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Abstract

Background: Systematic evaluation and study of single nucleotide polymorphisms (SNPs) made possible
by high throughput genotyping technologies and bioinformatics promises to provide breakthroughs in the
understanding of complex diseases. Understanding how the millions of SNPs in the human genome are
involved in conferring susceptibility or resistance to disease, or in rendering a drug efficacious or toxic in
the individual is a major goal of the relatively new fields of pharmacogenomics. Esophageal squamous cell
carcinoma is a high-mortality cancer with complex etiology and progression involving both genetic and
environmental factors. We examined the association between esophageal cancer risk and patterns of 61
SNPs in a case-control study for a population from Shanxi Province in North Central China that has among

the highest rates of esophageal squamous cell carcinoma in the world.

Methods: High-throughput Masscode mass spectrometry genotyping was done on genomic DNA from
574 individuals (394 cases and 180 age-frequency matched controls). SNPs were chosen from among genes

involving DNA repair enzymes, and Phase | and Phase |l enzymes.

We developed a novel adaptation of the Decision Forest pattern recognition method named Decision

Forest for SNPs (DF-SNPs). The method was designated to analyze the SNP data.

Results: The classifier in separating the cases from the controls developed with DF-SNPs gave
concordance, sensitivity and specificity, of 94.7%, 99.0% and 85.1%, respectively; suggesting its usefulness
for hypothesizing what SNPs or combinations of SNPs could be involved in susceptibility to esophageal
cancer. Importantly, the DF-SNPs algorithm incorporated a randomization test for assessing the relevance
(or importance) of individual SNPs, SNP types (Homozygous common, heterozygous and homozygous
variant) and patterns of SNP types (SNP patterns) that differentiate cases from controls. For example, we

found that the different genotypes of SNP GADD45B E| 122 are all associated with cancer risk.

Conclusion: The DF-SNPs method can be used to differentiate esophageal squamous cell carcinoma
cases from controls based on individual SNPs, SNP types and SNP patterns. The method could be useful
to identify potential biomarkers from the SNP data and complement existing methods for genotype

analyses.
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Background

The cause and progression of human diseases such as
Alzheimer's disease, cancer and diabetes are likely influ-
enced by complex interactions of multiple genes as well as
environmental and lifestyle factors that are sensitive to
genome variability. Single nucleotide polymorphisms
(SNPs) are the most prevalent form of DNA variation in
the human genome occurring about once per 100 to 300
bases [1]. The high frequency of relatively stable SNPs
makes them excellent biomarkers for some disease phe-
notypes. While some serious diseases such as cystic fibro-
sis and sickle cell anemia are of predominately genetic
etiology in homozygote individuals, other serious dis-
eases are far more complex. In more complex diseases, a
combination of multiple SNPs (i.e., SNP patterns), plus
environmental factors, may combine to determine disease
susceptibility and prognosis. The terminology of "com-
plex disease" is used because of the potential enormity of
interacting genes that could be in the hundreds. The
genetic factors that determine disease phenotypes may be
encoded in the pattern of genomic variation that is prima-
rily SNPs. Cancer, mental illness, some autoimmune dis-
orders and diabetes are among the common serious
diseases thought to be significantly influenced by the
spectrum of SNPs an individual has in certain susceptibil-
ity genes. Population variability in drug response is
thought to be analogously dependent on an individual's
SNP profile.

Therefore, the identification of particular SNP patterns
that are associated with susceptibility to disease or adverse
drug reactions is a paramount goal of pharmacogenomics
research. Given recent development of high-throughput
technologies for rapid genotyping, assessment of SNP pat-
terns holds much promise for use in diagnosis, prognosis
and selection of treatment intervention. An essential bio-
informatics challenge in pharmacogenomics is the discov-
ery of SNP patterns that differentiate diseased and healthy
populations.

Determination of the SNP patterns associated with disease
susceptibility or adverse drug reaction from among poten-
tially millions of SNPs is a challenge for pharmacogenom-
ics. Many methods have been described in the literature to
assess the association between SNPs and disease [2-5].
Most of them are focused on identification of disease-
related genotypes and haplotypes, where allele frequen-
cies in cases and controls are estimated separately and
then compared [6-8]. Currently, SNPs involved in com-
plex diseases are not well enough understood, nor are gen-
otype data sets adequate for development of models to
reliably predict disease from SNP profiles. However, the
science is sufficiently advanced that studies such as pre-
sented herein can be useful to plan experiments, and to
interpret data in what may well prove to be an arduous,

lengthy and iterative process of identifying SNPs and SNP
patterns useful as biomarkers.

Esophageal cancer, like many other cancers, has been
shown to be associated with genetic as well as environ-
mental factors that cause DNA damage. It is the sixth lead-
ing cause of cancer worldwide and seventh among
American men. Among the two main types of esophageal
cancer, squamous cell carcinoma and adenocarcinoma,
squamous cell carcinoma accounts for about half of all
esophageal cancers. Data from studies in animals suggest
that oxidative damage from factors such as smoking or
gastroesophageal reflux, which cause inflammation,
esophagitis, and increased cell turnover, may initiate the
carcinogenic process [9,10]. Studies also suggest that sub-
stantial alcohol intake, tobacco smoking and betel quid
chewing increase the risk of squamous cell carcinoma [11-
13].

We investigated the association of SNPs and squamous
cell carcinoma of the esophagus in a case-control study of
individuals from Shanxi province, a region in north-cen-
tral China. Shanxi has one of the highest esophageal can-
cer rates in the world. The SNPs chosen for the study were
a set of those associated with DNA repair, Phase I and
Phase II enzymes involved in xenobiotic clearance, and
with alcohol metabolism. We developed a novel adapta-
tion of the Decision Forest pattern recognition method
named Decision Forest for SNPs (DF-SNPs). The method
was designated to analyze the SNPs-disease association
based on the SNP data. Importantly, the DF-SNPs method
utilizes the inherent differentiating ability of decision
trees to separate disease and control population based on
individual SNPs, the SNP types, as well as combinations
of SNP types, that is, SNP patterns.

Methods

Study Population

Incident cases of esophageal cancer were obtained from
an ongoing case-control study being conducted by the
National Cancer Institute, USA and the Shanxi Cancer
Institute, China. Esophageal cancer patients at the Shanxi
Cancer Hospital in Taiyuan, Shanxi Province, were
recruited to the case-control study. Esophageal cancer was
confirmed by the pathologists at the Shanxi Cancer Hos-
pital and National Cancer Institute and all cases were
esophageal squamous cell carcinoma (ESCC). Controls
matched on age, gender and neighbourhood were selected
for each case. The study was approved by the Institutional
Review Boards of the Shanxi Cancer Hospital and the US
National Cancer Institute. After signed consent was
obtained, a blood sample was collected from the partici-
pants and information on demographics and cancer risk
factors including smoking, alcohol, diet, and family his-
tory were collected in an interview.
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SNP data

DNA samples were genotyped at a commercial laboratory
(BioServe Biotechnologies, Ltd., Laurel, MD) by Masscode
mass spectrometry genotyping. PCR primers used for gen-
otyping were synthesized at BioServe. Oligonucleotide
sequences of the primers probe can be found at http://
www. Bioserve.com. All laboratory personnel were
blinded to case-control status. A total of 63 SNPs were
chosen from DNA repair, Phase I, Phase II, and Alcohol
metabolism related genes. The average call rate for the
study was 98.5%, and duplicate analysis of three of the
SNPs generated 99.7%, 99.8%, and 100% concordance.
The prevalence of the variant allele ranged from 5.2% to
49.4%.

Decision Forest for SNPs (DF-SNPs)

DF-SNPs is an ensemble classification method that com-
bines multiple decision trees to derive a classifier based on
a fitted set of if-then rules. By combining multiple hetero-
geneous decision trees, DF-SNPs is effective in mitigating
noise that is often prevalent in biological data, especially
data from high throughput technologies, compared to
single decision trees. Moreover, the algorithm is computa-
tionally inexpensive, enabling cross validation and rand-
omization tests to readily be included. Figure 1 depicts a
general flowchart of DF-SNPs. The detail information of
each step in Figure 1 is described in the following sections.
The DF-SNPs was developed using C.

v

Tree

development

Multiple tree
development

A model |« Tree
combination

~~~~~~~~~~~
Significant SNPs,
SNP types and SNP
Figure |

Overview of the method of Decision Forest for SNPs
(DF-SNPs). There are several components in DF-SNPs: (1)
Data pre-processing; (2) Tree development; (3) Multiple tree
development; (4) Tree combination; and (5) statistical test.
DF-SNPs not only produces a classifier but also identifies the
significant SNPs, SNP types and SNP patterns.

Data pre-processing

It is common that the SNP types for some individuals are
inconclusive using most high-throughput genotyping
methods, including the Masscode mass spectrometry gen-
otyping method. This results a data set (a spreadsheet with
samples in row and SNP variables in column) that usually
contains many missing values (i.e. many empty cells in
the spreadsheet). Accordingly, a data pre-processing pro-
cedure is required to impute the missing data for subse-
quent analysis. A two-steps data pre-processing procedure
was implemented in DF-SNPs. First, the samples (rows)
with > 15% missing genotypes (empty cells) across all
SNP variables (columns) and the SNP variables (col-
umns) with > 15% missing genotypes (empty cells) across
all the samples (rows) were removed. Next, a 10-nearest
neighbor method was employed to impute the missing
data. In this method, if a sample has a missing value (an
empty cell) that is corresponding to a SNP variable, we
identified 10 samples that not only had a measure for this
SNP but also had the closest SNP profiles calculated based
on the rest of the SNP variables. The genotypes of these 10
samples were used to impute the missing value by voting.

There were 1042 missing genotypes in the data set (2.9%
missing values). Two SNP variables (two columns with
>19% empty cells or missing genotypes) and eight sam-
ples (eight rows with >28% empty cells or missing geno-
types) were removed, which resulting 1.3% missing value
in the data set for imputing. The final data set for analysis
after pre-processing contained 566 individuals and 61
SNPs, 391 cancer cases and 175 controls.

Decision Tree development

A tree was developed using the S-Plus binary split
method[14], where the SNPs are the independent varia-
bles grouped into three genotype categories: homozygous
common, heterozygous and homozygous variant. The
method started from the root node that contained all sam-
ples and identified a SNP type of all possible SNPs that
divided the samples into two child nodes. Since this is a
binary splitting of each tree node, the single SNP type that
best divides the node populating one branch and the
other two genotypes populating the other branch. The
impurity (the percentage of one type of samples) of a
node was measured with deviance. The process was then
recursively repeated on the child nodes and the process
was stopped if further splitting did not improve the purity
of the child node or the node can not be further split. Fig-
ure 2 provides a hypothetical example to illustrate the tree
development process. If there is a SNP data set with 50
cases and 50 controls, the process first identifies the best
splitter, SNP, = heterozygous, to put 70 samples in the
right node (the samples with the heterozygous genotype)
and 30 samples in the left node (the samples with the
non-heterozygous genotype). The cases are enriched in
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Figure 2

Overview of a decision tree. A binary tree starts from
the root node. The best SNP genotype is selected at each
node to separate the cases and controls using an "IF-THEN"
rule. SNP types used in a path of an "IF-THEN" rule forms a
SNP pattern.

the right node (40 to 30) compared to its parent node
while the controls are enriched in the left node. In the end
of tree development, the cases and controls are enriched
in the different terminal nodes.

Multiple tree development and combination

In our previous application, multiple trees in DF used dis-
tinct independent variables to maximize their differ-
ence[15]; the variables used in one tree were not used in
any other tree. Since only a limited number of SNP varia-
bles were in this application, we forced trees that selected
different SNP types in splitting the root node to assure
heterogeneity. That is, a SNP type selected for the root
splitting in one tree was not allowed for use in splitting
root nodes in other trees. However, this rule was not
enforced in the subsequent splitting of the lower nodes.
To ensure the comparability of trees, their qualities were
maintained to the same (or close to the same) by adjust-
ing the misclassification rate in the tree development.
Finally, the classification of each sample was determined
by averaging the outcomes from all trees.

Statistical testing

If we generate many classification models using a boot-
strapping method, the relevance (or importance) of a
SNP, SNP type or SNP pattern should be directly correlate
to the number of times they are used by the models. Based
on this assumption, we performed 2000 runs of 10-fold
cross-validation and calculated the frequencies of each
SNP, SNP type and SNP pattern appeared in this process.

To determine the statistical significance of the findings,
we also generated a null hypothesis using the same statis-
tical procedure. This was a randomization test, where the
sample classification (case or control) was randomly
scrambled to generate 2000 pseudo data sets and the 10-
fold cross-validation was then applied to each pseudo
data set. Thus, null distributions were generated for each
SNP, SNP type and SNP pattern. We then determined the
critical values that corresponded to the 5% level of signif-
icance for SNPs, SNP types and SNP patterns, respectively.
The statistically significant SNPs, SNP types and SNP pat-
terns were these whose frequencies were greater than their
corresponding critical values.

Results

The study population comprised 574 individuals geno-
typed for 63 SNPs, of which 394 were esophageal cancer
patients and 180 were age-frequencies matched controls.
After removing individuals for which data was missing for
more than 15% of genotypes, and removing SNP variables
that were missing data for more than 15% of the individ-
uals, the data was reduced to 566 individuals (391 cases
and 175 controls) and 61 SNP variables.

This is a binary classification problem. The SNPs are the
independent variables grouped into three genotype cate-
gories: homozygous common, heterozygous and
homozygous variant. Using the DF-SNPs method, we
developed a classification model to differentiate the cases
from the controls. The fitted binary decision forest model
thus derived contained 10 decision trees and exhibited
high concordance (94.7%), sensitivity (99.0%) and spe-
cificity (85.1%), indicating that the model well differenti-
ates disease from control samples. Figure 3 shows that the
misclassifications of the model significantly diminish as
trees are added to the forest, indicating that the DF
method may be canceling some random variation or
amplifying the nonrandom signal as trees are added. Ulti-
mately, the 10-tree model has misclassifications of 30,
much less than the 77 misclassification of the single deci-
sion tree.

The DF-SNPs algorithm includes functions that estimate
on a relative basis the statistical significance of individual
SNPs, SNP types and SNP patterns in differentiating SNP
case-control study data. The rational behind this approach
is that the frequency of a particular SNP, SNP type or SNP
pattern selected by the model correlates positively with
the relevance (or importance) to discriminate the cases
from controls. The frequency was obtained from a multi-
ple runs of 10-fold cross-validation procedure. To deter-
mine the statistical significance of the disease-related
SNPs, SNP types and SNP patterns, a null hypothesis was
first generated where the scrambled SNP data set was also
subjected to the same multiple runs of 10-fold cross-vali-
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Number of misclassified samples

Number of combined trees

Figure 3

Misclassifications versus the number of combined
trees in a DF-SNPs model. The number of combined
trees correlates negatively with the misclassifications in DF-
SNPs. The 10-tree model reduces the misclassifications sig-
nificantly compared to the first tree.

dation (randomization test). Then, the frequency based
on the real data set was compared with the null hypo-
thesis. The purpose of this statistical test is to determine
whether the obtained results (frequencies for a SNP, SNP
type and SNP pattern) reject the hypothesis that they are
merely a product of chance factors. The results of this
investigation are described in the following sections.

Identification of individual SNPs relevant to the
esophageal cancer

In this section, we investigated the association of individ-
ual SNPs with the cancer. The SNPs were ranked according
to frequency of use in tree node splitting in 2000 runs of
10-fold cross-validation. The ranking frequency for SNP i
(Freq(SNP;)) is computed as:

1
%ZI,F‘SNI’izl
1
IS

1

Freq(SNP; ) = (1=12..),

where SNP; = 1 means that SNP i was used as a split rule
in tree k at level I (Figure 2). Freq(SNP;) is calculated over
all trees in the forest models in 2000 runs of 10-fold cross-
validation. In this equation, SNPs at each lower node level
are given half the frequency weight as SNPs at the preced-
ing higher level.

An estimate of the frequency of occurrence required for a
SNP to be statistically significant at 95% confidence is
obtained from the random case. Specifically, for the ran-
dom case, the cumulative 0.05 frequency of occurrence for

SNPs rank ordered by frequency occurs for a SNP with fre-
quency of 0.028; SNPs having frequency greater than the
critical value of 0.028 are designated as significant to a
95% level of confidence. In the case-control study, nine
out of total of 61 SNPs had Freq(SNP;) larger than 0.028,
indicating their relevance to the esophageal cancer with P
< 0.05 (Table 1).

Identification of SNP types relevant to the esophageal
cancer

In this section, we investigated the association of SNP
types with the cancer. In DE-SNPs, SNP types were used to
split each node in a tree, where the first split of the root
node (level 1, Figure 2) selects the SNP type best separat-
ing cases from the controls. SNP types were ranked in
accordance to frequency of occurrence in the first split of
atree in 2000 runs of 10-fold cross validation. In the same
manner as in the preceding section for SNPs, a critical
value of 0.0095 was obtained from the randomization test
to correspond to 95% confidence of significance. Of 180
possible SNP types, 14 SNP types were found to have fre-
quency of occurrence greater than the critical value (P <
0.05, Table 2). We also evaluated the odds ratio and its
95% confidence interval for SNP type, which gives an esti-
mate of how much more likely it is that an individual with
the SNP type is to be a cancer case than a control case. Of
the 14, five SNP types had an odds ratio within the 95%
confidence interval, indicating their significance to the
esophageal cancer.

Identification of SNP patterns relevant to the esophageal
cancer

Here, we investigated the association of SNP patterns (the
combination of SNP types) with the cancer. In a tree, the
classification of a sample is determined by only one termi-
nal node that is descendent from the root node through a
set of "IF-THEN" rules based on k SNP types (Figure 2). A
SNP pattern was defined as a set of SNP types used in a
path of a set of the "IF-THEN" rules. We denote n-SNP pat-
tern as a SNP pattern that contains n SNP types (n = 2, 3,
4, ...). Since the SNP types selected earlier for splitting
nodes are more important than those selected later, a SNP
pattern begins at the root node and the pattern is incre-
mented as each successive node of the tree. Thus, an n-
SNP pattern contains the following characteristics: (1) it
always contains the SNP pattern that splits the root node;
(2) the SNP types in a SNP pattern are sequentially
ordered in the path of the "IF-THEN" rules; and (3) n-SNP
patterns are considered to be the same if they contain the
same SNP types, regardless of order.

Table 3 summarizes the analysis results of SNP patterns
for up to n = 20. In general, the number of SNP patterns
versus 7 is a distribution with fewer SNPs when 7 is either
smaller or larger. When 7 is small, the number of possible
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Table I: Statistically significant SNPs (P < 0.05) relevant to esophageal squamous cell carcinoma. In 2000 runs of 10-fold cross-
validation, nine SNPs were found to be the esophageal squamous cell carcinoma relevant. They had frequencies greater than the

critical value of 0.028 at the 5% level of significance (P < 0.05).

No SNPs
Gene RS number
| GADD45B EI122
2 NQOI rs1800566
3 adhlb_55
4 ERCCS5 rs|7655
5 COMT rs4818
6 GADDA45B rs|14384
7 ercc5_55
8 CYPIAI rs1048943
9 GPXI _ rs1800668

Frequency Gene function

0.186 DNA repair

0.069 Phase Il

0.064 Alcohol-related

0.064 DNA repair

0.052 Phase Il

0.049 DNA repair

0.048 DNA repair

0.035 Phase |

0.030 Phase Il

RS — Reference SNP

Table 2: Statistically significant SNP types relevant to esophageal squamous cell carcinoma. In 2000 runs of 10-fold cross-validation, 14
SNP types are found to be the esophageal squamous cell carcinoma relevant. They had frequencies greater than the critical value of
0.0095 at the 5% level of significance (P < 0.05). By applying these SNP types to the SNP data set, the first five SNP types have 95%
confidence intervals (Cls) whose upper and lower limits not cross with OR = I.

No OR 95% ClI SNP site
Gene RS number Genotype

| 1.66 .16 —2.37 GADD45B Ell22 Homozygous common
2 1.50 1.05-2.15 ercc5_55 Homozygous common
3 1.44 1.00 - 2.06 COMT rs4818 Homozygous common
4 0.55 0.38 -0.79 GADDA45B Ell22 Heterozygous

5 0.45 0.23 -0.87 NQOI rs1800566 Homozygous variant

6 1.64 0.70 - 3.87 ERCC5 rs17655 Homozygous variant
7 1.57 0.76 - 3.26 GPXI rs1800668 Homozygous variant
8 1.43 0.98 —2.09 NQOI rs1800566 Heterozygous

9 1.05 0.73 - 1.52 ERCC2 rs1052559 Heterozygous

10 1.00 051 -1.97 GADDA45B rs|14384 Homozygous variant
I 0.99 051 -1.91 CYPIAI rs1048943 Homozygous variant
12 0.87 0.60 - 1.26 cypla2_5 Heterozygous

13 0.83 0.57-1.20 CYPIA2 rs2472304 Heterozygous

14 0.59 0.27 - 1.32 adhlb_55 Heterozygous

SNP combinations is small. When n is large, it is likely
that patterns contain the same SNPs, since the pattern
does not depend on the order of SNP selection. The sec-
ond column lists all possible SNP patterns for each n-SNP
pattern. The last column gives the critical value, which
corresponds to the 5% probability that a pattern's fre-
quency could occur by chance. The third column gives the
number of SNP patterns that occur with frequency above
the critical value, that is, the number of SNP patterns is
above the critical value with 95% confidence of statistical
significance. The number of significant SNP patterns is
markedly reduced compared with the number of possible
SNP patterns.

We also evaluated the odds ratio and its 95% confidence
interval for each n-SNP pattern, which gives an estimate of
how much more likely it is that an individual with a par-
ticular SNP pattern is to be a cancer case than a control
case. Results are given in Table 4 for 15 SNP patterns con-
sisting of two SNPs (results are not reported for patterns
of more than two SNPs) for which the odds ratio is within
the confidence interval for distinguishing cancer cases
from controls.

Discussion
We developed a novel statistical approach, DF-SNPs, that
was used for an association study between SNP type data
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Table 3: n-SNP patterns identified by DF-SNPs (n = I, 2, ...,20).

Pattern Length Total number of patterns ~ Number of patterns above ~ Number of patterns with Critical Value
the critical value differentiating ability
| 72 14 5 0.0095223
2 578 52 15 0.0002364
3 5558 3560 379 0.0000375
4 28562 5015 204 0.0000180
5 88124 10898 169 0.0000119
6 175401 15529 59 0.0000095
7 255460 16639 8 0.0000088
8 291469 14217 0 0.0000094
9 265793 9738 0 0.0000117
10 205505 4512 0 0.0000173
I 138306 1853 0 0.0000291
12 81279 560 0 0.0000536
13 41785 241 0 0.0001036
14 18557 70 0 0.0002274
15 7047 40 0 0.0005389
16 2436 16 0 0.0013277
17 735 I5 0 0.0031564
18 180 17 0 0.0092945
19 38 I 0 0.0300700
20 9 3 0 0.0997076

Table 4: Statistically significant 2-SNP patterns relevant to esophageal squamous cell carcinoma. In 2000 runs of 10-fold cross-
validation, 52 2-SNP patterns were found to be esophageal cancer relevant. They had frequencies greater than the critical value of
0.00024 at the 5% level of significance (P < 0.05). By applying these 2-SNP patterns to the SNP data set, 15 2-SNP patterns have 95%
confidence intervals (Cls) whose upper and lower limits not cross with OR = I.

No OR 95% Cl SNP site | SNP site 2
Gene RS number  Genotype Gene RS number  Genotype

| 2.33 1.29-4.19 NQOI rs1800566 Heterozygous GADD45B  EIl122 Homozygous common
2 2.09 141 -3.09 GADD45B EI122 Homozygous common COMT rs4818 Homozygous common
3 2.03 1.37-3.00 ercc5_55 Homozygous common GADD45B  EI122 Homozygous common
4 06l 0.38-0.98 cypla2_5 Heterozygous GADD45B  EIl122 Heterozygous

5 060 039-094 GADDA45B  EII22 Heterozygous ERCC2 rs1799787 Heterozygous

6 0.60 0.38-0.94 GADDA45B El122 Heterozygous COMT rs4818 Heterozygous

7 058 0.37-0.92 GADDA45B El122 Heterozygous CYPIA2 rs2472304 Heterozygous

8 058 037-0.89 GSTM3 rs1537234 Heterozygous GADD45B  EIl122 Heterozygous

9 057 036-0.90 GADDA45B EI122 Heterozygous COMT rs4818 Homozygous common
10 057 037-087 LIGI rs20579 Heterozygous GADD45B El122 Heterozygous

Il 054 035-084 GADD45B EIlI22 Heterozygous ERCC2 rs1052559 Homozygous common
12 045 028-0.72 GADD45B  rsl14384 Homozygous common GADD45B  EIl122 Heterozygous

13 040 0.26-0.63 GADD45B EI122 Heterozygous ERCC5 rs|17655 Homozygous common
14 022 0.06-0.73 adhlb_55 Homozygous variant GADDA45B El122 Heterozygous

I5 0.16 0.04-0.62 NQOI rs1800566 Homozygous variant GADD45B  El122 Homozygous common

and a case/control study of esophageal cancer. Using DF-  We have successfully developed and used the DF method

SNPs, we identified a list of SNPs, SNP types and SNP pat-  for various applications, including structure-activity rela-
terns that might be associated with esophageal squamous  tionship studies, microarray data analyses and proteomics
cell carcinoma. This approach could be useful for identifi-  data analyses [15-19]. Unlike previous applications of DF,

cation of potential biomarkers based on SNP data.

the independent variables in the SNPs data set are categor-
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ical rather than continuous. Moreover, each categorical
variable (SNP variable) has only three categories (three
genotypes), which is a difficult problem for most classifi-
cation methods. The DF-SNPs is a variant of the DF
method that is specifically designed to analyze the SNP-
disease association. In DF-SNPs, as in previous DF appli-
cations, multiple individual trees are combined to pro-
duce a better model. As shown in Figure 3, the DF model
accuracy varies directly with the number of independent
trees within the forest. The 10-tree forest that was devel-
oped has high concordance, specificity and sensitivity for
the fitted data. Such a model could be used to assess the
cancer potential for unknown samples solely based on the
SNP profiles.

There are two important considerations for the use of DF-
SNPs when compared with alternative classifier methods.
First, combining identical or similar trees will not
improve the quality of the forest derived from these trees
and the benefit in combination can only be realized when
individual trees are different or heterogeneous. Thus, each
tree in DF-SNPs uses a distinct SNP type for splitting the
root node, ensuring that each tree is different and encodes
a different aspect of the disease-SNP association. Sec-
ondly, the individual trees of similar quality (i.e., having
similar misclassification rate) when combined may cancel
some of the random noise inherent in SNP type and case-
control data.

The Masscode mass spectrometry-based genotyping
method resulted in 3-5% missing genotypes. How to
appropriately impute the missing value is important for
subsequent analysis of the data generated from this tech-
nology. Accordingly, a two-step imputing method was
embedded in DF-SNPs. First, we removed the individuals
for whom most genotype data were missing, as well as
removed SNP variables that were not detected in many
individuals. Then we imputed the missing SNP genotypes
for each remaining individual using a 10 nearest neighbor
method. This approach proved to be efficient for preproc-
essing the SNPs data set.

In DF-SNPs, the potential cancer-related SNPs, SNP types
and SNP patterns were identified on the basis of frequen-
cies of occurrence in decision tree splitting for all trees
during 10-fold cross-validation. A randomization test was
also done with cross-validation to provide a random dis-
tribution of frequencies for comparison with the fitted
model. Comparison of the fitted and random frequencies
provided the estimates of the statistical significance of
SNPs, SNP types and SNP patterns in distinguishing cases
versus controls

To investigate the relevant SNPs to the esophageal squa-
mous cell carcinoma, we employed a weighted approach

to calculate the frequency of each SNP. Given the fact that
the SNPs used for splitting the root node are applied to the
entire data set while those used in the next split at the sec-
ond level are applied to a much smaller portion of the
data set (normally around the half of the data set), and
that subsequent splits are applied to even smaller num-
bers, the relevance of the SNPs to cancer should decrease
proportionally to the height of the tree level where they
were selected. We compared several weighted factors by
taking into account of the tree level to calculate the fre-
quency of SNPs, including 1, 1.25, 1.5 and 2. Since other
weighted factors potentially eliminated the SNPs used in
the root node (results not shown), the weighted factor of
2 was selected, indicating that the relevance (or impor-
tance) of a SNP is reduced by half as moves to each subse-
quent lower level.

The odds ratios and corresponding confidence intervals
were used to identify 14 SNP types that distinguish cases
from controls at 95% confidence (Table 2). Of these, five
had confidence intervals that were either >1 or <1 and
thus are likely to be more significant. Of the five, two had
confidence intervals <1, indicating their possible associa-
tion with reduced cancer potential. Three with confidence
interval >1 are indicated to be associated with increased
cancer risk. We further found that two GADD45B E1122
genotypes (numbers 1 and 4 in Table 2) are suggested to
modify cancer risk differently, with the homozygous com-
mon genotype possibly increasing esophageal cancer risk
and the heterozygous genotype possibly decreasing cancer
risk. These data suggest a potentially important role for
polymorphisms of GADD45B E1122 as a biomarker of
esophageal cancer risk.

Prospectively, given appropriate and sufficient data, DF-
SNPs provides a methodology that could identify the pos-
sible SNP-SNP associations, that is, SNP patterns involved
in genetic-based variation in cancer risk. Table 4 illustrates
how such predictions would appear for the case of pat-
terns of two SNPs. Of the 15 2-SNP patterns in Table 4, it
is interested that the data suggests that 12 are associated
with decreased risk and two are associated with increased
risk. Also notable is that odds ratios are substantially
larger for the patterns of two SNPs than for individual
SNPs (compare Table 2 with Table 4), possibly indicating
that patterns of SNPs are more predictive of cancer risk
than individual SNPs. Not surprisingly, analysis showed
that odds rations vary in direct proportion to the length of
SNP patterns (results not shown).

Conclusion

Several statistical approaches including logistic regression
methods have been used to analyze case/control SNP
data. In this article, we propose DF-SNPs as method to
analyze SNPs data for purposes of biomarker identifica-
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tion. DF-SNPs is a novel variant of DF that was previously
developed in our lab. DF-SNPs was specifically structured
to deal with the three genotype categories of SNP data.
The DF-SNPs algorithm incorporates the following proc-
esses: (1) a two-step approach to impute missing SNPs;
(2) use of 10-fold cross-validation when calculating fre-
quency of SNPs, SNP types and SNP patterns in discrimi-
nating cases from controls; and (3) estimating statistical
significance by comparing frequencies from (2) with
those from a random test also using 10-fold cross valida-
tion. Using DF-SNPs, potential biomarkers could be
quickly identified based on SNPs, SNP types or SNP pat-
terns. This method complements other methods currently
in use.

Authors' contributions

QX developed the method presented in the paper and
wrote the first draft manuscript. WT guided the method
development and helped writing the manuscript. HH
developed the missing data imputing method and also
involved the DF-SNPs development. LR generated the
SNP data set used in this study. RP helped writing the
manuscript. LR generated the SNP data set used in this
study. ZZT, NH and PRT conducted the case-control
study. All authors read and approved the final manuscript.

References

. Sherry ST, Ward MH, Kholodov M, Baker |, Phan L, Smigielski EM,
Sirotkin K: dbSNP: the NCBI database of genetic variation.
Nucleic Acids Res 2001, 29(1):308-31 1.

2. Cordell HJ, Clayton DG: A unified stepwise regression proce-
dure for evaluating the relative effects of polymorphisms
within a gene using case/control or family data: application
to HLA in type | diabetes. Am | Hum Genet 2002, 70(1):124-141.

3. Zhao LP, Li SS, Khalid N: A method for the assessment of dis-
ease associations with single-nucleotide polymorphism hap-
lotypes and environmental variables in case-control studies.
Am | Hum Genet 2003, 72(5):1231-1250.

4. Hubley RM, Zitzler E, Roach |C: Evolutionary algorithms for the
selection of single nucleotide polymorphisms. BMC Bioinfor-
matics 2003, 4(1):30.

5. Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter D}, Schaffner SF,
Gabriel SB, Platko ]V, Patterson NJ, McDonald GJ, et al.: Detecting
recent positive selection in the human genome from haplo-
type structure. Nature 2002, 419(6909):832-837.

6. LSS, Khalid N, Carlson C, Zhao LP: Estimating haplotype fre-
quencies and standard errors for multiple single nucleotide
polymorphisms. Biostatistics 2003, 4(4):513-522.

7.  Schaid D), Rowland CM, Tines DE, Jacobson RM, Poland GA: Score
tests for association between traits and haplotypes when
linkage phase is ambiguous. Am | Hum Genet 2002,
70(2):425-434.

8. Fallin D, Cohen A, Essioux L, Chumakov |, Blumenfeld M, Cohen D,
Schork NJ: Genetic analysis of case/control data using esti-
mated haplotype frequencies: application to APOE locus
variation and Alzheimer's disease. Genome Res 2001,
11(1):143-151.

9. Kleespies A, Guba M, Jauch KW, C] B: Vascular endothelial
growth factor in esophageal cancer. | Surg Oncol 2004,
87(2):95-104.

10. Enzinger PC, Mayer R]: Esophageal Cancer. N Engl | Med 2003,
349:2241-2252.

Il. Lee CH, Lee JM, Wu DC, Hsu HK, Kao EL, Huang HL, Wang TN,
Huang MC, Wu MT: Independent and combined effects of alco-
hol intake, tobacco smoking and betel quid chewing on the

risk of esophageal cancer in Taiwan.
113(3):475-482.

12. ' Wu AH, Wan P, Bernstein L: A multiethnic population-based
study of smoking, alcohol and body size and risk of adenocar-
cinoma of the stomach and esophagus. Cancer Causes Control
2001, 12:721-732.

13. Brown LM, Hoover R, Silverman D: Excess incidence of squa-
mous cell esophageal cancer among US Black men: role of
social class and other risk factors. Am | Epidemiol 2001,
153:114-122.

14.  Venables WN, Ripley BD: Modern Applied Statistics with S-
PLUS. Volume [4. 2nd edition. New York: Springer; 1997.

15. Tong W, Hong H, Fang H, Xie Q, Perkins R: Decision Forest:
Combining the Predictions of Multiple Independent Decision
Tree Model. Journal of Chemical Information and Computer Science
2003, 43(2):525-531.

16. Hong H, Tong W, Fang H, Shi LM, Xie Q, Wu J, Perkins R, Walker J,
Branham W, Sheehan D: Prediction of Estrogen Receptor Bind-
ing for 58,000 chemicals Using an Integrated system of a
tree-based model with structural alerts. Environ Health Perspect
2002, 110(1):29-36.

17. R Votano J, Parham M, H Hall L, B Kier L, Oloff S, Tropsha A, Xie Q,
Tong W: Three new consensus QSAR models for the predic-
tion of Ames genotoxicity. Mutagenesis 2004, 19(5):365-377.

18. Hong H, Tong W, Perkins R, Fang H, Xie Q, Shi L: Multiclass deci-
sion forest — a novel pattern recognition method for multi-
class classification in microarray data analysis. DNA AND CELL
BIOLOGY 2004, 23(10):685-694.

19. Tong W, Xie Q, Hong H, Shi L, Fang H, Perkins R: Assessment of
prediction confidence and domain extrapolation of two
structure activity relationship models for predicting estro-
gen receptor binding activity. Environmental Health Perspectives
2004, 112(12):1249-1254.

Int | Cancer 2005,

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 9 of 9

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12704570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12704570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12875658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12875658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12397357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12397357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12397357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14557108
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14557108
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14557108
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11791212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11791212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11791212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11156623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11156623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11156623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15282704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15282704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14657432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15455377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15455377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15455377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11562112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11562112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11562112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11781162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11781162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11781162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15388809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15388809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345371
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Study Population
	SNP data
	Decision Forest for SNPs (DF-SNPs)

	Results
	Identification of individual SNPs relevant to the esophageal cancer
	Identification of SNP types relevant to the esophageal cancer
	Identification of SNP patterns relevant to the esophageal cancer

	Discussion
	Conclusion
	Authors' contributions
	References

