results in Table 2 show that EvDTree provides poorer

evaluation than the evolutionary matrices for two
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Figure 5

Comparison between EvDTree (grey) and FUGUE (black) at
different levels of sequence identity in the test data set.

residues, histidine and lysine, possibly due to an insuffi-
cient amount of data. It is also worth noting that histidine
often participates in active sites or coordination sites, and
the substitution probabilities may have been biased by
this peculiarity. Filtering out the learning data set for coor-
dination sites was performed by Shi et al [15], but such a
filter was not implemented here.

More surprisingly, five residues (Gly, Met, Pro, Gln, and
Thr) and the free cysteine (J) do not display evaluation
improvement by using structural information (compare
EvDTree0 and EvDTree). The latter remark means that for
these five residues no structural descriptor permitted effi-
cient splitting of the data. It is likely that for these residues
new descriptors or descriptor combinations remain to be
discovered. Nevertheless, on average, the structural infor-
mation significantly improves the performance and
EvDTree appears as a clearly better scoring function than
evolutionary matrices in evaluation of sequence-structure
alignments.

The EvDTree substitution profiles provide slightly better
substitutions predictions

Comparison with structure-dependent substitution matri-
ces obtained by other groups is not as simple as for stand-
ard substitution matrices, because we must make sure that
we compute the structural environment exactly the same
way that was used for generating the matrices. We were
able to compare EvDTree with FUGUE, thanks to the
FUGUE accessory programs kindly provided by Dr K
Mizuguchi.

As shown in Table 2, the overall performance of EvDTree
and FUGUE appear very similar. A comparison between
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these two scoring functions at different levels of sequence
identity is displayed in Figure 5. EvDTree provides slightly
better performances at sequence identity above 30% but
similar results below 30% (Figure 5). The reason for this
remains unclear, but might be a result of our filtering of
the learning set that removed all positions were Co devi-
ates from more than 3.5 A. Further optimization of the
EvDTree learning set would probably be necessary for use
in fold recognition programs at low sequence identity.
The observation that EvDTree performs at least as well as
the scoring function of FUGUE but is computed in a fully
automated manner opens the way for future potential
applications. For example, we show below that EvDTree
can easily optimize fold-specific scoring matrices specific
of small disulfide rich proteins leading to improved sub-
stitution scores for this particular class of proteins.

Evaluation of EvDTree as scoring function in sequence-
structure alignment

Although the Mean Rank test determines the ability of a
scoring function to correctly evaluate structure-compati-
ble sequences, it does not determine how well a scoring
function would actually perform in a particular
application, e.g. fold recognition. In this paper, we do not
focus on a particular application, but rather on the
method to automatically derivate structure-dependent
substitution profiles, and the Mean Rank appears as a sim-
ple and efficient criterion to rapidly compare different
learning parameterizations or scoring functions. To verify
that the theoretical evaluations using the Mean Rank have
some significance for future real applications, we com-
pared EvDTree with other methods used as scoring
functions in sequence-structure alignments. The percent
of correctly aligned positions for different methods and
for different sequence identity ranges is displayed in Fig-
ure 6. For each method, the best Gap opening and Gap
extension penalties were roughly optimized by checking
25 combinations (Go = 2, 5, 10, 15, 20; Ge = 2, 5, 10, 15,
20). The results shown in Figure 6 fully confirm previous
analyses using the Mean Rank criterion: on average, better
alignments are obtained using the structure-dependent
scoring functions FUGUE and EvDTree, and EvDTree pro-
vides slightly better alignments than FUGUE above 30%
of sequence identity but similar results at lower sequence
identity. The slightly better accuracy of EvDTree for mid-
range percentages of identities suggests that our approach
could be particularly useful to improve sequence/struc-
ture alignments in homology modeling. The EvDTree
learning algorithm could also be applied to fold
recognition by optimizing scoring functions specific of
particular protein families.

Page 12 of 16

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:4

Application of EvDTree to a specific class of proteins, the
small disulfide-rich proteins

The strongest potential of EvDTree is its ability to adapt
itself to any particular set of structures. As a test case, we
have applied EvDTree to small disulfide-rich proteins.
Small disulfide-rich proteins display several peculiar
structural features: (i) due to their small size, a larger
number of residues than usual are solvent-exposed, (ii)
regular secondary structures are limited and the content in
turns and loops is high, (iii) the hydrophobic core is
largely constituted by the disulfide bridges that are
responsible for the high stability despite the small size,
and (iv) glycine, proline, and, of course, cysteine residues
are more frequent than usual. With all these peculiarities,
small disulfide-rich proteins are not well-suited to stand-
ard prediction methods and it has been shown that these
proteins score poorly using the standard PROCHECK
database [37]. Evaluations of non-specific substitution
scoring functions on small disulfide-rich proteins using
the mean rank criterion are reported in Table 3.
Comparison of values in Table 3 for EvDTree, Gonnet,
BLOSUMG62 and FUGUE with those in Table 2 clearly sup-
port the idea that small disulfide-rich score poorly when
using standard databases and methods.
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Figure 6

Comparison of sequence-structure alignments using
several scoring functions. EvDTree, white bars; Gonnet,
hatched bars; BLOSUM®62, grey bars, and FUGUE, black bars.
Gap opening and gap extension penalties have been sepa-
rately optimized for each scoring function.

Table 3: Mean rank evaluation of small disulfide-rich proteins using standard and specific scoring functions.

Amino acid DT2 DSo02 Dsa Fug? Gon? B622
A 8.16 8.59 1.71 8.39 8.85 8.83
C 9.84 11.60 8.09 10.42 11.8 11.72
D 6.85 7.50 731 6.90 7.12 7.01
E 6.70 7.57 722 6.89 6.88 6.89
F 8.58 8.77 7.58 10.14 9.79 9.86
G 8.03 7.74 7.35 7.48 7.40 7.46
H 7.99 8.04 7.51 8.00 7.72 8.09
I 7.74 8.55 7.28 7.82 8.36 8.19
K 747 8.07 7.56 7.49 7.59 7.36
L 9.13 9.41 8.34 9.25 9.70 9.90
M 9.74 9.04 7.33 8.95 9.16 8.87
N 7.57 8.14 8.09 7.411 8.40 8.02
P 8.20 8.4l 8.00 8.11 8.70 8.56
Q 6.88 7.94 7.8l 7.35 7.38 7.38
R 7.93 8.20 6.96 7.84 7.99 8.11
S 7.56 7.55 7.55 7.56 8.29 8.17
T 8.14 8.6l 7.63 8.53 9.40 8.91
v 8.30 7.69 7.69 7.82 8.76 8.48
w 8.78 7.46 7.45 8.20 9.03 8.82
Y 8.6l 8.59 7.53 8.76 9.77 9.32

Average 7.90 8.27 7.59 8.02 8.44 8.38

aMean rank evaluation using the EvDTree (DT), EvDTreeDSO0 (DS0), EvDTreeDS (DS), FUGUE (Fug), Gonnet (Gon) and Blosumé2 (B62)
substitution scores. Bold numbers indicate the best values among the methods.
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Thus, to test the ability of EvDTree to automatically adapt
itself to a class of proteins with specific structural features,
we have computed disulfide-rich specific substitution pro-
files (EvDTreeDS). For this, we have compiled a specific
data set from the structural class "small disulfide" in the
HOMSTRAD database. These data were complemented by
data extracted from the KNOTTIN database [38]. The
number of structural positions in the initial data set
(about 40000) is clearly insufficient to divide this set into
independent learning and test datasets. Therefore, a
"leave-one-out" protocol was used. In this protocol, one
protein family is excluded from the learning set and the
resulting substitution scores are used to evaluate this fam-
ily. This process is repeated for all protein families in the
initial set. Also, due to the limited number of data, the tree
pruning had to be performed using the learning data set,
which is of course far less efficient than using an
independent data set (Esposito, 1997), and resulted in a
very limited pruning when compared to the general case.

Mean rank evaluations of the new, specific, EvDTreeDS
substitution scores on small disulfide-rich proteins are
reported in Table 3. Despite the limited set of data, com-
parison of the efficiency of the EvDTreeDS specific substi-
tution profiles with standard EvDTree clearly shows that
the automated classification method was able to extract,
at least in part, the specific features of the small disulfide-
rich proteins.

Furthermore, the comparison of the structural descriptors
used in the first partition of root clusters in EvDTree and
EvDTreeDS classifications highlights interesting differ-
ences (Table 1). First, when the solvent accessibility per-
centage is the first used descriptor in both trees (half-
cystines and alanines), the thresholds retained by the
learning algorithm are different for the disulfide-rich pro-
teins which are small and whose residues, except half-cys-
tines, are more exposed to solvent on average.
Accordingly, the selected threshold is lower for half-cys-
tines but higher for alanines.

Table 1 also reveals that most large hydrophobic residues
(Leu, Phe, Tyr, His) switch their most discriminating
descriptor from hydrophobic-hydrophilic measures in
EvDTree (Pol, C) to secondary structure descriptors in
EvDTreeDS (ss1 and ss2). This inversion can be inter-
preted by the reduction of the buried volume in the small
disulfide-rich structures which cannot accommodate for
large residues. This suggests that, in these proteins the sta-
bility is mainly due to disulfide bridges whereas the
hydrophobic effect would be less crucial. Being more sol-
vent exposed and less involved in hydrophobic packing,
large hydrophobic residues might become more sensitive
to local structure in small disulfide-rich proteins.
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More surprisingly, we also notice that charged and polar
residues (Asn, Asp, Glu, Lys, Arg) display the opposite
switch, i.e. a secondary structure descriptor is used in
EvDTree but a solvent accessibility descriptor is used in
EvDTreeDS. Analysis of the EvDTreeDS classification sug-
gests that these residues, when in more buried positions,
are far more conserved than when in more exposed posi-
tions. We think that beside the disulfide bridge core, addi-
tional elements of stability often occur through specific
hydrogen bonding networks between charged or polar
residues and the backbone, rather than through hydro-
phobic packing. Typical examples of this are the con-
served glutamic acid in position 3 of cyclotides [39], or
the conserved aspartic acid in position 15 of squash inhib-
itors [40] which both participate in multiple hydrogen
bonding with the backbone. This might explain, at least in
part, why the distinction between exposed and partially
buried charged residues is more critical in small disulfide-
bridged proteins.

All these subtle modifications revealed by the EvDTree
and EvDTreeDS classifications suggest that there is proba-
bly no universally optimal description language and that
the choices and partitions of structural descriptors should
be adapted to the class of proteins considered. Our new
decision tree learning algorithm makes this fine tuning
automatically from scratch whereas classical potentials are
based on globally optimized description languages which
may become suboptimal in specific contexts.

Conclusions

We have described a new method, EvDTree, based on
decision tree classification of structural environments to
automatically construct structure-dependent substitution
profiles from a set of sequence-structure alignments. The
EvDTree method was shown to perform similarly to the
successful environment-dependent substitution matrices
used in FUGUE (Shi et al., 2001). Interestingly, the tree-
pruning step removed a significant number of structural
clusters yielding an average tree depth of 4 instead of the
six allowed levels. This is an indication that clusters at
higher levels corresponded to the learning of specific
sequence-structure relationships that could not be gener-
alized (Figure 3). It may be expected that as more high
quality data will become available, this effect could be
reduced and higher levels of the decision tree will gain
better performances.

In this work, we were interested in the development of a
fully automatic method for the classification of structural
environments and inference of structure-dependent sub-
stitution profiles. The evaluation of the intrinsic perform-
ance of the substitution profiles was primarily done on
known sequence-structure alignments, using the mean
rank of observed substitutions. We have shown that in
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this context, the EvDTree substitution profiles perform
slightly better than other successful substitution matrices,
and as such, the EvDTree matrices constitutes interesting
elementary data for various applications. Moreover, com-
parison of the EvDTree substitution scores with other
scoring functions for sequence-structure alignments led to
results similar to the mean rank evaluation supporting the
usefulness of the latter criterion.

One specific strength of the EvDTree method is its easy
automatic adaptation to any specific data set. Here we
have shown that it is possible to obtain structure-depend-
ent substitution profiles specific of small disulfide-rich
proteins with better predictive power than standard sub-
stitution scores. This approach could be easily extended to
other specific protein classes such as coil-coils, membrane
proteins, etc. as soon as enough structures are available for
learning. Fold-specific substitution matrices have recently
been proposed for protein classification [41]. The
EvDTree approach opens the way for class-specific or fold-
specific structure-dependent substitution scores for use in
threading-based remote homology searches. Decision
trees based on different learning sets and with different
depths could be optimized depending on the available
protein structures and sequences of the fold family
considered.

The fact that, as stated above, the structural information
did not yield better prediction for several residues in the
EvDTree approach (Table 2) suggests that improvements
are still possible. To this end, 3D environments from the
decision trees yielding poor performances should be
determined in order to design more appropriate structural
descriptors. It is tempting to speculate that using com-
bined structural descriptors, e.g. (Phi, Psi) angle pairs
which can delineate particular regions of the Ramachan-
dran plot or (dCi,i+j, dCi,i+k) distance pairs which can
introduce some super-secondary structural constraints,
could increase the accuracy of the decision trees. Alterna-
tively, the use of linear combinations of descriptors in
decision tree induction algorithms have been reported
and could be used for structural classifications [42].
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