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Abstract

Background: Cyclic nucleotides are ubiquitous intracellular messengers. Until recently, the roles
of cyclic nucleotides in plant cells have proven difficult to uncover. With an understanding of the
protein domains which can bind cyclic nucleotides (CNB and GAF domains) we scanned the
completed genomes of the higher plants Arabidopsis thaliana (mustard weed) and Oryza sativa (rice)
for the effectors of these signalling molecules.

Results: Our analysis found that several ion channels and a class of thioesterases constitute the
possible cyclic nucleotide binding proteins in plants. Contrary to some reports, we found no
biochemical or bioinformatic evidence for a plant cyclic nucleotide regulated protein kinase,
suggesting that cyclic nucleotide functions in plants have evolved differently than in mammals.

Conclusion: This paper provides a molecular framework for the discussion of cyclic nucleotide
function in plants, and resolves a longstanding debate about the presence of a cyclic nucleotide
dependent kinase in plants.

Background

The discovery of cyclic 3'5'-adenosine monophosphate
(cAMP) by Earl Sutherland in the late 1950s was one of
the most significant paradigm shifts in biochemistry [1].
This breakthrough ushered in the concept of second mes-
sengers: intracellular molecules which transmit signals in
cells and are derived from an extracellular signal. In the
past half century, cyclic nucleotides (both cAMP and
c¢GMP) have been implicated in a vast array of biological
phenomena in all kingdoms of life [2].

The ubiquitous presence of cyclic nucleotides may be due
to several characteristics which make it an ideal second
messenger. Cyclic nucleotides are derived in a energeti-
cally favourable reaction from common metabolites (ATP
and GTP), and can be broken down into non-toxic prod-

ucts (inorganic phosphate and AMP/GMP). The synthesis
and degradation of cyclic nucleotides are controlled by
enzymes termed adenylate (or guanylate) cyclases and
cyclic nucleotide phosphodiesterases, respectively [3,4].

In plants, cyclic nucleotides have endured a checkered
research history fraught with complications and setbacks.
Despite this, recent work has shown unequivocally that
cyclic nucleotides are present in plant cells [5,6], and that
they play key roles in the regulation of plant physiology
[7-9]. Furthermore, the recent identification and cloning
of adenylate and guanylate cyclases in plants [7,10] may
eventually give clues as to what signals the synthesis and
degradation of these molecules in plants.
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Cyclic nucleotides are able to bind to two distinct protein
domains, CNB domains and GAF domains. CNB domains
were first identified in the regulatory subunit of mamma-
lian cAMP-dependent protein kinase (RI and RII). Since
several CNB domain containing plant proteins have been
shown to be directly modulated by cyclic nucleotides, this
indicates that the CNB domain in plants is functionally
similar to CNB domains in other organisms [11-15].

GAF domains were initially identified as conserved
domains in light sensing molecules but are known as
small molecule binding domains in cyclic nucleotide reg-
ulated phosphodiesterases, the Anabaena cyclic nucleotide
stimulated adenylate cyclase and several other proteins
[16]. GAF domains have been shown to bind both cAMP
[17] and cGMP [18,19]. Recent crystal structures of the
GAF domains of human PDE2 [pdb:1MCO0] and the yeast
protein YKG9 [pdb:1F5M] have shown that this domain is
an alpha/beta two layer sandwich with no structural or
sequence homology to the CNB domain [18,20]. There-
fore, GAF and CNB domains have evolved independently
to bind cyclic nucleotides.

In order to further explore the roles of cyclic nucleotides
in plants, we performed a bioinformatics based analysis of
the completed Arabidopsis thaliana and Orzya sativa
genomes [21-23] in order to elucidate the potential targets
of cyclic nucleotides in plants.

Results and discussion

GAF domains

Based on the PDE2 crystal structure 11 residues were pro-
posed to be involved in cyclic nucleotide binding [18],
but comparison to the cAMP binding GAF domain of the
Anabaena adenylate cyclase shows that these residues may
only be strictly conserved in mammals. Further complicat-
ing our analysis is the fact that GAF domains are known to
bind other small molecules such as 2-oxoglutarate, for-
mate and bilins [24-26]. GAF domains form a structural
scaffold which can be utilized to bind several possible
small molecules depending on the functional groups on
that scaffold. Therefore, their role in cyclic nucleotide sig-
nalling must be verified by biochemical means rather
than strictly by sequence analysis. Our analysis indicated
that in plants there are two types of proteins which con-
tain GAF domains. These are the phytochrome proteins
and the ethylene receptor proteins.

Phytochromes

Phytochromes are light sensing signal transduction mole-
cules which function to control several aspects of plant
biology. Interestingly phytochromes were found to func-
tion upstream of cyclic nucleotides in their signal trans-
duction pathways since their functions can be mimicked
by cGMP and calcium in phytochrome knockout cells [27-
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29]. The light sensing portion of the phytochrome mole-
cule is a covalently linked bilin molecule which is known
to be bound by the GAF domain. Therefore it is unlikely
that the GAF domain of the phytochrome is also able to
bind cyclic nucleotides directly, although it is clear that
cyclic nucleotides are somehow involved in this signalling
pathway.

Ethylene receptors

Ethylene responses have been documented for nearly a
century in plants. This gaseous hormone is involved in
many aspects of plant physiology, including fruit ripen-
ing, organ development, germination, seedling growth,
flowering and response to challenges such as pathogens
and stress [30]. There are five putative ethylene receptor
isoforms in both Arabidopsis and rice as determined by
genome sequencing [31]. All known ethylene receptors
contain a GAF domain in a cytoplasmic region amino-ter-
minal to the kinase domain. It has been speculated that
this domain may be involved in cyclic nucleotide signal-
ling but examination of heterologously expressed, func-
tional ETR1 [Swiss-Prot: P49333] showed no detectable
cyclic nucleotide binding (G. E. Schaller, personal com-
munication). There are other ethylene receptors which
have GAF domains and which to our knowledge have not
been tested for cNMP binding, however, to date there is
no evidence of ctNMP regulation of ethylene receptors.
Currently the function and ligands of the GAF domain in
ethylene receptors is unknown.

CNB domains

From the alignment of CNB domains in animals, bacteria
and plants, it was apparent that there are some strong sim-
ilarities, as well as some significant differences (Figure
1A). In order to visualize whether plant CNB domains
could fold in a similar manner to the other well character-
ized CNB domains, we generated an in silico model. We
chose the plant protein which showed highest similarity
to known crystal structures (Arabidopsis thaliana CNTE1)
and based our model on the solved crystal structures of
Rla, RIIB, HCN2, CAP and Epac2 (Figure 1B and see addi-
tional file 5).

We then examined our model's overall topology as well as
its cyclic nucleotide binding site. The basic fold of the
domain is two anti-parallel beta sheets consisting of four
strands forming a sandwich, ending with an alpha helix
(the hinge region). Connecting these sheets are exposed
loops, the most important of which is the phosphate
binding cassette [32]. It is important to note that our
structure models very well against all CNB domains with
excellent conservation of all secondary structure and most
loops. We calculated the backbone root mean square devi-
ation for our model versus each of the templates as: RII
domain 1: 0.76 A; RIIp domain 2: 0.83 A; Epacl domain
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Figure |

Analysis of plant CNB domains. (A) Arabidopsis CNB domains (CNTEI, KAT| and CNGC?2) were aligned against several
well studied CNB domains including regulatory subunits of PKA (Rla and RIIB), Epacl, Epac2, and cyclic GMP dependent kinase
2 (CGK?2) from humans, HCN2 from mouse and E. coli CAP. Highlighted on the alignment are glycine residues involved in loop
structures (dark grey arrows), residues forming the hydrophobic pocket for cNMP binding (green arrows) and residues pro-
posed to contact the phosphate of the cNMP (blue arrows). The highly conserved helix capping acidic residue is shown in red.
Secondary structure is denoted by arrows above the alignment, with light blue for alpha helices and pink for beta sheets and is
based on the secondary structure of HCN2. (B) A homology model of atCNTEI was generated from the known structures of
CNB domains. Key residues are shown as stick representations and are colored and labeled according to the color scheme
described in (A). The cGMP ligand is shown in magenta and is based on the structure of cGMP bound to HCN2 [pdb: | Q3E]
superimposed over our model. Figure was generated with Molscript [83] and Raster3D [84].
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1: 1.08 A; Rlo. domain 1: 0.85 A; Rla. domain 2: 0.94 A;
HCN2: 0.82 A and CAP: 1.12 A. Our model agrees in gen-
eral with a previously reported model for the Arabidopsis
CNGC2 [33], although a detailed comparison between
the two models was not performed. The use of a less dis-
tant target (atCNTE1) as well as several templates (seven
compared to one) adds to the reliability of our structure.
In all mammalian cAMP-binding structures solved, there
is a key arginine residue (Arg 209 in Rla) which forms a
salt bridge with the cNMP's phosphate group. This residue
is absent in some CNB domains, despite evidence that at
least some of these domains do in fact bind cyclic nucle-
otides. For example, this residue is absent in the Dro-
sophila ether-a-go-go channel, which is known to be
modulated by cyclic nucleotides [34]. Examination of our
model shows that in the region near the phosphate, there
are two residues which may functionally replace the
arginine, Tyr 91 and Ser 92 (Figure 1B). In bacterial CAP,
hydrogen bonding is provided to the phosphate by the
Arg 82 sidechain, Ser 83 amide nitrogen atom and
sidechain hydroxyl group, as well as a water molecule. In
some mammalian isoforms, the serine residue is changed
to an alanine and therefore is only able to provide back-
bone hydrogen-bonding. In our plant atCNTE1 model,
the serine residue is conserved, but the arginine residue is
missing. Since there was no good template to model the
phosphate binding cassette onto, our model only approx-
imates the position of this loop, and will require verifica-
tion by other structural studies.

The hydroxyl and amide groups of Ser 92, as well as the
hydroxyl group of Tyr 91 are all within proximity of the
cNMP phosphate and could play a role in stabilizing the
cyclic nucleotide (see blue residues in Figure 1). Examina-
tion of the region which contacts the base, indicates that
our model is most similar to the structure of CAP in this
region, so it is likely that the base moeity of a c(NMP is
bound in a syn orientation as in CAP. This is in agreement
with a previously reported atCNGC2 model [33]. Further
analysis of the binding site for the nucleotide indicates
that it is likely cGMP which binds to atCNTE1. This con-
clusion is based upon the presence of three residues (Tyr
80, Ser 92 and Ser 109) which could potentially differen-
tiate between cyclic nucleotides, each of which has a pref-
erence for cGMP (Figure 1 and [35,36]). Other conserved
structural features of our model are the hydrophobic
pocket forming residues Tyr 36, Val 42, Val 43, Tyr 53, Leu
55, Ala 60, Phe 82, Ala 93 and Val 95 and Leu 105 (see
green residues in Figure 1) as well as several conserved gly-
cine residues which are involved in turns between the beta
strands (39, 58 and 83) and the helix capping Asp 109.
This residue signals the end of the hinge region alpha
helix and is present in most CNB domains examined.
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Phylogenetic analysis indicates that the plant CNB
domains segregate into three subfamilies (Figures 2 and
3). The phylogenetic distribution of the CNB domain
matches their domain context in that CNGC, shaker-type
and CNTE proteins form separate groups. Furthermore,
for each of the three protein classes, the CNB phylogeny
matches the phylogeny of the full-length protein, imply-
ing that these proteins obtained the CNB domain prior to
isoform duplication (Figure 3, [Additional file 1], [37]).
Since all three branches have been detected in both Arabi-
dopsis and Oryza, it is likely that the specific plant cyclic
nucleotide responses developed prior to monocot-dicot
divergence. We did not find CNB domains in any protein
kinases, transcription factors or guanine nucleotide
exchange factors in our analysis. Each of the three classes
of CNB domain containing proteins will be discussed
below.

Cyclic nucleotide gated ion channels

Plant CNGC ion channels were first identified in a screen
for calmodulin binding partners in barley [38]. There are
now known to be 20 CNGC proteins in Arabidopsis likely
indicating a high level of channel redundancy [37,39]. We
also detected 16 CNGC proteins in rice by examination of
the TIGR Rice Genome Annotaion Resource [40].

Electrophysiological studies have shown the CNGC chan-
nels to be permeable to potassium, sodium and calcium
[13-15,41-43]. Cyclic nucleotides have been shown to
activate channel opening in all CNGC proteins examined
thus far leading to an influx of cations into the cell [13-
15,33]. Mutagenic screens have shown that mutations in
atCNGC2 and atCNGC4 create faulty pathogenic reac-
tions [13,44]. When taken together with data showing
that cyclic nucleotides are necessary for pathogen
responses and that calcium and potassium influxes are
characteristic of early phases of plant pathogen responses
[45], this seems to imply that cyclic nucleotides may play
arole in controlling plant immune responses.

Finally, work by Maathuis and Sanders [8] has shown that
cyclic nucleotides can modulate sodium uptake in Arabi-
dopsis plants, implying that there is a cyclic nucleotide
controlled channel which plays a role in salinity toler-
ance. They showed that cyclic nucleotides are required for
limiting sodium uptake in root protoplasts, but the exact
molecule (cAMP or cGMP) responsible for this effect has
not been pinpointed.

Shaker-type potassium channels

Plant potassium channels fall into two classes, the KCO
channels and the shaker-type channels [37]. In addition
to the 9 shaker-type channels described in Arabidopsis thal-
iana, we have found 10 channels in Oryza sativa. A variety
of mutational studies have implicated the shaker-type
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Figure 2
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cNMP

Domain structures of representative CNB domain containing proteins in plants. Scaled images were generated
using SMART [60, 62] A) atCNGC2 showing the ion channel, CNB domain and 1Q (Calmodulin binding) domain. B) AKT |
showing the ion channel, CNB domain and Ankyrin repeats (ANK). C) atCNTEI showing the CNB domain and the Acyl-CoA

thioesterase domain.

channels in several key processes involving the movement
of potassium including: from the soil (AKT1, KAT3), long
distance transport (AKT2), transport into growing pollen
tube (AKT6), secretion into xylem sap (SKOR) and trans-
port during guard cell opening either into the cell (KAT1,
KAT2) or out of the cell (GORK) [37].

Shaker-type channels are voltage dependent outward
(GORK, SKOR) or inward (KAT and AKT) rectifying chan-
nels. Analysis of heterologously expressed channels have
shown that cyclic nucleotides function to adjust the acti-
vation potential of these channels [11,12]. Since cyclic
nucleotides have already been implicated in some of the
processes controlled by shaker-type channels [7-9,46], it is
reasonable to believe that cyclic nucleotides are physio-
logical regulators of shaker-type potassium channels.

Cyclic nucleotide regulated thioesterases

Initially we detected a short CNB containing protein
which was only slightly larger than the domain itself.
Sequencing of the EST provided by the Arabidopsis Bio-
logical Resource Center [47] showed the protein was actu-
ally mis-annotated by the automated gene-finding
algorithm. Further analysis indicated that there are two
isoforms of this protein in Arabidopsis and one in rice.
Each protein contains an amino-terminal CNB domain
and a carboxy-terminal acyl-CoA thioesterase domain.

Searches of other partially sequenced plant genomes and
EST databases indicated that these proteins are present in
several plant species, but not in any other division of life
and thus represents a novel plant-specific cyclic nucle-
otide target. Comparison of these protein sequences indi-
cates a high level of conservation, including residues
conserved for both catalysis and cyclic nucleotide binding
domain structure. Arabidopsis CNTE1 had previously
been partially characterized as a thioesterase and shown
to have activity versus both 16:0-CoA and 18:1-CoA when
over-expressed and partially purified from E. coli [48].

Fatty acid synthesis requires the use of acyl-CoA's as build-
ing blocks for incorporation into lipids. It is therefore
possible, that these thioesterases function as scavengers
which remove "irregular" fatty acids from the pool of
available building blocks [48]. Furthermore, the thioeste-
rases could divert fatty acids away from biosynthetic path-
ways and p-oxidation during germination or during
stressful conditions. In most cases when a small molecule
binding domain is connected to a catalytic domain on the
same polypeptide, the catalytic domain is regulated by the
small molecule [49]. The conservation of this protein
across planta indicates that the CNB domain likely has a
role in controlling the thioesterase activity of this enzyme,
but it is unknown at this time exactly what role cyclic
nucleotides play in this process. In order to address this
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Figure 3
Phylogenetic analysis of plant CNB domains. Un-rooted neighbor-joining tree of CNB domains in Arabidopsis thaliana

and Oryza sativa. Shading represents the three classes of CNB domains in plants; shaker-type potassium channels are shown in
green, acyl-coA thioesterases are shown in red and CNGC channels are shown in blue. Numbers on the nodes indicate the
number of possible trees out of 1000 in which that node was present. Scale represents the number of differences per residue.
B) This is an expanded view of the unlabelled region in Figure 3A showing the closely related CNGC proteins more clearly.
Tree was generated using ClustalX [65] and visualized using TreeView [68]. See additional file 4 for sequence alignments.
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we cloned and tried to express the atCNTE1 protein in E.
coli, however after extensive trials we were unable to
express and purify soluble protein.

A cyclic nucleotide dependent protein kinase in plants?
We found no PKG or PKA regulatory subunit homologs in
the Arabidopsis genome. There has been a long standing
controversy in the plant field as to the existence of a plant
cyclic nucleotide dependent kinase [50-52]. As PKA is the
major cAMP target in mammalian cells we chose a bio-
chemical approach to further explore the possibility that a
PKA-like enzyme may be present in Arabidopsis.

We performed protein kinase assays with extracts of Arabi-
dopsis thaliana using the PKA substrate Kemptide. Kemp-
tide is a peptide which has a motif which was confirmed
as the optimal substrate for PKA [53,54] and is routinely
used in mammalian PKA assays. As Figure 4A shows, there
was no detectable increase in kinase activity in the plant
cell extracts when cAMP or cGMP are added. Fractionation
of extracts, as well as testing a range of cyclic nucleotide
concentrations also did not allow us to detect any differ-
ences in kinase activity with addition of cyclic nucleotides
(data not shown). For comparison, adipocyte extracts (a
cAMP responsive mammalian tissue) were assayed as
well, illustrating the large increase in protein kinase activ-
ity in these cells when cAMP is added. Furthermore, blot-
ting of A. thaliana extracts with polyclonal antibodies
raised against mammalian PKA subunits (both the cata-
lytic and the RIla subunit) reveals that no structurally sim-
ilar proteins are present in this extract (Figure 4B).
Blotting with a monoclonal antibody to the RIIf subunit
gave similar results (not shown). Although there is a weak
band present in the Arabidopsis extract which cross-
reacted with the catalytic subunit polyclonal antibody, it
is likely unrelated to cyclic nucleotide signalling. Protein
kinase catalytic domains are very highly conserved [55,56]
and therefore a minor amount of cross-reactivity is not
unexpected. Further adding to the validity of the western
blotting experiment is the observation that several studies
have shown that true PKA-like enzymes in non-mamma-
lian eukaryotes do cross react with antibodies raised
against the regulatory subunits of mammalian PKA
[57,58], whereas this is not detected in our plant extracts.

The lack of evidence for kinase activity could be attributed
to substrate specificity, differences in binding affinity or
expression levels in plant extracts relative to mammalian
extracts, so our experimental approach does not exhaus-
tively rule out the possibility of a cNMP dependent kinase
activity. However, we feel that these data in concert with
the genomic and blotting data strongly suggest that there
is no cNMP dependent kinase in plants. Finally, our data
imply that if such a protein exists, it would bear little or
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no sequence, structural or biochemical similarity to the
classically studied mammalian enzyme.

Conclusions

As the understanding of cyclic nucleotide signalling in a
variety of systems has progressed, it has been increasingly
difficult to describe a general role for cyclic nucleotides in
biology. They control ‘well-fed' gene transcription in bac-
teria, and modulate signal transduction and ion currents
in mammals, resulting in a large number of possible phys-
iological responses.

This analysis is potentially limited in that it only analyses
cNMP domains which have already been previously iden-
tified and characterized in other systems. However, con-
servation of CNB and GAF domains as the only known
cyclic nucleotide binding domains present over a wide
cross-section of life indicates that these domains are likely
to control most, if not all cyclic nucleotide responses. It is
possible however, that plants have evolved entirely novel
domains which can be modulated by these second mes-
sengers. It will be interesting to compare this in silico anal-
ysis with future biochemical data regarding the direct
effectors of cyclic nucleotide signalling in plants. It is
interesting that no homologous proteins in the CNGC,
shaker-type or type II acyl-CoA thioesterase families have
been found which lack CNB domains. This implies that
cyclic nucleotide binding is indispensable to their cellular
role.

Although it would have been interesting if this analysis
revealed more novel classes of plant cyclic nucleotide
binding proteins, the fact that (with the exception of
CNTE) all cyclic nucleotide binding proteins had been
previously identified indicates that the previously attained
biochemical data agrees with our bioinformatic evidence.

The identification of no transcription factors or protein
signal transduction molecules with CNB domains implies
that cyclic nucleotides may be unable to directly modify
the proteome of plant cells. This is in stark contrast to bac-
terial, yeast and mammalian systems. The only common
domain context of CNB domains in animals and plants is
the CNGC channels, however, even these channels appear
to have evolved independently [39,59]. Therefore it is
clear that the roles of cyclic nucleotides in prokaryotic and
eukaryotic, as well as plant and animal systems differ and
that evolutionarily distant branches of life have evolved
different mechanisms by which these molecules are uti-
lized. It is worth pointing out that the ubiquitous presence
of cyclic nucleotides in all forms of life may indicate that
although the means by which this particular biochemical
tool is used differ, it is still an indispensable component
of biology's toolbox.
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Figure 4

Biochemical evidence for lack of a cyclic nucleotide dependent kinase in Arabidopsis thaliana. (A) Protein kinase
assays using Kemptide as a substrate. Assays were conducted on identically prepared extracts of Arabidopsis and rat adipose
tissue in the presence or absence (control) of 10 uM cyclic nucleotide as indicated. Scale is offset in order to visualize both sets
of results. All assays were performed in duplicate from three separate preparations and error bars indicate standard error for
three separate preparations. (B) Western blotting of extracts with PKA catalytic (PKAcs) and regulatory (RIl) subunit polyclo-
nal antibodies. The PKAcs antibody was affinity purified according to [82] and used at 0.5 pg/mL while the RIl antibody was
used as crude serum at 5000X dilution. Lanes are as follows (A), 10 ng of purified bovine PKAcs or R, (B) 25 ug clarified crude
Arabidopsis extract, (C) 25 ug clarified crude rat adipocyte extract. Positions of mammalian PKA and RIl are indicated with
arrows.
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Methods

Bioinformatics

In order to identify the proteins which contain CNB or
GAF domains, we initially used the Simple Modular
Architecture Research Tool (SMART at smart.embl.heidel-
berg.de; [60-62]) to scan all predicted Arabidopsis pro-
teins for CNB and GAF domains in the EMBL, TIGR or
NCBI databases. Once redundancies were removed, a list
of proteins was generated [see additional file 2]. In order
to ensure broad coverage of possible variants, we also
examined the Interpro collection of protein sequence
analysis algorithms, all of which use slightly different
methods [63]. As an additional method, the predicted
proteins of the Arabidopsis genome were searched using
the BLAST algorithm [64]. As search bait, we used several
known cyclic nucleotide binding domains including
those from GAF domains (human PDE2A [Swiss-Prot:
000408] and Anabaena cyaB1 [Trembl: P94181]) as well
as CNB domains (human CGK2 [Swiss-Prot: Q13237],
human RIIB [Swiss-Prot: P31323], human Epac2 [Swiss-
Prot: Q8WZA2], human rod CNGC [Swiss-Prot: P29973]
and E. coli CAP [pir: E86000]). This yielded no new inclu-
sions to our list of proteins, but did confirm each of our
previous entries. For examination of the Oryza sativa spp.
Japonica genome we performed BLAST searches using the
aforementioned baits, as well as each of the Arabidopsis
proteins. This search was performed using the Blast utility
of the TIGR rice database [40]. The criterion for inclusion
was that the CNB or GAF domain had to match the con-
sensus motif with an E-value of less than 0.5 over the
entire domain as determined by SMART. For newly iden-
tified proteins from the Orzya sativa, we named them so
that they agreed best with the nomenclature of Maser et al.
[37] [see additional files 1, 2, 3]. Sequence alignments
were performed using the ClustalX [65] or T-COFFEE
algorithms [66]and then inspected visually. Neighbor-
joining trees were generated by ClustalX or PHYLIP [67],
then were visualized with TreeView [68]. Trees generated
using a variety of analysis methods (parsimony, distance
and maximum likelihood) yielded similar results to the
neighbor-joining trees.

Sequencing of atCNTEI

One protein, which appeared to contain only a cyclic
nucleotide binding domain and no other motifs was
found in the Arabidopsis database. We obtained the clone
corresponding to this putative gene from the Arabidopsis
Biological Resource Center and sequenced it. Sequencing
was performed at the University of Calgary Core Sequenc-
ing Facility. We determined that the gene prediction algo-
rithm which scanned the genome improperly predicted
the intron/exon structure of this gene. The new gene,
which we named cyclic nucleotide regulated thioesterase
1 (atCNTE1) was deposited in the NCBI database [Gen-
Bank: AY874170]. A subsequent BLAST search using this
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gene found another isoform of this gene in Arabidopsis
(atCNTE2) and one isoform in Rice (0sCNTE1) which we
also included in our analysis.

Theoretical model of atCNTEI

We generated a model of the atCNTE1 cyclic nucleotide
binding domain (residues 28-117) based on an align-
ment of atCNTE1 with the CNB domains of RIIf [pdb:
1CX4] [69], Rla [pdb: 1RGS] [70], CAP [pdb: 1CGP] [71],
HCN2 [pdb: 1Q3E] [72] and Epacl [pdb: 107F] [32].
This was submitted to the SWISS-MODEL server via the
DeepView program [73]. The alignment was iteratively
refined to allow for best agreement of sequence and struc-
tural similarity.

Cyclic nucleotide dependent protein kinase assays

Unless otherwise indicated all chemicals were purchased
from Sigma-Aldrich. Assays were performed on extracts of
Arabidopsis cells grown in suspension culture [74] or iso-
lated male Wistar rat adipocytes from epididymal fat pads
[75]. Both cell types were homogenized in 50 mM Tris pH
7.5, 5% (v/v) glycerol, 0.2 mM phenylmethylsulfonyl flu-
oride, 1 mM benzamidine and 0.1% (v/v) 2-mercaptoeth-
anol. Adipocytes were lysed by 10 strokes of a dounce
homogenizer while plant cells were lysed by two passages
through a french press cell at 15 000 psi. The extracts were
clarified by centrifugation for 15 min at 4000 RPM in a
SS34 rotor at 4°C. These extracts were assayed for kinase
activity using 32P-y-ATP (Amersham-Pharmacia), 30 uM
Kemptide substrate, 50 mM HEPES pH 7.4, 1 mM dithio-
threitol and 10 uM cyclic nucleotide as specified. Reac-
tions were allowed to occur for 10 minutes at 30°C and
assays were terminated by spotting onto squares of P81
paper followed by extensive washing with 75 mM phos-
phoric acid [76]. Assays were performed in duplicate on
three separate preparations with error bars indicating the
standard error between preparations (n = 3). Protein con-
centration was determined by the method of Bradford
with bovine serum albumin (ICN Biomedicals) as a
standard [77].

Western blotting of extracts

Bovine heart PKA catalytic subunit and RII were purified
to homogeneity [78,79]. Purified protein was injected
into rabbits and serum was obtained according to stand-
ard methods [80]. Extracts of adipose and plant cells were
prepared as described above. Samples were boiled into
SDS-PAGE buffer and separated on a 10% denaturing gel
[81]. The proteins were then transferred to nitrocellulose
for 2 h at 100V and blocked overnight with 5% (w/v) skim
milk powder. Blots were probed with antibodies for 1 h
and visualized by enhanced chemiluminesence. The PKA
catalytic subunit antibody was affinity purified according
to [82] and used at 0.5 pg/mL while RII was used as crude
immune serum at a 5000X dilution. For the RII western
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blots, both a polyclonal and a monoclonal antibody
(anti-RIIB BD Transduction Laboratories) gave identical
results.

List of abbreviations
CAP catabolite activator protein

cAMP 3'5'-cyclic adenosine monophosphate
CGK2 cGMP dependent protein kinase 2
c¢GMP 3'5'-cyclic guanosine monophosphate
cNMP 3'5'-cyclic nucleotide (cAMP or cGMP)
CNB cyclic nucleotide binding

CNGC cyclic nucleotide gated channel

CNTE cyclic nucleotide dependent thioesterase

Epac exchange protein directly activated by cAMP

GAF domain found in cGMP-phosphodiesterases, adeny-

lyl cyclases and FhlA

GORK guard cell outward rectifying potassium channel
PKA protein kinase A

SKOR stellar potassium outward rectifying channel
SMART simple modular architecture research tool
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