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Abstract
Background: We present a complete re-implementation of the segment-based approach to
multiple protein alignment that contains a number of improvements compared to the previous
version 2.2 of DIALIGN. This previous version is superior to Needleman-Wunsch-based multi-
alignment programs on locally related sequence sets. However, it is often outperformed by these
methods on data sets with global but weak similarity at the primary-sequence level.

Results: In the present paper, we discuss strengths and weaknesses of DIALIGN in view of the
underlying objective function. Based on these results, we propose several heuristics to improve the
segment-based alignment approach. For pairwise alignment, we implemented a fragment-chaining
algorithm that favours chains of low-scoring local alignments over isolated high-scoring fragments.
For multiple alignment, we use an improved greedy procedure that is less sensitive to spurious local
sequence similarities. To evaluate our method on globally related protein families, we used the
well-known database BAliBASE. For benchmarking tests on locally related sequences, we created a
new reference database called IRMBASE which consists of simulated conserved motifs implanted
into non-related random sequences.

Conclusion: On BAliBASE, our new program performs significantly better than the previous
version of DIALIGN and is comparable to the standard global aligner CLUSTAL W, though it is
outperformed by some newly developed programs that focus on global alignment. On the locally
related test sets in IRMBASE, our method outperforms all other programs that we evaluated.

Background
Traditional approaches to multiple sequence alignment
are either global or local methods. Global methods align
sequences from the beginning to the end [4,24,9]. Based
on the Needleman-Wunsch objective function [18], these
algorithms define the score of an alignment by adding up

scores of individual residue pairs and by imposing gap pen-
alties; they try to find an alignment with maximum total
score in the sense of this definition. By contrast, most
local methods try to find one or several conserved motifs
shared by all of the input sequences [29,12,5].

Published: 22 March 2005

BMC Bioinformatics 2005, 6:66 doi:10.1186/1471-2105-6-66

Received: 01 November 2004
Accepted: 22 March 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/66

© 2005 Subramanian et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/6/66
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15784139
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2005, 6:66 http://www.biomedcentral.com/1471-2105/6/66
During the last years, a number of hybrid methods have
been developed that combine global and local alignment
features [17,19,2,8]. One of these methods is the segment-
based approach to multiple alignment [17] where align-
ments are composed from pairwise local sequence simi-
larities. Altogether, these similarities may cover the entire
input sequences – in which case a global alignment is pro-
duced – but they may as well be restricted to local motifs
if no global homology is detectable. Thus, this approach
can return global or local alignments – or a combination
of both – depending on the extent of similarity among the
input sequences.

Instead of comparing single residue pairs, the segment-
based approach compares entire substrings of the input
sequences to each other. The basic building-blocks for
pairwise and multiple alignment are un-gapped pairwise
local alignments involving two of the sequences under
consideration. Such local alignments are called fragment
alignments or fragments; they may have any length up to a
certain maximum length M. Thus, a fragment f corre-
sponds to a pair of equal-length substrings of two of the
input sequences. Pair-wise or multiple alignments are
composed of such fragments; the algorithm constructs a
suitable collection A of fragments that is consistent in the
sense that all fragments from A can be represented simul-
taneously in one output multiple alignment.

Note that, since multiple alignments are composed of
local pairwise alignments, conserved motifs are not
required to involve all of the input sequences. Unlike
standard algorithms for local multiple alignment, the seg-
ment-based approach is therefore able to detect homolo-
gies shared by only two of the aligned sequences. With its
capability to deal with both, globally and locally related
sequence sets and with its ability to detect local similari-
ties involving only a subset of the input sequences, the seg-
ment approach is far more flexible than standard methods
for multiple alignment. It can be applied to sequence fam-
ilies that are not alignable by those standard methods; this
is the main advantage of segment-based alignment com-
pared to more traditional alignment algorithms. The pre-
vious implementation of the segment-based multi-
alignment approach is DIALIGN 2.2 [16].

During recent years, systematic studies have been carried
out on real and artificial benchmark data sets to evaluate
the accuracy of multi-alignment programs [26,11,20].
These studies concluded that DIALIGN is superior to
other programs if sequence sets with local homologlis are
to be aligned. On sequences with weak but global homol-
ogy, however, the previous implementation of the pro-
gram is often out-performed by purely global methods
such as CLUSTAL W [24], by hybrid medthods like T-
COFFEE [19] or POA [13], or by the recently developed

programs MUSCLE [8] and PROBCONS [6] that are cur-
rently the best-performing methods for global multiple
protein alignment. In the next section, we show that the
inferiority of DIALIGN 2.2 on weakly but globally related
sequence sets is due to the objective function used by the
program. If the program can choose between (a) a global
pairwise alignment consisting of many fragments with
low individual fragment scores and (6) an alternative local
alignment consisting of only a few isolated fragments
with higher individual scores, it tends to prefer the second
type of alignment over the first one. Consequently, for
sequences with weak but global similarity, DIALIGN is
vulnerable to spurious random-similarities.

In this paper, we describe a complete re-implementation
of the DIALIGN algorithm that overcomes some of the
shortcomings of the previous program version 2.2. The
paper is organised as follows: in the next section, we dis-
cuss the objective function that DIALIGN uses to assess the
quality of different alignments for a given input data set.
We show that this objective function systematically over-
estimates isolated local alignments compared with alter-
native alignments that would extend over the entire
length of the sequences. Next, we introduce two heuristics
for pairwise and multiple alignment, respectively, to
counter-balance this bias towards isolated local similari-
ties. Then we describe additional features of our new
implementation, and in in the section Results and discus-
sion, we evaluate our software tool and compare it to the
previous implementation of DIALIGN and to other stand-
ard multi-alignment programs.

Objective functions for sequence alignment
From a computer scientist's point-of-view, sequence align-
ment is an optimisation problem. Most alignment algo-
rithms are – explicitly or implicitly – based on an objective
function, i.e. on some kind of scoring scheme assigning a
quality score to every possible alignment of a given input
sequence set. Based on such a scoring scheme, different
optimisation algorithms are used to find optimal or near-
optimal alignments. For multiple alignment, a variety of
optimisation techniques have been proposed. These algo-
rithms differ substantially from each other in view of their
computational complexity and in view of their ability to
find or approximate numerically optimal alignments.
However, the most important feature of an alignment
program is not the optimisation algorithm that it uses, but
rather the underlying objective function that is used to
score possible output alignments. If the objective function
is biologically wrong by assigning high scores to biologically
meaningless alignments, then even the most efficient
optimisation algorithms are only efficient in finding
mathematically high-scoring nonsense alignments. With a
more realistic objective function, however, even simple-
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minded heuristics may lead to biologically plausible
alignments.

The objective function that we use in the segment-based
approach is defined as follows: each possible fragment
(segment pair) f is assigned a weight score w(f) depending
on the probability P(f) of random occurrence of such a frag-
ment. More precisely, the program uses a similarity func-
tion s assigning a score s(a, b) to each possible pair (a, b)
of residues. For protein alignment, one of the usual sub-
stitution matrices can be used; for alignment of DNA or
RNA sequences, the program simply distingues between
matches and mismatches. For a fragment f, its Needleman-
Wunsch score NW [f] is calculated which is defined as the
sum of similarity values of aligned nucleotides or amino
acid residues (note again, that fragments do not contain
gaps). To define the weight score w(f) of f, we consider the
probability P(f) of finding a fragment f' of the same length
as f and with a Needleman-Wunsch score NW [f'] ≥ NW
[f] in random sequences of the same length as the input
sequences. w(f) is then defined as the negative logarithm of
this probability; see [14] for more details. The total score
of a – pairwise or multiple – alignment is defined as the
sum of weight scores of the fragments it is composed of;
gaps are not penalised. The idea is that the less likely a
given fragment collection is to occur just by chance, the
more likely it is to be biologically relevant so the higher its
score should be. Thus, while standard alignment
approaches try to find an alignment that is most likely
under the assumption that the input sequences are related
by common ancestry [7], we try to find an alignment that
is most unlikely under the assumption that the sequences
are not related. A pairwise alignment in the sense of the
above definition corresponds to a chain of fragments, and
an alignment with maximum total weight score can be
found using a recursive fragment-chaining procedure
[15]; for multiple alignment, a greedy heuristics is used
[1,14].

As explained above, DIALIGN defines the score S(A)of an
alignment A = {f1,..., fk} as the sum of weight scores w(fi)
of its constituent fragments, and these weight scores are,
in turn, defined as negative logarithms of probabilities
P(fi) of their random occurrence. Thus, the score S(A)is
calculated as

and searching for an alignment with maximal score is
equivalent to searching for a consistent collection of frag-
ments A = {f1,..., fk} with minimal product of probabilities
∏f∈A P(f). But considering the product of fragment proba-
bilities means to consider the probability of their joint
occurrence under the assumption that these events are

independent of each other. This would be reasonable if we
would search for an arbitrary fragment collection with low
probability of random occurrence. In our approach, how-
ever, we require a fragment collection to be consistent, so
the set of allowed combinations of fragments is drastically
reduced. The probability of finding a consistent set of frag-
ments is consequently far smaller than the product of the
probabilities of finding all of the corresponding individual
fragments. Thus, by using the product ∏f∈A P(f), DIALIGN
generally over-estimates the probability P(A) of random
occurrence of an alignment A.

In our context, the crucial point is that the probabilities
P(A) – and therefore the scores S(A) – are not uniformly
over-estimated – or under-estimated, respectively – for all
possible alignments, but there is wide difference between
global and local alignments. For a global alignment Ag that
covers most of the sequences, the discrepancy between the
real probability P(Ag) of its random occurrence and the

approximation P(f) used by DIALIGN is far more

significant than for a local alignment Al. This is because a
global alignment corresponds to a dense collection of frag-
ment, so here the consistency constraints are much tighter
than in a local alignment consisting of only a few isolated
fragments. As a result, DIALIGN relatively over-estimates
the probability P(Ag) of a global aligment Ag compared
with an alternative local alignment Al, so it under-estimates
the score S(Ag) compared with the score S(Al).

Reducing the influence of isolated local 
similarities
In the previous section, we explained why the objective
function used in DIALIGN systematically prefers local
alignments over alternative global alignments of the same
data set. An improved objective function that would use a
better approximation to the probability P(A)of random
occurrence of an alignment A would have to take into
account the combinatorial constraints given by our con-
sistency condition. Defining such an objective function
would be mathematically challenging. For our new pro-
gram, we therefore use the objective function that has
been used in previous versions of DIALIGN. However, we
introduce two heuristics to counterbalance the bias in this
objective function towards isolated local alignments.

Excluding low-scoring sub-fragments
The pairwise alignment algorithm that we are using is a
modification of the space-efficient fragment-chaining
algorithm described in [15]. At each position (i, j) in the
comparison matrix, this algorithm considers all fragments
(= segment pairs) starting at (i, j) up to a certain maxi-
mum length M. For protein alignment, the previous pro-
gram DIALIGN 2.2 uses a default value of M = 40; M can
be reduced to speed-up the program, but this may result

S A w f P f log P f
f A f A f A
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in decreased alignment quality. Initially, the length limi-
tation for fragments has been introduced to reduce the
program running time; this way the time complexity of
the pairwise fragment-chaining algorithm is reduced from
O(l3) to O(l2) where l is the maximum length of the two
sequences. One might think that increasing the maximum
fragment length M would result in improved alignment
quality. In fact, we observed that with slightly increased
values for M, better alignments were obtained, but with
values M > 50, the quality of the produced alignments
decreased dramatically.

In systematic test runs, we observed that for large values of
M, output alignments often contain long fragments
involving a mixture of high-scoring and low-scoring sub-
fragments. With an ideal objective function, a single long
fragment f containing low-scoring sub-fragments would
automatically receive a lower score than the chain of short
fragments that would be obtained from f by removing
those low-scoring sub-fragments. As a result, output align-
ments would tend to consist of shorter fragments rather
than of longer fragments with low-scoring sub-regions.
For reasons explained in the previous section, however,
the scoring scheme used by DIALIGN over-estimates sin-
gle long fragments compared with chains of smaller frag-
ments that would be obtained by removing low-scoring
regions from those long fragments.

In our new approach, we use the following heuristics to
prevent the algorithm from selecting long fragments with
low-scoring sub-regions. We define a length threshold L
for low-quality sub-fragments. Sub-fragments of length ≥
L with negative Needleman-Wunsch score are allowed
within short fragments but are excluded in fragments of
length ≥ T where T <M is a parameter that can be adjusted
bu the user. For a pair of input sequences S1 and S2 and
given values for the parameters T, M and L, our new algo-
rithm proceeds as follows. Let f(i, j, k) denote the fragment
of length k that starts at position i in sequence S1and at
position j in sequence S2, respectively. By S1 [k], we denote
the k-th character in sequence Si. As in the original DIA-
LIGN algorithm, we traverse the comparison matrix for S1
and S2, and at every position (i, j), we consider fragments
starting at this position; suitable fragments are then added
to a growing set F of candidate fragments from which the
algorithm selects a fragment chain with maximum total
score with respect to the underlying objective function
[15]. If a region of low quality occurs, the maximum frag-
ment length M(i, j) for fragments starting at (i, j) is
reduced from M to T. More formally, we perform the fol-
lowing steps for fragments starting at a fixed position (i, j):

1. Initially, the maximum length for fragments starting at
(i, j) is M(i, j) = M.

2. We start with length k = 1, i.e. we consider the fragment
f(i, j, 1).

3. If the current fragment length k exceeds M(i, j) then the
procedure stops and we continue with fragments starting
at (i, j + 1).

4. If the similarity score s(S1 [i + k - 1], S2 [j + k - 1]) of the
last residue pair in f(i, j, k) is not negative, we take the frag-
ment f(i, j, k) into account by adding it to the set F and
continue with step 7. Otherwise we detected the potential
beginning of a low-quality sub-fragment starting at posi-
tions i + k - 1 and j + k - 1, respectively.

5. In this case we do a lookahead and calculate the NW-
score of the potential low-scoring fragment f(i + k - 1, j +
k - 1, L) which is defined as

6. If NW [f(i + k - 1, j + k - 1, L)] < 0, we actually detected
a low-quality sub-fragment. If k >T, the procedure stops
and no further increasing of k is being considered, other-
wise we set M(i, j) = T.

7. The length k is incremented by 1 and we continue with
the step 3.

By default, our program uses a length threshold for low-
quality sub-fragments of L = 4 and the maximum length
of fragments containing such regions of low quality is T =
40. These values have been determined based on system-
atic test runs on BAliBASE. At this point, we want to men-
tion the impact of the parameters L and T on the quality
of the produced output alignments. For example, with val-
ues L = 3 or L = 5 the alignment quality is dramatically
worsened compared with the default value L = 4.

Our stop criterion for low-scoring sub-fragments not only
improves the quality of the resulting alignments but also
reduces the program running time. The runtime of our
pairwise algorithm is proportional to the number of frag-
ments that are considered for alignment. Thus, the worst-
case time complexity is O(l1·l2·M) where l1 and l2 are the
lengths of the input sequences. By excluding long frag-
ments with low-scoring sub-fragments, we ignore a large
number of fragments that would have been considered for
alignment in previous program versions. Therefore, our
new heuristics allows us to increase the maximum possible
fragment length from M = 40 to M = 100 without exces-
sively increasing the total number of fragments that are to
be looked at. A further extension of M is prohibited due to
numerical instabilities. Altogether, the resulting align-
ments can reflect the extension of existing homologies

NW f i k j k L s S i k p S j k p
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more realistically than the previous version of DIALIGN
with only a moderate increase in program running time.

Weight score factors
As mentioned above, DIALIGN uses a greedy optimisa-
tion procedure for multiple alignment. The order in which
fragments are included into the multiple alignment is
determined based on their weight scores. A general prob-
lem with this greedy approach is that if a wrong fragment
is accepted for multiple alignment, it cannot be removed
later on. Note that even a single wrong choice in the
greedy procedure can impair the quality of the resulting
alignment dramatically. Thus, special care has to be taken
to prioritise fragments for the greedy algorithm. We
observed that in many cases spurious but high scoring
fragments from pairwise alignments are inconsistent with a
good overall multiple alignment. Due to their weight
scores, however, such fragments may be incorporated into
the multiple alignment by the original DIALIGN, thereby
leading to output alignments of lower quality.

As explained in the previous section, the weight score of a
fragment depends on the probability of its random occur-
rence in sequences the length of the input sequences. Thus,
weight scores are purely based on intrinsic properties of
fragments – and on the length of the input sequences –
but they do not take into account the context of a fragment
within the pairwise alignment. In reality, however, the
context of a fragment is crucial to assess its reliability. If a
fragment f is part of a high-scoring pairwise alignment,
then f is, of course, far more likely to be biologically sig-
nificant than if the same fragment f would be found iso-
lated in otherwise un-related sequences. Therefore the
overall similarity among two sequences should be taken
into account if fragments are ranked prior to the greedy
procedure.

In our new program, we adopt the following approach: we
multiply the weight score of each fragment by the square
of the total weight score of the respective sequence pair
divided by the overall weight score of all pairwise align-
ments. Let S1,..., Sn be the input sequences and let f be a
fragment involving sequences Si and Sj. Next, let w(Si, Sj)
denote the total weight score of the pairwise alignment for
Si and Sj – i.e. the sum of weight scores of an optimal chain
of fragments – and let W be the total sum of weight scores
of all pairwise alignments. That is, we define

We then define the adjusted weight score

and in our greedy algorithm, fragments are sorted accord-
ing to their adjusted scores w'(f). This way, we prefer frag-
ments belonging to sequence pairs of high similarity over
those from weakly related sequence pairs. Altogether, this
weight adjustment respects the similarity of the sequence
pairs better than the previous method and hence may
keep the greedy procedure from adding isolated spurious
fragments that would have led to a lower-scoring and bio-
logically less meaningful output alignment. The sorted list
of fragments from the optimal pairwise alignments are
kept in a binary heap structure that can be updated effi-
ciently when inconsistent fragments are to be removed or
modified as explained in the next section.

Further program features
Dealing with inconsistent fragments
In the original DIALIGN approach, an inconsistent frag-
ment f is completely discarded in the greedy procedure –
even if just a few residue pairs are inconsistent with the
current alignment. In such a situation, it would be of
course more sensible to remove only those inconsistent
residue pairs from f and to give the remaining sub-frag-
ments a second chance in the greedy selection process. It
is easy to see that a fragment f is consistent with an exist-
ing alignment A if and only if each pair of aligned residues
in f is consistent with A. In our new implementation, we
use the following procedure for non-consistent fragments.
An inconsistent fragment f is processed from left to right.
Starting with the left-most residue pair, we remove all
inconsistent residue pairs until we find the first consistent
pair p. Next, we consider all consistent residue pairs start-
ing with p until we find again an inconsistent residue pair.
This way, we obtain a consistent sub-fragment f' of f for
which we calculate the weight score w(f'). By construction,
f' is consistent with the existing alignment and could, in
principle, be added to the list of accepted fragments.

However, we do not immediately include f' into the grow-
ing multiple alignment since the score w(f') might be
smaller than the original score w(f). Instead, we insert f' at
the appropriate position in our sorted list of fragments
depending on its adjusted weight score w'(f'). With the
binary heap structure mentioned in the previous section,
consistent sub-fragments of inconsistent fragments can be
efficiently re-positioned according to their newly calcu-
lated adjusted weights. The remainder of f is treated
accordingly, i.e. inconsistent residue pairs are removed
and the remaining consistent sub-fragments are inserted
at appropriate positions in the list of candidate fragments.
Note that with our weighting function w, the weight score

W w S Si j
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w(f') of a sub-fragment f' contained in a fragment f can in
general be larger than the weight w(f). In the above situa-
tion, however, we have necessarily w(f') ≤ w(f') [and there-
fore w'(f') ≤ w'(f)] since we assumed that f is part of the
optimal pairwise alignment of two sequences. If the score
w(f') of a sub-fragment of f exceeded w(f), then f' would
have been selected for the optimal pairwise alignment
instead of f.

Probability estimates
The previous implementation DIALIGN 2.2 uses pre-cal-
culated probability tables to calculate fragment weight
scores; these tables are based on the BLOSUM 62 substitu-
tion matrix. They have been calculated years ago and are
difficult to re-calculate if a user wants to employ another
similarity matrix. It is therefore not possible to run DIA-
LIGN 2.2 with substitution matrices other than BLOSUM
62. In our new implementation, we use a rather efficient
way to estimate the probabilities that are used for our
weight score calculations. We pre-calculated probability
tables for a variety of substitution matrices. In addition,
the user can re-calculate these tables 'on the fly' for arbi-
trary matrices with a moderate increase in program run-
ning time.

As explained in section Objective functions for sequence
alignment, we define the weight score of a fragment f
involving sequences Si and Sj as

w(f) = - logP(f)

where P(f) denotes the the probability for the occurence
of a fragment f' of the same length as f and with Needle-
man-Wunsch score NW [f'] ≥ NW [f] in random sequences
of the same length as Si and Sj. By random sequences we
mean independent identically distributed (iid) sequences
where each residue occurs at any position with probability
1/4 for nucleic acid sequences and 1/20 for protein
sequences, respectively. In the following, we outline how
our program approximates the probabilities P(f).

In a first step, we estimate the probability  of find-

ing a fragment f' of length n and with Needleman-Wunsch
score NW [f'] ≥ s in random sequences of length 2·n. Note

that  depends on the underlying substitution

matrix but not on the length or composition of the input

sequences Si and Sj. The numerical values  are esti-

mated as follows:

1. Random experiments are performed to obtain a prelim-

inary estimates  for . The experimental values 

should approximate  with sufficient accuracy for values

of n and s where enough experimental data are avail able.

This is the case if  is not too small.

2. For small values of , we first compute the prob-

abilitys P1(s, n) for a single random fragment f' of length n
to have a Needleman-Wunsch score NW [f'] ≥ s. P1(s, n)
can be easily calculated as a sum of convolution products.

Similar as in [14], small values of  are estimated using
the approximation formula

3. All in all, we define  for a given value s by first con-
sidering the trivial case n = 1 and then defining for n = 2,...,
M:

The described procedure to estimate  is computa-

tionally demanding. Since the values  do not

depend on the input sequences, we pre-calculated these
probabilities for several standard substitution matrices
and stored their values in auxiliary files from where they
are retrieved during the program run.

In a second step, we use  to estimate the probabil-

ity P(s, n) for finding a fragment f' of length n with Needle-
man-Wunsch score NW [f'] ≥ s in sequences the length of
the input sequences. This step is computationally less
expensive and can therefore be carried out during the pro-
gram run. Let li and lj be the lengths of the input sequences
Si and Sj, respectively. Similar as in [14], we compute P(s,
n) as

where PT is a threshold parameter. During a program run,
the values P(s, n) are calculated for all possible values of n
and s before the pairwise alignment of sequences Si and Sj
is carried out. The negative logarithms -log P(s, n) are
stored in a look-up table where they are retrieved during
the pairwise alignment to define the fragment scores.

We pre-calculated the probabilities  for several

substitution matrices of the BLOSUM family. To deter-
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mine the experimental probability values Pexp(s, n), we
carried out 106 random experiments for each relevant pair
of parameters (s, n). Here, we considered values for n bet-
wen 1 and a maximum fragment length M = 100. Files

with the resulting values of  values are distributed

together with our software package. To calculate P(f), we
use a threshold probability PT = 10-8. Our program can

also be used to calculate the values  for arbitrary

user-defined substitution matrices. Calculating these val-
ues using 105 random experiments for each value of n and
s takes around 20 minutes on a Linux workstation (Red-
Hat 8.0) with an 1.5 Ghz Pentium 4 processor and 512
MB Ram. In our experience, 105 random experiments are
sufficient to obtain high-quality probability estimates.

Results and discussion
We evaluated the performance of our program and com-
pared it to alternative multi-alignment software tools
using a wide variety of benchmark sequences. As a first set
of reference data, we used the well-known BAliBASE 2.1
[25]. BAliBASE has been used in numerous studies to test
the accuracy of multiple-protein-alignment software. It
should be mentioned that, although some of the reference
sequences in BAliBASE contain insertions and deletions of
moderate size, BAliBASE is heavily biased towards globally
related protein families. All BAliBASE sequences contain
homologous core blocks with verified 3D structure; align-
ment programs are evaluated according to their ability to
correctly align these blocks. According to the BAliBASE
authors, these core blocks cover 58 % of the residues in
the database. However, sequence similarity is clearly not
restricted to those regions of verified 3D structure so, in
reality, far more than 58 % of the total sequence length are
homologous to other sequences in the respective
sequence families. Also, the sequences in BAliBASE are
not realistic full-length sequences, but they have been
truncated by the BAliBASE developers in order to remove
non-related parts of the sequences. As a result, BAliBASE
consists almost entirely of globally related sequence sets;
this is why global alignment programs such as CLUSTAL W
perform best on these benchmark data.

To study the performance of alignment programs on
locally related sequence sets, Lassmann and Sonnhammer
used artificial random sequences with implanted con-
served motifs [11]. Random sequences are frequently used
to evaluate computational sequence analysis tools; they
are particularly useful to study the specificity of a tool, see
e.g. [23,10,20]. Unfortunately, the benchmark data by
Lassmann and Sonnhammer are not publicly available.
Therefore, we set up our own benchmark database for
local multiple protein alignment that we called IRMBASE
(Implanted Rose Motifs Base).

As Lassmann and Sonnhammer did in their previous
study, we produced groups of artificial conserved
sequence motifs using the ROSE software tool [23]. ROSE
simulates the process of molecular evolution. A set of
'phylogenetically' related sequences is created from a user-
defined 'ancestor' sequence according to a phylogenetic
tree. During this process sequence characters are ran-
domly inserted, deleted and substituted under a pre-
defined stochastic model. This way, a sequence family
with known 'evolution' is obtained, so the 'correct' multi-
ple alignment of these sequences is known. Note that
these alignments contain mismatches as well as gaps. We
inserted families of conserved motifs created by ROSE at
randomly chosen positions into non-related random
sequences. This way, we produced three reference sets ref1,
ref2 and ref3, of artificial protein sequences. Sequences
from ref1 contain one motif each and sequences from ref2
and ref3 contain two and three motifs each, respectively.
Each reference set consists of 60 sequence families, 30 of
which contain ROSE motifs of length 30 while the
remaining 30 families contain motifs of length 60. 20
sequence families in each of the reference sets consist of 4
sequences each, another 20 families consist of 8
sequences while the remaining 20 families consist of 16
sequences. In ref1, random sequences of length 400 are
added to the conserved ROSE motif while for ref2 and
ref3, random seqences of length 500 are added.

For both BAliBASE and IRMBASE, we used two different
criteria to evaluate multi-alignment software tools. We
used the sum-of-pair score where the percentage of correctly
aligned pairs of residues is taken as a quality measure for
alignments. In addition, we used the column score where
the percentage of correct columns in an alignment is the
criterion for alignment quality. Both scoring schemes
were restricted to core blocks within the reference
sequences where the 'true' alignment is known. For IRM-
BASE, the core blocks are defined as the conserved ROSE
motifs. In general, the sum-of-pairs score is more appro-
priate than the column score because this latter score
ignores all correctly aligned residues in an alignment col-
umn if one single residue in this column is mis-aligned.
However, there are situations where the column score is
more meaningful than the sum-of-pairs score. This is the
case, for example, for BAliBASE reference sets containing
'orphan sequences'.

To compare the output of different programs to the
respective benchmark alignments, we used C. Notre-
dame's program aln_compare [19]. Tables 1 and 2 sum-
marise the performance of DIALIGN-T, DIALIGN 2.2,
CLUSTAL W, MUSCLE, PROBCONS, T-COFFEE and POA
on IRMBASE while Tables 3 and 4 show their accuracy on
BAliBASE. In addition, Tables 5, 6, 7 and 8 contain the
percentage of sequence sets where DIALIGN-T is outper-

P s n,( )

P s n,( )
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Table 1: Performance of seven protein multi-alignment programs on the IRMBASE 1.0 database of benchmark alignments. Percentage 
values are sum-of-pairs scores, i.e. the percentage of correctly aligned residue pairs of ROSE motifs contained in the IRMBASE sequence 
families.

Method ref1 ref2 ref3 Total

DIALIGN-T 94.07% 92.69% 92.68% 93.14%
DIALIGN 2.2 92.26% 92.72% 91.87% 92.28%
T-COFFEE 1.37 91.18% 85.61% 87.81% 88.20%
PROBCONS 1.09 66.74% 68.30% 77.92% 70.98%
POA V2 90.26% 43.61% 36.85% 56.91%
MUSCLE 3.5 36.16% 37.84% 52.30% 42.10%
CLUSTAL W 1.83 8.02% 12.69% 20.16% 13.62%

Table 2: Performance of seven protein multi-alignment programs on IRMBASE using column scores as quality criterion. Thus, 
percentage values denote the percentage of correct alignment columns of the ROSE motifs in IRMBASE

Method ref1 ref2 ref3 Total

DIALIGN-T 82.28% 78.36% 79.71% 80.12%
DIALIGN 2.2 79.46% 77.82% 78.24% 78.51%
T-COFFEE 1.37 75.35% 66.60% 69.21% 70.19%
PROBCONS 1.09 33.13% 37.95% 51.26% 40.78%
POA V2 73.00% 12.46% 07.45% 30.97%
MUSCLE 3.5 09.41% 10.89% 22.37% 14.22%
CLUSTAL W 1.83 00.00% 00.83% 05.14% 01.92%

Table 3: Performance of seven protein multi-alignment programs on the BAliBASE benchmark database using sum-of-pairs scores as 
evaluation criterion.

Method ref1 ref2 ref3 ref4 ref5 Total

DIALIGN-T 82.76% 91.28% 75.34% 86.43% 93.30% 84.69%
DIALIGN 2.2 81.40% 89.56% 68.93% 91.24% 94.14% 83.59%
T-COFFEE 1.37 84.67% 93.24% 80.32% 75.80% 96.20% 85.95%
PROBCONS 1.09 90.37% 94.61% 84.34% 89.20% 98.07% 91.11%
POA V2 74.66% 88.32% 63.14% 82.62% 76.71% 76.76%
MUSCLE 3.5 88.25% 93.59% 82.36% 85.62% 97.80% 89.21%
CLUSTAL W 1.83 86.43% 93.22% 75.79% 81.09% 86.10% 86.15%

Table 4: Performance of seven protein multi-alignment programs on BAliBASE using column scores.

Method ref1 ref2 ref3 ref4 ref5 Total

DIALIGN-T 73.22% 43.43% 44.69% 66.13% 77.05% 65.65%
DIALIGN 2.2 71.49% 37.42% 35.03% 81.88% 84.47% 64.82%
T-COFFEE 1.37 75.32% 53.44% 52.20% 45.09% 86.96% 68.20%
PROBCONS 1.09 83.21% 59.76% 61.34% 71.09% 91.86% 77.23%
POA V2 63.21% 39.02% 25.57% 57.22% 47.18% 54.18%
MUSCLE 3.5 80.79% 56.37% 56.74% 62.65% 91.57% 74.13%
CLUSTAL W 1.83 78.39% 56.24% 48.87% 50.44% 63.89% 68.48%
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Table 5: Percentage of sequence families where DIALIGN-T is outperformed on IRMBASE 1.0 by alternative methods according to 
the sum-of-pairs score. The symbol + denotes statistically significant superiority, - statistically significant inferiority and 0 non-significant 
superiority or inferiority of DIALIGN-T, respectively. Significance has been calculated according to the Wilcoxon Matched Pairs 
Signed Rank Test with p ≤ 0.05).

Method ref1 ref2 ref3 Total

DIALIGN 2.2 20.00%+ 23.33%0 23.33%+ 22.22%+

T-COFFEE 1.37 40.00%0 31.67%+ 41.67%+ 37.78%+

PROBCONS 1.09 20.00%+ 15.00%+ 21.67%+ 18.89%+

POA V2 16.67%+ 0.00%+ 0.00%+ 5.55%+

MUSCLE 3.5 5.00%+ 5.00%+ 0.00%+ 3.33%+

CLUSTAL W 1.83 0.00%+ 0.00%0 0.00%0 0.0%+

Table 6: Percentage of sequence families where DIALIGN-T is outperformed on IRMBASE 1.0 by other methods according to the 
column score. Notation is as in Table 5.

Method ref1 ref2 ref3 Total

DIALIGN 2.2 11.67%+ 21.67%0 23.33%+ 18.89%+

T-COFFEE 1.37 36.67%0 30.00%+ 26.67%+ 31.11%+

PROBCONS 1.09 18.33%+ 01.67%+ 16.67%+ 16.67%+

POA V2 15.00%+ 00.00%+ 00.00%+ 05.00%+

MUSCLE 3.5 05.00%+ 05.00%+ 00.00%+ 03.33%+

CLUSTAL W 1.83 00.00%+ 00.00%+ 00.00%+ 00.00%+

Table 7: Percentage of sequence families where DIALIGN-T is outperformed on BAliBASE 2.1 by other methods according to the 
sum-of-pairs score. Notation is as in Table 5.

Method ref1 ref2 ref3 ref4 ref5 Total

DIALIGN 2.2 28.05%+ 21.74%+ 16.67%+ 16.67%0 41.67%0 26.24%+

T-COFFEE 1.37 58.54%- 86.96%- 75.00%- 25.00%0 50.00%0 60.99%-

PROBCONS 1.09 71.95%- 82.61%- 100.00%- 33.33%0 75.00%- 80.14%-

POA V2 20.73%+ 34.78%+ 16.67%+ 33.33%0 0.00%+ 21.99%+

MUSCLE 3.5 71.95%- 73.91%- 83.33%- 25.00%0 75.00%- 69.50%-

CLUSTAL W 1.83 53.66%- 56.52%0 58.33%0 16.67%0 8.33%+ 47.52%0

Table 8: Percentage of sequence families where DIALIGN-T is outperformed on BAliBASE 2.1 by other methods according to the 
column score. Notation as in Table 5.

Method ref1 ref2 ref3 ref4 ref5 Total

DIALIGN 2.2 26.83%+ 13.04%+ 16.67%+ 16.67%0 50.00%0 24.82%+

T-COFFEE 1.37 56.10%- 73.91%- 66.67%0 25.00%0 50.00%0 56.74%-

PROBCONS 1.09 80.49%- 82.61%- 75.00%- 25.00%0 66.67%- 74.47%-

POA V2 20.73%+ 26.09%0 08.33%+ 16.67%0 00.00%+ 18.44%+

MUSCLE 3.5 73.17%- 73.91%- 83.33%- 16.67%0 66.67%- 68.79%-

CLUSTAL W 1.83 52.44%- 69.57%- 50.00%0 16.67%0 08.33%+ 48.23%0
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formed by the other programs that we tested. Tables 1 and
2 show that, on locally related sequence families, DIA-
LIGN-T is significantly superior to the algorithms DIA-
LIGN 2.2, T-COFEE, MUSCLE, POA and CLUSTAL W.
Only DIALIGN-T, DIALIGN 2.2, T-COFFEE and (in a very
reduced way) PROBCONS produced reasonable results
on IRMBASE 1.0. However, DIALIGN-T is the fastest and
most accurate amongst all methods that we looked at. We
would like to emphasize that the performance of multi-
alignment methods on simulated data only roughly
reflects their performance on real data. Nevertheless, in
the absence of real-world benchmark data for local multi-
ple alignment, the results on IRMBASE can give us an idea
of how different algorithms deal with locally conserved
motifs.

For globally related sequence families, Tables 3 and 4
show that, on average, DIALIGN-T outperforms DIALIGN
2.2 and POA on BAliBASE 2.1 while its performance is
similar to CLUSTAL W. By contrast, the previous version
DIALIGN 2.2 is clearly outperformed by CLUSTAL W on
these data sets. Finally, DIALIGN-T is still outperformed
on many of the BAliBASE test sequences by T-COFFEE,
MUSCLE and PROBCONS; the latter program is currently
the best-performing multiple aligner on BAliBASE. The
superiority of our new approach compared to DIALIGN
2.2 and POA is clearly statistically significant according to
the Wilcoxon Matched Pairs Signed Rank Test. On BAli-
BASE reference sets ref1, ref2 and ref3 where sequences
contain only small insertions and deletions, the perform-
ance of DIALIGN-T is roughly comparable to CLUSTAL W,
but yet still significantly worse than T-COFFEE, PROB-
CONS or MUSCLE. Our program is statistically signifi-
cantly superior or equal to all tested methods, except
MUSCLE and PROBCONS, on the sequence sets with
larger insertions or deletions (ref4 and ref5 of BAliBASE).

Overall, the relative performance of the different align-
ment tools is similar under the two alternative evaluation
criteria that we used (sum of pairs and column score) –
although, the absolute values of the column scores are, of
course, lower than the sum-of-pairs scores. Maybe surpris-
ingly, both versions of DIALIGN are superior to all other
programs in our study on the locally related sequences
from IRMBASE – while on the other hand, DIALIGN was
outperformed by alternative methods on reference sets 4
and 5 of BAliBASE. These sequence sets are also consid-
ered locally related because they contain larger insertions
and deletions then other BAliBASE sequences. The reason
for this apparent discrepancy is that the ref4 and ref5
sequence sets in BAliBASE are not truly locally related, but
they still show some similarity outside the conserved core
blocks. In IRMBASE, by contrast, sequence similarity is
strictly limited to the conserved motifs.

Since we re-implemented the DIALIGN algorithm from
scratch and used a variety of novel program features, it is
not possible to tell exactly to what extend each of these
features contributed to the improved program perform-
ance. Systematic test runs with varying parameters indi-
cate, however, that the superiority of our new program
compared to the previous program DIALGIN 2.2 on
locally as well as on globaly related sequence families is
mainly due to the program features explained in the third
section. The improvement that we achieved with these
heuristics is statistically significant. The features explained
in section Further program features also improved the pro-
gram accuracy, though here the improvement was not sta-
tistically significant.

Table 9 shows the program running time for the seven
programs that we tested in our study. DIALIGN-T is
around 6 % slower than the previous implementation
DIALIGN 2.2 on BAliBASE 2.1, but on IRMBASE, DIA-
LIGN-T is approximately 30 % faster than DIALIGN 2.2.
In DIALIGN, the CPU time for multiple alignment is
mainly spent on pairwise alignments that are performed
before fragments are included into the multiple align-
ment. As explained in section Excluding low-scoring sub-
fragments, the runtime for pairwise alignment is roughly
proportional to the number of fragments that are consid-
ered for alignment and, for sequences of length l1 and l2
and a maximum fragment length M, up to l1 × l2 × M frag-
ments are to be considered. In our new program DIA-
LIGN-T, the maximum fragment length M is increased to
100 compared to 40 for the original DIALIGN program.
Nevertheless, the program running time is only slightly
increased for the globally related protein families from
BAliBASE and considerably decreased for the locally con-
served sequences from IRMBASE. This is due to the heuris-
tic stop criterion for fragments introduced above. The
slowest program in our comparison was T-COFFEE which
is more than eleven times slower than DIALIGN-T on
IRMBASE and more than five times slower on BAliBASE.
POA was the fastest method. On BAliBASE, the program
PROBCONS produces the best results in terms of align-
ment accuracy. The program is, however, the second slow-
est program after T-COFFEE on both BAliBASE and
IRMBASE. MUSCLE provides so far the best tradeoff
between running time and quality on globally related
sequence families, but when it comes to local alignments
both running time and alignment quality decrease drasti-
cally. The memory consumption of our method has been
improved compared to DIALIGN 2.2.

With the development of DIALIGN-T, we significantly
improved the segment-based approach to multiple pro-
tein alignment on both local and global benchmark data.
The new heuristics that we introduced, generally favour
consistent groups of low-scoring fragments over isolated
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higher-scoring fragments. This way, we improved the pro-
gram performance on globally related sequence sets where
the segment approach was previously inferior to programs
such as CLUSTAL W and POA. On these data sets, our new
method is significantly more accurate but only slightly
slower than DIALIGN 2.2. On BAliBASE, the performance
of our approach is now comparable to the popular global
alignment program CLUSTAL W. For locally related pro-
tein families, DIALIGN-T performs significantly better
and is also considerably faster than the previous DIALIGN
2.2 which was, so far, the best available method on locally
related protein families. In addition to these improve-
ments, it is now possible to use arbitrary user-defined sub-
stitution matrices which was not possible for the original
DIALIGN program. To further enhance the performance
of our method, we are planning to improve the greedy
algorithm that DIALIGN uses for multiple alignment.
Rather than focusing on pairwise fragment alignments, we
will develop heuristics that are able to integrate multiple
local alignments into the final multiple alignment. This
approach should further improve the sensitivity of our
methods for locally conserved motifs.

Finally, we would like to make some general remarks on
parameter tuning and program evaluation in multiple
sequence alignment. As mentioned above, we identified
suitable values for our parameters T and L based on test
runs with BAliBASE, and we assume that this is how the
program parameters for most multiple protein aligners
have been tuned during the last years. Therefore, the ques-
tion has been raised if current protein alignment pro-
grams are overfitted with respect to BAliBASE. Parameter
overfitting is a serious problem for many Bioinformatics
algorithms. For example, many gene-prediction programs
have a large number of parameters to adjust, so it is easy
to tune these programs to perform well on a given set of
training data. For such programs it is therefore absolutely
necessary to clearly separate training data that are used for

parameter tuning from test data that are used to evaluate
the program. The situation is totally different in multiple
alignment. Most multi aligners have only a very small
number of parameters to adjust. For our algorithm, for
example, the only important parameters to tune are T and
L. BAliBASE, on the other hand, comprises a large variety
of test sequences for global multiple alignment. It consists
of 139 sequence sets, each of which contains several core
blocks, so there is a total of several hundred core blocks
that are used to test alignment quality. It is absolutely
impossible to tune a small number of parameters in such
a way that they work well only on BAliBASE but not on
other globally related protein sequences. Thus, if an align-
ment program performs well on BAliBASE, one can safely
assume that it also works well on other globally related
protein sequences, even if BAliBASE has been used to
adjust its parameter values. In fact, it turned out that the
parameters that we tuned on BAliBASE work not only well
for these global test data but also on the totally different
artificial local test sequences from IRMBASE.

The real problem with BAliBASE is its heavy bias towards
globally related sequence sets. This does not only refer to
the selection of protein families that are included into
BAliBASE. As mentioned above, many protein sequences
in the current release of BAliBASE are not real-world pro-
tein sequences, but have been artificially truncated by the
developers of BAliBASE in order to make them globally
related. With these non-realistic global test sequences, the
BAliBASE authors carried out a systematic program evalu-
ation and – not surprisingly – found out that Global align-
ment programs generally performed better than local methods
[26]. The picture could have been totally different if
realistic full-length proteins had been used instead of
truncated sequences. To counterbalance the bias towards
global test sets in BAliBASE, we created an additional
benchmark data set consisting of simulated conserved
domains embedded in non-related random sequences.
The performance of alignment programs on artificial
sequences should not be over-estimated as the design of
such data sets is necessarily somewhat arbitrary. Neverthe-
less, our test runs on these simulated data give a rough
impression of how different alignment methods perform
on locally related data sets. Further systematic studies
should be carried out to evaluate the performance of mul-
tiple-protein aligners under varying conditions using, for
example, the full-length BAliBASE sequences or newly
developed benchmark databases such as SABmark
[27,28], Prefab [8] or Oxbench [21].

As a concluding remark, we would like to address a funda-
mental limitation of most multi-alignment methods,
including the one presented in this paper: these methods
implicitly assume that homologies and conserved motifs
occur in the same relative order within the input sequences.

Table 9: Average running time (in seconds) per multiple 
alignment for the 180 sequence families of IRMBASE and for 141 
sequence families in BAliBASE 2.1. Program runs were 
performed on a Linux workstation (RedHat 8.0) with an 3.2 GHz 
Pentium 4 processor and 2 GB Ram.

Method Average runtime on 
IRMBASE 1.0

Average runtime on 
BAliBASE 2.1

DIALIGN-T 2.36 1.38
DIALIGN 2.2 3.33 1.30
T-COFFEE 1.37 27.54 7.64
PROBCONS 1.09 12.37 2.66
POA V2 1.44 0.58
MUSCLE 3.5 9.37 0.60
CLUSTAL W 1.83 1.41 0.47
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There are two major reasons for making this assumption.
First, an order-preserving multiple alignment that repre-
sents homologies by inserting gap characters into the
input sequences provides a convenient visualisation of
existing homologies. Second – and more importantly -,
the order-preservation constraint greatly reduces the noise
created by random similarities. A program that would
return all detectable local or global similarities among the
input sequences without the above ordering constraints
would necessarily return many spurious random similari-
ties. To reduce this noise, arbitrary threshold parameters
would have to be applied which, in turn, could prevent a
program from detecting some of the real homologies.
With the ordering constraint that is implicitly imposed by
most alignment programs, weak homologies can be
detected, provided they are order-consistent with other
detected similarities, i.e. if they fit into one single output
alignment. Many evolutionary events such as insertions,
deletions and substitutions preserve the relative ordering
among sequence homologies. In this situation order-
respecting alignment methods are, in principle, able to
represent all true biological homologies in one multiple
alignment. Nevertheless, for distantly related protein fam-
ilies, non-order-preserving events such as duplications or
translocations need to be taken into account. Such events
play an important role in comparative analysis of genomic
sequences which became an important area of research
during the last years [20]. Recently, some promising algo-
rithms for multiple alignment of genomic sequences have
been proposed that are able to deal with non-order-con-
serving evolutionary events [22,3]. Further progress in

multiple protein alignment can be expected if these ideas
are applied to protein alignment algorithms.

Program availability
DIALIGN-T is available at Göttingen Bioinformatics Com-
pute Server (GOB-ICS):

• Project name: DIALIGN-T

• Project home page: http://dialign-t.gobics.de

• Operating system(s): UNIX and LINUX

• Programming language: C

• Other requirements: none

• License: GNU LGPL

• Any restrictions to use by non-academics: none

A program package with functionalities to compute align-
ments of nucleic acid sequences will be available soon.
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Exclusion of low-scoring regions from alignment fragmentsFigure 1
Exclusion of low-scoring regions from alignment fragments. The scoring scheme used in DIALIGN gives relatively high weight 
scores to single fragments with high Needleman-Wunsch scores (a). In our new approach, we exclude low-scoring sub-regions 
within long fragments by applying a stop criterion for fragment extension. This can result in the replacement of a long fragment 
f by multiple sub-fragments (b) or in a completely different alignment (c).
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