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Abstract

Background: Molecular profiling generates abundance measurements for thousands of gene
transcripts in biological samples such as normal and tumor tissues (data points). Given such two-
class high-dimensional data, many methods have been proposed for classifying data points into one
of the two classes. However, finding very small sets of features able to correctly classify the data is
problematic as the fundamental mathematical proposition is hard. Existing methods can find "small"
feature sets, but give no hint how close this is to the true minimum size. Without fundamental
mathematical advances, finding true minimum-size sets will remain elusive, and more importantly
for the microarray community there will be no methods for finding them.

Results: We use the brute force approach of exhaustive search through all genes, gene pairs (and
for some data sets gene triples). Each unique gene combination is analyzed with a few-parameter
linear-hyperplane classification method looking for those combinations that form training error-
free classifiers. All 10 published data sets studied are found to contain predictive small feature sets.
Four contain thousands of gene pairs and 6 have single genes that perfectly discriminate.

Conclusion: This technique discovered small sets of genes (3 or less) in published data that form
accurate classifiers, yet were not reported in the prior publications. This could be a common
characteristic of microarray data, thus making looking for them worth the computational cost. Such
small gene sets could indicate biomarkers and portend simple medical diagnostic tests. We
recommend checking for small gene sets routinely. We find 4 gene pairs and many gene triples in
the large hepatocellular carcinoma (HCC, Liver cancer) data set of Chen et al. The key component
of these is the "placental gene of unknown function", PLAC8. Our HMM modeling indicates PLACS8
might have a domain like part of IP59's crystal structure (a Non-Covalent Endonuclease lii-Dna
Complex). The previously identified HCC biomarker gene, glypican 3 (GPC3), is part of an accurate
gene triple involving MTIE and ARHE. We also find small gene sets that distinguish leukemia
subtypes in the large pediatric acute lymphoblastic leukemia cancer set of Yeoh et al.

Background employed cDNA microarrays to assay 6605 clones from
Transcriptional profiling studies can produce data in the = normal liver and liver cancer (hepatocellular carcinoma)
form of abundance measurements for genes in samples  tissues [1]. Given such two-class high-dimensional data,
assigned to one of two classes. A recent exemplar  one analytical task is identifying a "small" subset of
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features able to discriminate between the classes. Tools
that solve this problem would accelerate development of
novel and/or improved molecular targets for diagnosis,
prognosis, and therapy [2]. For example, enunciating
genes able to distinguish liver cancer from normal sam-
ples could assist investigations into the etiology and treat-
ment of liver cancer.

Existing classification and feature selection techniques can
be employed to ascertain the cardinality of a feature sub-
set yielding a classifier that generalizes well, i.e., one
which makes zero (or few) errors in assigning the class of
an unseen data point. Frequently, application of these
approaches to a data set results in the definition of one
discriminatory subset with tens to hundreds of features
and requiring similar numbers of free parameters. This
work focuses on subsets smaller than those produced by
existing algorithms: all subsets of one-, two-, (and some-
times three-) features that can be separated by a linear sur-
face without error. A multiplicity of error-free linear
classifiers constructed from few features could facilitate
the creation of cost-effective clinical tests and guide fur-
ther basic research.

Here, an m-feature classifier is defined as a decision sur-
face for m-dimensional data points where the m features
are a subset of P a priori features, m <<> P. The potential
number of these classifiers is equivalent to choosing m
P!
m!(Pl—m!)
increases when different types of decision boundaries are
permissible for each value of m. The scope of the problem
can be reduced and simplified if only m-feature linear clas-
sifiers (m-LCs) are considered. This restriction of neglect-
ing non-linear decision surfaces is reasonable because
hyperplanes can be calculated efficiently, and Support
Vector Machines with linear kernels are sufficient for clas-
sification problems associated with profiling data (see for
example [3-6]). Recent work by Bo [7] and Kim [8] dem-
onstrate the utility of looking for small feature sets. Bo
and Jonassen surveyed a number of classifier discovery
methods including linear hyperplanes. They showed that
accurate two-gene classifiers exist in real world data sets
and that they perform well. They only analyzed 2 data
sets, did not report computer runtimes nor consider single
genes or gene triples in their analysis. Kim et al employed
a heuristic, Monte Carlo-based strategy to discover 2- and
3-LCs for a real-world, 3226-dimensional, two-class tran-
scriptional profiling data set [8]. This sophisticated
method computes noise tolerant hyperplanes using an
analytic spherical model. However, 140 hours on a super-
computer cluster were required to identify at least 11 pairs
of genes, each of which separates the data. Thus, although
brute force exhaustive search provides a comprehensive
and systematic method for finding all small discrimina-

. . p .
items out P, ie., C(—)= . This number
m
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tory feature subsets, the strategy is expensive computa-
tionally and largely untenable for m > 3 (the problem size
grows combinatorially). The high dimensionality of tran-
scriptional profiles and the logistical issues associated
with exhaustive enumeration of all 1-, 2- and 3-LCs have
lead to the prevailing assumption that such searches are
both too expensive and unlikely to be informative. Thus,
while some recent studies have made use of Kim's method
[9-12], most profiling studies neither consider nor report
small sized discriminatory feature subsets.

Here, a relatively inexpensive method for calculating max-
imal margin hyperplanes, LIKNON [6,13], is utilized to
rapidly find error-free m-LCs in ten published transcrip-
tional profiling data sets that assayed samples from liver,
human breast, ovary, lung, skin, gastrointestinal tract,
bone marrow, brain, and prostate. The number of free
parameters in this method is m + 1, hence is very small rel-
ative to the size of the data, greatly reducing the problem
of over-fitting to the training data (see Random Data sec-
tion). It seems plausible that the existence of single genes
and gene pairs with the ability to form perfect linear clas-
sifiers may be a widespread phenomenon. To demon-
strate the biological utility of the strategy, the gene pairs
and triples discovered in the aforementioned LiverCancer
data set were examined and found to yield new and unan-
ticipated scientific insights. Overall, the results indicate
the importance of ascertaining, as a matter of routine, the
presence (or absence) of small distinguishing feature
subsets.

Results
All results are available through the web site [14].

The 10 published cancer data sets examined here are listed
in Table 1. They range in size from small (few genes and/
or a small class) to large (many genes with large classes),
using a variety of microarray technologies. For each data
set, all single and pairs of genes were tested (for some data
sets gene triples were tested) using the LIKNON tech-
nique. All gene sets that formed zero training error classi-
fiers were saved and are available via the web site. Table 2
lists the number of such gene sets. Many data sets have
single genes or pairs that form such perfect linear classifi-
ers which is interesting as most original reports did not
note their presence. Computer runtimes are given in Table
3. A rough time estimate is 1 second per million pairs per
sample. Evaluating all pairs requires checking about 0.5 *
n? pairs (a triangular matrix). So a 2000 gene, 30 sample

05*2000° * 30
le6

set would need about =60 seconds.

As expected, small data sets are found to have many thou-
sands of gene pairs while large data sets have few. The
gene sets discovered in the two large data sets (LiverCan-
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Table I: Published transcriptional profiling data sets reexamined in this study. For each set, the Table gives the abbreviation;
dimensionality of the data points investigated after pre-processing of the features assayed in the original study; number, description
and abbreviation for samples assigned to a category.

Name Description
BreastER Node-negative breast carcinomas, P = 3398 (3,398 cDNA clones) [19]
23 Estrogen receptor « positive (ER*)
24 Estrogen receptor « negative (ER-)
http://www.nhgri.nih.gov/DIR/Microarray/ER data.txt
BreastBRCA Primary breast tumors, P = 3226 (6,512 cDNA clones) [20]
7 BRCAI mutation (BRCALI)
8 BRCA2 mutation (BRCA2)
7 Sporadic (Sporadic)
http://www.nhgri.nih.gov/DIR/Microarray/NEJM Supplement
OvarianBRCA Primary epithelial ovarian adenocarcinomas; P = 6445 (7,651 cDNA clones) [21]
18 BRCAI| mutation (BRCAI)
16 BRCA2 mutation (BRCA2)
27 Sporadic (Sporadic)
http://incicancerspectrum.oupjournals.org/cgi/content/full/jnci;94/13/990/DCI
LungStanford Lung tumors; P = 918 (blanks set to average, 24,000 cDNA clones) [22]
41 Adenocarcinomas (AC)
16 Squamous cell carcinomas (SCC)
http://genome-www.Stanford.edu/lung cancer/adeno
LungBeer Lung tissue samples; P = 4966 (4,966 cDNA clones) [23]
10 Non-neoplastic (Normal)
86 Adenocarcinomas (AC)
http://www.nature.com/nm/journal/v8/n8/suppinfo/nm733-S | .html
Cutaneous Cutaneous melanomas; P = 3613 (the "detected" set, 8,150 cDNA clones) [24]
31 Melanoma biopsies (Melanoma)
7 Tumor cell lines (Cell line)
http://research.nhgri.nih.gov/microarray/Melanoma_Supplement
GIST Tumors; P = 1987 (1,987 cDNA clones) [25]
13 KIT-mutation positive gastrointestinal stromal tumors (KIT*)
6 Spindle cell tumors from locations outside gastrointestinal tract (Spindle)
http://research.nhgri.nih.gov/microarray/gist data.txt
YeohALL Pediatric, acute lymphoblastic leukemia bone marrows; P = 4196 (10000 variation filter, 12,625 Affymetrix HG_U95Av2
probes) [26]
43 T-lineage ALL (T)
27 E2A-PBX1 (E2A)
15 BCR-ABL (BCR)
79 TEL-AMLI (TEL)
20 MLL (MLL)
64 Hyperdiploid>50 (Hyperdip50)
http://www stjuderesearch.org/data/ALL |
Prostate Prostate tissue samples; P = 3958 (12,626 Affymetrix U95a probes) [27]
25 Primary cancer tissue (Tumor)
9 Non-neoplastic tissue (Normal)
http://carrier.gnf.org/welsh/prostate/
Liver Liver Cancer (Hepatocellular carcinoma); P = 6605 (cDNA clones) [1]

105 Tumor (Tumor)
76 Normal (Normal)
http://genome-www.stanford.edu/hcc/

cer and YeohALL) are likely biologically relevant and are
discussed later. The thousands of pairs found on small
data sets are mostly due to the small sample size of the
data, and would likely not maintain their perfect
classification upon addition of further patient samples.
Generalization performance was estimated with a LOO

methodology (see Methods) and is often reasonably
good.

However, even gene sets found in small data sets can be
interesting depending on the end use. For use in a medical
diagnostic it is desirable that the gene set be highly accu-
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Table 2: Number of I-, 2- and 3-LCs for the data sets described in Table I. For the two-class partitionings shown, the Table gives the
number of perfect linear classifiers (given P initial features) that can be constructed using one, two and for some sets 3, genes. The 3
gene results report the total number of triples, and in parenthesis the number saved for later analysis.

Data set Class +1 Class -1 I-LCs 2-LCs 3-LC
BreastER ER* ER- 0 16 108 k(2045/180')
BreastBRCA BRCAI BRCA2 18 143,574

BRCAI/BRCA2 Sporadic 0 2,114

BRCAI BRCA2/Sporadic 0 12,729

BRCAI Sporadic 4 66,754

BRCA2 BRCAI/Sporadic 0 10,027

BRCA2 Sporadic 7 78,901
OvarianBRCA BRCAI BRCA2 0 1,612

BRCAI/BRCA2 Sporadic 0 0

BRCAI BRCA2/Sporadic 0 0

BRCAI Sporadic 0 0 2492

BRCA2 BRCAI/Sporadic 0 0

BRCA2 Sporadic 0 0 23
LungStanford AC SCC 2 484 565 k(65)
LungBeer AC Normal 5 22,102
Cutaneous Melanoma Cell line 0 596 4.2 m(386)
GIST KIT+ Spindle 74 137,981
YeohALL T E2A/BCR/TEL/MLL/Hdip50 [ 1169

E2A T/BCR/TEL/MLL/Hdip50 4 386

BCR T/E2A/TEL/MLL/Hdip50 0 |

TEL T/E2A/BCR/MLL/Hdip50 0 3

MLL T/E2A/BCR/TEL/Hdip50 0 2

Hdip50 T/E2A/BCR/TEL/MLL 0 0
Prostate Tumor Normal 52 249,665
Liver Tumor Normal, Original Labels 0 0 444

Tumor Normal, Relabeled 0 4 9.5 k(2914)

('Only 180 of the estrogen triples do not contain the Estrogen Receptor | gene. 20varian BRCA BI vs Sporadic triples were run with a reduced set
of genes, variation filtered to 2109. 3Ovarian BRCA B2 vs Sporadic triples were run with a reduced set of genes, variation filtered to 2097. 4Liver
Cancer triples use only 1956 genes. Relabeled means the the 2 "outlier" samples are re-labeled as normal.)

Table 3: Wallclock run times for 2-LCs (pairs) for some of the data sets listed in Table. The P-LC program is written in C and uses
double precision arithmetic. "Total time" (seconds) and "Time estimator" (seconds per 10¢ evaluations per sample) are execution
times for the software on a 1.8 GHz AMD Athlon computer running Linux in an unloaded network configuration. An average time
estimate is roughly | second per 10¢ evaluations per sample.

Data set Number samples Number genes Number pairs Total time Time estimator
BreastER 47 3,389 5,700,000 251 0.94
BreastBRCA 22 3,226 5,200,000 161 1.41
LungBeer 96 4,966 12,300,000 1,500 1.27
Cutaneous 38 3,613 6,500,000 260 1.05
YeohALL 248 4,169 8,700,000 1,800 0.83

rate on large number of patient samples so the test result
error rate is low. If used to guide basic research, even a
poor error rate could indicate a productive research
direction.

The results are easily visualized for single and pairs of
genes by a scatter plot. For each sample the expression

values for the gene(s) set the x-y position and the point is
labeled with the sample class as shown in the example
plot Figure 1. The separating plane is drawn between the
two clouds of points and one can see the amount of sepa-
ration between the two classes (which is twice the "mar-
gin") a particular set of genes pair yields. A larger margin
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Example plot using two hypothetical genes. Each data point is labeled with the class, and the separating plane is com-
puted to be positioned halfway between the two classes. In this example there is a large separation between the two classes
and perfect separation is achieved and no data point is close to the plane.

means the data are more well separated hence is more
resilient to noise and more likely biologically relevant.

Discussion

Many of the genes sets found accurately classify the data
with large separation between the classes. It is exciting to
consider the possibilities for medical diagnostics if some
small gene set is found to accurately and reproducibly
indicate a disease state. While general machine learning
principles suggest that having more features (genes in this
case) is desirable in order to make more noise resistant
classifiers, this is data dependent and gene pairs with a
training error rate of 1/90 as found in the LiverCancer data
could be perfectly acceptable. Small gene sets, even if not
accurate enough for medical purposes, can indicate
fruitful new research directions. Like other classification

methods that produce large numbers of genes, consider-
ing the corpus of all genes found can provide insight to
the underlying biology.

Experimental design and construction of a data set pro-
foundly influences the presence of small sized classifiers.
For example, the BRCA sets are labeled according to their
known BRCA1/BRCA2 mutation status. If some of the
measured genes reflect this mutation status we would
apriori expect to find some (possibly many) small feature
sets, and not finding any could indicate errors in the class
labels (a sample is mislabeled).

In data where the class sizes are small, most of the small
gene sets will prove sensitive to noise. Thus they are not
likely to perform well as predictors on new samples, or in
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Table 4: Random data tests. The experimentally determined
largest number of pairs found from 20 runs on random data.
Each class has half the number of samples (number positives =
number of negatives). The total number of genes is 2000. The
second column is the number of pairs found for this 2000 gene
set size, third column is the observed probability a single pair will
be a perfect classifier ("observed" / 20002/2).

Samples observed Chance for a single pair
16 4625 0.002312

18 1822 0.000911

20 965 0.0004825

22 510 0.000255

24 30 0.000015

26 10 0.000005

28 8 0.000004

30 | 0.0000005

32 I 0.0000005

different experiment setups. Classifiers made from large
data sets are more likely to be reproducible and perform
well in other situations. Classifiers with large margin and
zero LOO error are more likely to indicate real biological
effects that would hold true on new patient samples.

The GIST and BreastBRCA experiments are examples of
both of the above conditions, and both lead to very large
numbers of pairs. Both have small class sizes and have
pre-disposed differences between the classes. The GIST
experiment compares cancers from different tissue types
which means there will be a very strong signal from just
the tissue differences rather than just the cancers alone.
The BreastBRCA experiment has the pre-disposition of
being split along BRCA status lines. In both cases the
number of patient samples and class sizes is small and
100,000+ pairs are found. We suspect there are some bio-
logically real pairs hidden in the large background noise
due to small sample sizes. Random data tests (see Meth-
ods) indicate that 30+ samples with more even class sizes
are needed in order to reduce the random chance noise to
a very small level (Table 4).

Gene sets that perform well across independent experi-
mental data sets also likely indicate real biological effects.
However, cross-experiment array comparisons are diffi-
cult and would be much easier and more broad if experi-
menters used more common clones and references.

Is the cost of such computation worth it? Certainly it is for
single genes and pairs. Modern computers are powerful
enough to solve these size problems in a few minutes. Tri-
ples needs tens to hundreds of hours on a single compu-
ter, which is still tractable. Quadruples are beyond single
computer tractability. However, this type of algorithm is

http://www.biomedcentral.com/1471-2105/6/97

trivially parallelized over a standard network of comput-
ers leading to linear speed up. Each computer would be
instructed to examine a given part of the search space and
thereafter be independent from all the rest. A super com-
puter or dedicated computer cluster is not required. It
seems possible that the occurrence of such small sized
classifiers is a common characteristic of microarray data,
thus making the effort of searching for small gene sets
worth the computational cost. The technique is not
restricted to RNA/DNA transcript microarray data as used
here. It can be applied to protein microarray, mass-spec-
tra, or any data with similar characteristics.

Data set discussion

We can't discuss all the gene sets found in all data sets:
there are too many. Here we discuss results from the 2
large data sets that we think produce highly biologically
relevant results. The supplement [see Additional file 1]
contains further discussion and the web site [14] provides
access to all the results and plots.

Liver cancer

The large liver cancer data set contains 2 classes (tumor
and normal) with 181 patient samples and measurements
for 6605 genes. We examined this data set in more detail
than the others as it is large and any results found are
likely to be biologically relevant. The original data [1] was
re-normalized using the Intensity/local then Spatial/local
methods as implemented in the BioConductor R package
[15] (this is the best performing method as outlined in,
Wei Wu, unpublished 2004). With the original data exam-
ple labelings (105 tumor, 76 normal), there are no pairs
found. However, normal LIKNON [6] discovers a 23 gene
classifier with 2 of the tumor examples strongly mis-clas-
sified (patient samples 108 and 109 in the raw data table
from [1]). This suggests these 2 samples might have some
sort of problem with them (contamination with too much
normal tissue, a very different type of cancer, different
tumor stage, etc) or are simply mislabeled. Relabeling
these 2 tumor samples to be normal results in 4 gene pairs
being found. Going further we wished to look for gene tri-
ples, yet using all 6605 genes would lead to excessive runt-
imes, so we applied a variation filter to reduce the number
of genes. This variation filter (requiring a variation of at
least 3.6 in log, values for each gene) reduced the number
of genes examined from 6605 down to 1956, which
yielded 43 gene triples (using the original labelings) and
9496 gene triples (with the 2 "outlier" genes relabeled).
Only 291 of these triples were saved for further analysis.
All 4 gene pairs, 35 of the 43 and 229 of the 291 triples
include the recently annotated gene PLACS
(IMAGE:491644) a "placenta specific gene of unknown
function".

The 4 genes in pairs with PLAC8 are
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Liver cancer pair PLACS8 verses BCAT2. The two misclassified samples 108 and 109 are shown as squares. There are 3

other genes that form such pairs with PLACS.

e IMAGE:669379 GLCCI1 glucocorticoid induced tran-
script 1

¢ IMAGE:590591 ADCY6 adenylate cyclase 6

e IMAGE:260259 Transcribed sequence with moderate
similarity to protein sp:P39188 (H.sapiens)

o IMAGE:756490 BCAT2 branched chain aminotrans-
ferase 2, mitochondrial

Figure 2 shows the plot of the pair PLAC8 and BCAT?2.
There is good separation between the tumor and normal
samples, except for the 2 "outlier" examples. Most of the
triples found when the "outlier" examples are relabeled

have larger margins than those found with the original
data labels. The top triple with the original labeling is

¢ IMAGE:1472735 MT1E metallothionein 1E (functional)
Hs74170

¢ IMAGE:784593 ARHE ras homolog gene family, mem-
ber E Hs6838

* IMAGE:878564 GPC3 glypican 3 Hs119651

and is shown in Figure 3. GPC3 is a recently noted HCC
cancer marker [16], where it was elevated in 6 out of 7
patient samples. Here this gene triple makes no errors on
all 181 patient samples. The top triple using the relabeled
examples is
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Figure 3

Liver cancer 3D plot of MTIE, ARHE and GPC3.
These 3 genes form a perfect classifier although the margin is
small. Red are cancer samples. The web site contains an
interactive plot.

e IMAGE:78353 RNAHP RNA helicase-related protein
Hs8765

* IMAGE:491644 PLACS

e IMAGE:667883 PHLDA1l pleckstrin homology-like
domain, family A, member 1 Hs82101

In all, the 291 triples make use of 168 of the genes. The
fact that triples exist when using the original labelings
argues that the "outlier" examples are correctly labeled as
tumor, albeit maybe a different type of tumor (or in a dif-
ferent development stage). That these small gene sets exist
in such a large data set argues that they are biologically rel-
evant. These 4 gene pairs only make 2 errors out of the 181
patient samples (the two "outlier" samples are the errors),
which is an error rate of 2/181 = 1/90. The triples found
with the original labelings make no errors. Based on such
data, one can imagine a simple few-gene diagnostic test
based on these pairs and triples.

It is perhaps not surprising that a placental gene is associ-
ated with liver cancer. Both are blood organs, and cancers
often recapitulate early development stages, of which the
fast growing placenta might be an example. In addition,

http://www.biomedcentral.com/1471-2105/6/97

mitochondria related genes have been associated with
cancer progression.

For this data, normal LIKNON was a useful aid in identi-
fying outlying data examples. The two outlying tumor
samples in this data set could represent a rare tumor type
or development state. Using such aids during the experi-
ments would allow such samples to be identified in a
timely manner for further investigation.

Modeling of PLAC8

PLACS8 is noted to have a match to the PFAM model
pfam04749.5 DUF614. A search of the PDB database
using a SAM HMM model [17] created from the PFAM
alignment finds a hit to 1P59 (gi|34811270|pdb|1P59]|A)
which is a Non-Covalent Endonuclease Iii-Dna Complex
from bacillus stearothermophilus. The PFAM model locates
to the C terminus of the 1P59 crystal structure. The
sequence of 1P59 is some 85 amino acids longer than
PLACS, and the alignment hit aligns the last 110 amino
acids or so. Visualizing the 3D structure of 1P59 with the
alignment hit in PLACS colored silver in the RASMOL tool
(Figure 4), shows that this hit forms a distinct mostly hel-
ical domain at the C terminus.

YeohALL

The YeohALL data set is a large multi-class pediatric acute
lymphoblastic leukemia cancer set. The original data con-
tains 7 classes, we use only 6 of them (we do not use their
"other" class). For each of the 6 classes we compare each
class against all others combined, thus asking the ques-
tion can each class be distinguished from all the others.
There are 248 patient samples and the 6 classes are T, E2A,
BCR, TEL, MLL and Hyperdiploid > 50. Both the T vs the
rest and E2A vs the rest splittings have single genes that
perfectly separate T or E2A from the others. Five out of the
6 splittings have gene pairs, only Hyperdiploid vs the rest
does not have any small gene sets. We applied a variation
filter to reduce the original 12625 Affymetrix probes
down to 4196 genes (the filter level used requires a varia-
tion of at least 10000 within each gene). We only discuss
the top results for the T and E2A splittings here, see the
supplement [see Additional file 1] for more details. Our
results reinforce many of the findings in Yeoh's work that
there are single genes that accurately classify the T and E2A
leukemia subtypes and extends it by identifying accurate
2 gene classifiers.

T vs the rest

The only single gene separating T vs the rest is the same
one identified by Yeoh, "38319_at CD3D antigen, delta
polypeptide (TiT3 complex) Hs95327". This gene has a
high value in T and a low value otherwise (Figure 5) and
clearly separates the data. There are 1169 pairs making use
of 681 different genes, the top pairis "37039_at HLA-DRA

Page 8 of 16

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:97

Figure 4

http://www.biomedcentral.com/1471-2105/6/97

IP59 crystal structure. Shown with the alignment hit to the liver cancer possible biomarker PLACS highlighted in strands at
the top. Alignment generated from PFAM model pfam04749.5DUF6 14 using the SAM HMM system and displayed in RASMOL.

major histocompatibility complex, class II, DR alpha
Hs409805", and "1105_s_at M12886 HUMTCBYY
Human T-cell receptor active beta-chain mRNA" (Figure
6). In T, HUMTCBYY is generally high and HLA-DRA is
low. These and many other of the genes in the top pairs
are identified by Yeoh as being significantly differentially

expressed in T. However they did not identify any gene
pairs as accurate classifiers.

E2A vs the rest
The 4 single probe sets for E2A are
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Figure 5

From the YeohALL data, T vs the rest, the best single gene CD3D. This gene perfectly separates the classes. Plus

signs are T subtype samples.

® "33355_at PBX1 pre-B-cell leukemia transcription factor
1 Hs408222"

e "1287_at ADPRT ADP-ribosyltransferase (NAD+; poly
(ADP-ribose) polymerase) Hs177766"

e "430_at NP nucleoside phosphorylase Hs75514"

® "32063_at PBX1 pre-B-cell leukemia transcription factor
1 Hs408222"

(note that there are two probes for PBX1 both giving the
same result, so there are really only 3 genes) All of these
are high in E2A and lower in the rest. Probe 33355_at for
PBX1 is shown in Figure 7 where it clearly separates the

classes and was the only single gene identified in Yeoh's
original work. The other 3 probes barely separate the data
and likely failed Yeoh's stringent cross-validation criteria.
These 4 probes are in Yeoh's significantly differentially
expressed list.

There are 386 pairs, the best pair is "35125_at RPS6 ribos-
omal protein S6 Hs408073" and "35974_at LRMP
lymphoid-restricted membrane protein Hs124922". Fig-
ure 8 shows that this pair separates the data well. LRMP is
identified in Yeoh's lists (but not RPS6), as are many of
the genes in the other top pairs. These and the other top
pairs often highly separate the data indicating they might
be biologically relevant and resilient to noise. These and
all the rest of the results are available through the web site.
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Figure 6

*major histocompatibility complex,

class II, DR alpha® H

From the YeohALL data, T vs the rest, the best pair HLA-DRA and HUMTCBYY. Each gene alone provides some
classification power, but when linearly combined form a perfect classifier, albeit with a small margin. Plus signs are the T sub-

type samples.

Conclusion

Small sets of genes (single genes, pairs of genes, and tri-
ples of genes) able to accurately classify two-class
microarray data occur in many real-world data sets. These
small sets could portend simple medical diagnostics and
point to important research targets. The many small sized
gene sets found here were not noted previously in the lit-
erature, and seemingly went unnoticed. Many members of
the pairs discovered here have known associations with
cancer and indicate the possibility of simple, accurate
medical diagnostic tests based on such results.

Exhaustively examining all pairs in thousand gene size
datasets is easily tractable on modern computer hardware.
All triples is harder, needing a few days, but this is only

computer time, and powerful computers are cheap and
plentiful. Given that the compute time is small enough
and the results possibly important, we conclude that
examining microarray data for single genes, gene pairs
and maybe gene triples should be done routinely. When
performed along with acquiring the biological data, the
results can be used as a quality check on the experimental
process.

The gene of unknown function, PLAC8 appears to have a
role in Liver cancer, and based on our HMM modeling
might have a domain similar to part of the crystal struc-
ture of 1P59. We find that there are 4 genes that when
paired with PLACS8 form a classifier with the low error rate
of 1/90. In addition there are many gene triples, often
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Figure 7

From the YeohALL data, E2A vs the rest, the best single gene PBX|. This gene perfectly separates the classes with a
wide margin and has higher values in E2A. Plus signs are E2A subtype samples.

including PLACS8, that form zero error classifiers and
might be good biomarkers. We find the previously identi-
fied HCC biomarker gene, glypican 3 (GPC3), is part of an
accurate gene triple involving MT1E and ARHE. We also
find small gene sets able to accurately distinguish
leukemia subtypes in the large pediatric acute lymphob-
lastic leukemia cancer set of Yeoh et al.

Methods

Transcriptional profiling data sets

The existing transcriptional profiling data sets investigated
here are summarized in Table 1. We generally chose to
minimally process the data. cDNA microarray data were
log transformed; Affymetrix data were used as is. Only the
LiverCancer data set was subjected to advanced re-normal-

ization procedures. The one data set with a few missing
values (LungStanford) had them set to the appropriate
class average value. If there were too many genes (opera-
tionally defined as more than about 5000), a variation fil-
ter was used to remove genes that didn't vary enough
across all samples. The filterings (if used) were applied
once, before LIKNON analysis, solely to reduce the
number of genes and hence the runtimes. They were not
used to adjust for "good" results. When three or more cat-
egories of samples had been defined by the original
authors, two-class data sets were produced by partitioning
these categories. Table 1 provides statistics for the final
data matrices used as input to LIKNON for determining
m-LCs.
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Figure 8

From the YeohALL data, E2A vs the rest, the best gene pair RPS6 and LRMP. Plus signs are the E2A subtype sam-
ples. LRMP by itself is a reasonable indicator of E2A status, but when combined with RPS6 can perfectly separate the data.

m-feature linear classifier (m-LC)
Consider a two-class data set composed of N data points,

N
{( X Vn )}n=1 . Each data point is a P-dimensional vector

of features, x, € RF, assigned to one of two classes, y, €
{+1, -1}. Assume that the classes are linearly separable. A
classifier for such data is a hyperplane parameterized by a
weight vector, w € R, and an offset from the origin, b €

R. A hyperplane, H (w, b), can be used to predict the class
of a data point x € R by computing sign(w’x + b). If this
value is positive, x is identified with the +1 class,
otherwise it belongs to the -1 class. Data points that define
the hyperplane, positive half-space (+1 class), and nega-
tive half-space (-1 class) are the sets {x|w'x = b}, {x|wix
>b}, and {x|w'x <b} respectively. For two-class profiling

data, an error free m-LC is a maximal margin hyperplane
based on m of these P features, which assigns the class of
every data point correctly. The number of free parameters
in such models is m + 1, so in this setting is quite low (2-
4), which is much smaller than the number of samples
(for the smallest data sets is 14, on the largest data this is
248). By optimizing of the choice of m this might be over
fitting the data, but in the Random Data section we show
that we are finding many more features than chance alone
would account for.

Given data points specified by P features, the potential
number of m-LCs is equivalent to the combinatorial prob-
lem of choosing m items out of P, e,
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Table 5: Random data simulations of real data sets. This table compares the results found from the real data (Real column) to two
different types of random data. The Random column contains the experimentally determined largest number of pairs found from 10
simulation runs using a random data matrix (drawn from a uniform distribution) where the number of genes and class sizes is the
same as the indicated for the real data. The Label Shuffled column contains the experimentally determined largest number of pairs
found from 30 simulation runs where the class labels were randomly shuffled. In the samples column, the number in parenthesis is the
number of positive samples. The numbers after the slash are the number of single genes found. Label shuffling leads to more pairs
found "by chance" only for the smaller data sets. The small data sets have large numbers of pairs expected "by chance".

Data set Samples Genes Real Random Label Shuffled

GIST 19(6) 1987 137981/74 2706/0 4622/2
BreastBRCA(brcal vs brca2) 15(7) 3226 143574/18 20563/2 53900/11
BreastBRCA(brcal & brca2 vs Sporadic) 22(7) 3226 2114/0 1286/1 0/0
Cutaneous 38(7) 3613 596/0 62/0 24/0
LungStanford 52(13) 918 486/2 0/0 0/0
LungBeer 96(10) 4966 22102/5 0/0 0/0
Prostate 34(9) 3958 249662/52 57/0 13/0

p P! somewhat isolated points lying close to the classifier deci-

C(m) m!(P'-m!)
and pairs (m = 2) and in some cases triples (m = 3) were
evaluated using a linear sparse hyperplane method that
has been described elsewhere (LIKNON) [6]. LIKNON
determines a maximal margin hyperplane (for example in
Figure 1) that separates the data classes. Maximal margin
means that the hyperplane is positioned halfway between
the two classes. Gene sets that linearly separate the data
are recorded, otherwise they are rejected. If a single gene is
a classifier, it is not used during the pair checks as it would
always form a classifier with any other gene.

. In this work all single genes (m = 1)

Acceptance, generalization and error performance

This work accepts only perfect (no training error) linear
hyperplane classifiers from the above method. This crite-
ria for accepting only perfect classification is very strin-
gent. We first thought that this would lead to few result
sets being found, and that allowing non-perfect classifica-
tion would need be done to find more classifiers. But this
loosening turned out not to be necessary.

These models have only 2-4 free parameters. Thus the
problem of over-fitting the model to the data during train-
ing is not a large issue and we don't perform any stringent
generalization tests such as multi-round cross validation.
Others interested in evaluating particular gene sets should
perform such tests.

Generalization performance of classifiers was evaluated
using a Leave-One-Out procedure. In LOO testing, one
data point is removed and a classifier re-learned using the
rest of the data. The resultant classifier is tested on the
held out data point and if it is in error, a LOO error is
counted. However for these m-LC's where m is small, LOO
error is not a good performance measure. In general, only

sion boundary will be found in error during LOO testing,.
Thus LOO error rates tend to be very low, 0 - 3 out of the
total number of points. The small magnitude of this error
count allows one to be misled thinking the classifier is
"good because the LOO error is low". The LOO error is
included in the results available from the web site.

In the end, classifiers with a larger separation (margin)
between the classes are able to tolerate more noise with-
out errors. Thus larger margin classifiers are more desira-
ble for use on future data points.

Implementation

The program is an adaptation of the Ip_solve version of
LIKNON [6] implemented in C. A modern desktop work-
station (1.8 Ghz Athlon) is able to evaluate many thou-
sands of pairs per second using this LIKNON method.
Table 3 lists run times for some of the data sets. Evaluating
all pairs requires about n2/2 (equivalent to filling in a tri-
angular matrix), and all triples about n3/6. A data set with
P = 3000 features necessitates the evaluation of 4.5 x 10°
pairs and 4.5 x 10? triples. An approximate average time is
1 second/10°¢ pairs/sample. Thus, evaluating all pairs for
these data sizes requires only a few minutes whereas all
triples needs many hours.

Random data

How many such pairs occur by chance? Theory suggests
[18] that the probability of a 2 class data set of N items
with a in one class, being linearly separable in 1 dimen-

. . 2aY(N-a)! , . . .

sion is —N' and in 2 dimensions is
) Na!(N —a!) )

approximately N Experiments were per-
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formed where a data matrix containing random numbers
from a uniform distribution was analyzed by LIKNON.
The results are shown in Table 4. When the number of
samples is lower than about 30, or one class is very small
relative to the other class, then the chance of finding a pair
of random genes that form a perfect classifier is large
enough to easily measure. The smallest real data set exam-
ined in this work (the GIST set) has 1987 genes in 19 sam-
ples with 13 in one class and 6 in the other. Experiments
with 10 random data sets of this size shows that 1500
pairs would be expected on average with a maximum
found of 2706, and no single genes, Table 5. Also in Table
5 are results of experiments where the real data and class
labels are used, but the class labels are randomly shuffled.
The label shuffling results are worse than random data
only for the smallest two data sets (GIST and BreastBRCA
BRCA1 vs BRCA2). The real GIST data has more than
137000 pairs, some 50 times more than found in random
data and 30 times more than when labels are randomly
shuffled. It also has 74 single genes, where the random
data yields none. The three result sets that are closest to
these random results are Cutaneous (596 vs 62), BRCA
Breast BRCA1 & BRCA2 verses Sporadic splitting (2114 vs
1286) and BRCA Breast BRCA1 verses BRCA2 (143574 vs
53900).

Web site
The web site [14] contains the data and results for this
work.
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