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Abstract

Background: Structure prediction of membrane proteins is still a challenging computational
problem. Hidden Markov models (HMM) have been successfully applied to the problem of
predicting membrane protein topology. In a predictive task, the HMM is endowed with a decoding
algorithm in order to assign the most probable state path, and in turn the labels, to an unknown
sequence. The Viterbi and the posterior decoding algorithms are the most common. The former
is very efficient when one path dominates, while the latter, even though does not guarantee to
preserve the HMM grammar, is more effective when several concurring paths have similar
probabilities. A third good alternative is |-best, which was shown to perform equal or better than
Viterbi.

Results: In this paper we introduce the posterior-Viterbi (PV) a new decoding which combines the
posterior and Viterbi algorithms. PV is a two step process: first the posterior probability of each
state is computed and then the best posterior allowed path through the model is evaluated by a
Viterbi algorithm.

Conclusion: We show that PV decoding performs better than other algorithms when tested on
the problem of the prediction of the topology of beta-barrel membrane proteins.

Background prediction of the topology of this class of membrane pro-

All-beta membrane proteins constitute a well structurally
conserved class of proteins, that span the outer membrane
of Gram-negative bacteria with a barrel-like structure. In
all cases known so far with atomic resolution, the barrel
consists of an even number of anti-parallel beta strands,
whose number ranges from 8 to 22 strands, depending on
the protein and/or its functional role [1,2]. In eukaryotes,
it is known that similar architectures are present in the
outer membrane of chloroplasts and mitochondria,
although so far none of the so-called "porins", mainly act-
ing as Voltage Dependent Anion Channels (VDAC), have
been solved with atomic resolution ([3] and references
therein). It is therefore urgent to devise methods for the

teins. Indeed the correct prediction of the protein topol-
ogy, given the conservation of the barrel architecture may
greatly help in threading procedures, especially when
sequence homology is low. Furthermore reliable meth-
ods, endowed with a low rate of false positives, can also
help in genome annotation on the basis of protein struc-
ture prediction [3,4]. The problem of predicting beta bar-
rel membrane proteins has been recently addressed with
machine learning approaches, and among them Hidden
Markov Models (HMMs) have been shown to outperform
previously existing methods [5]. HMMs were developed
for alignments [6,7], pattern detection [8,9] and also for
predictions, as in the case of the topology of all-alpha and
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Table I: Q,, accuracy obtained with the four different decoding
algorithms

Proteins Viterbi  |-best  posterior  posterior-Viterbi
cross-validation

1a0spTOT - - - oK
IbxwaTOT - OK OK OK
le54 - - OK OK
1ek9aTOT - - OK OK
1fcpaTOT - - - -
1fepTOT - - - OK
1i78a - - OK OK
1k24 - - - OK
lkmoaTOT - - OK oK
Iprn - - - -
Iqd5a - - OK OK
1gj8a - - OK oK
2mpra - - OK OK
2omf - - OK OK
2por - - - -
<Qu> 0.0 0.07 0.60 0.80
blind-test

Imm4 - - OK -
Ingf - - - OK
1 p4t OK OK OK OK
luyn - - - oK
Itlé - - - -
<Qu> 0.20 0.20 0.40 0.60

all-beta membrane proteins [10-17]. When HMMs are
implemented for predicting a given feature, a decoding
algorithm is needed. With decoding we refer to the assign-
ment of a path through the HMM states (which is the best
under a suitable measure) given an observed sequence O. In
this way, we can also assign a label to each sequence ele-
ment [18,19]. More generally, as stated in [20], the decod-
ing is the prediction of the labelsof an unknownpath. The
most famous decoding procedure is the Viterbi algorithm,
which finds the most probable allowed path through the
HMM model. Viterbi decoding is particularly effective
when there is a single best path among others much less
probable. When several paths have similar probabilities,
the posterior decoding or the 1-best algorithms are more
convenient [20]. The posterior decoding assigns the state
path on the basis of the posterior probability, although
the selected path might be not allowed.

In this paper we address the problem of preserving the
automaton grammar and concomitantly exploiting the
posterior probabilities, without the need of the post-
processing algorithm [12,21]. Prompted by this, we
design a new decoding algorithm, the posterior-Viterbide-
coding (PV), which preserves the automaton grammars
and at thesame time exploits the posterior probabilities. A
related idea, that is specific for pairwise alignments was

previously introduced to improve the sequence alignment
accuracy [22]. We show that PV performs better than the
other algorithms when we test it on the problem of pre-
dicting the topology of beta-barrel membrane proteins.

Results and Discussion

Testing the decoding algorithms on all-beta membrane
proteins

In order to test our decoding algorithm on real biological
data, we used a previously developed HMM, devised for
the prediction of the topology of beta-barrel membrane
proteins [12]. The hidden Markov model is a sequence-
profile-based HMM and takes advantage of emitting vec-
tors instead of symbols, as described in [12].

Since the previously designed and trained HMM [12]
emits profile vectors, sequence profiles have been com-
puted from the alignments as derived with PSI-BLAST [23]
on the non-redundant database of protein sequences ftp:/

/ftp.ncbi.nlm.nih.gov/blast/db/.

The results obtained using the four different decoding
algorithms are shown in Table 1, where the performance
is tested with a leave-one-out cross validation procedure
for the first 15 proteins and as blind-test for the latter 5
(see Methods). It is evident that for the problem at hand
the Viterbi decoding and the 1-best are unreliable, since
only one of the proteins is correctly assigned. In this case
the posterior decoding is more efficient and can correctly
assign 60% and 40% of the proteins, in cross-validation
and on the blind set, respectively. Here the posterior
decoding is used without MaxSubSeq, introduced before
to recast the grammar [12].

From Table 1 it evident that the new PV decoding is the
best performing decoding achieving 80% and 60% accu-
racy in cross-validation and on the blind set, respectively.
This is done ensuring that predictions are consistent with
the designed automaton grammar.

Comparison with other available HMMs

In Table 2 we show the results of the comparison between
our HMM-decoding with those obtained from the availa-
ble web servers, based on similar approaches [16,17,21].
The pred-tmbb server [16] allows the user to test three dif-
ferent algorithms (namely Viterbi, 1-best and posterior).
Differently from us they find that their HMM does not
show significant differences among the three decoding
algorithms. This dissimilar behaviour may be due to sev-
eral concurring facts: i) the different HMM models, ii)
pred-tmbb runs on a single-sequence input, iii) pred-
tmbb is trained using the Conditional Maximum Likeli-
hood [24]. The second server PROFtmb [17] is based on a
method that exploits multiple sequence information and
posterior probabilities. Their decoding is related to the
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Table 2: PV accuracy compared with other algorithms and HMM models

Method Q, SOV SOV(BetaTM) SOV(Loop) Quk
cross-validation

Posterior-Viterbil 0.82 0.87 0.92 0.8l 0.80
Viterbi! 0.63 0.33 0.27 0.35 0.0
|-best! 0.65 0.41 037 0.41 0.07
HMMB2HTMR? 0.83 0.87 0.88 0.84 0.73
PROFTmb3 0.83 0.87 0.88 0.84 0.73
pred-tmbb* (Viterbi) 0.78 0.83 0.81 0.82 0.60
pred-tmbb* (| -best) 0.78 0.83 0.81 0.82 0.60
pred-tmbb#* (posterior) 0.78 0.82 0.80 0.82 0.60
blind-test

Posterior-Viterbi! 0.80 0.81 0.84 0.74 0.60
Viterbi! 0.62 0.38 0.35 0.40 0.20
|-best! 0.63 0.38 0.36 0.40 0.20
HMMB2HTMR? 0.80 0.81 0.84 0.74 0.60
PROFTmb3 0.72 0.65 0.72 0.58 0.40
pred-tmbb* (Viterbi) 0.71 0.73 0.79 0.71 0.20
pred-tmbb* (| -best) 0.71 0.73 0.79 0.71 0.20
pred-tmbb#* (posterior) 0.72 0.75 0.81 0.71 0.20

| Model taken from Martelli et al., 2002 [12]
2 Fariselli et al. 2003 [21]

3 Bigelow et al., 2004 [17]

4 Bagos et al., 2004 [16]

posterior-Viterbi; however, in their algorithm the authors
first obtained the posterior sum contracted into two pos-
sible labeling (inner/outer loops and transmembrane as
we did in [12]), then they made use of the explicit value
of the HMM transition probabilities (a;;). In this way they
count the transition probabilities twice (implicitly in the
posterior-probability and directly into their algorithm)
and the PROFtmb performance is not very different from
ours.

Finally, the third server HMMB2TMR [21] achieves a per-
formance quite similar to that obtained with PV decoding.
To do that HMMB2TMR takes advantage of the MaxSub-
Seq algorithm on top of the posterior sum decoding.
However, although MaxSubSeq is a very general two-class
segment optimization algorithm, it is a post processing
procedure that has to be applied after a HMM decoding.
On the contrary, PV is a general decoding algorithm and
it is more useful when the underlying predictor is a HMM,
where more than two labels and different constraints can
be introduced into the automaton grammars.

Conclusion

The new PV decoding algorithm is more convenient in
that it overcomes the difficulties of introducing a prob-
lem-dependent optimization algorithm when the autom-
aton grammar is to be re-cast. When one-state-path
dominates we may expect that PV does not perform better
than the other decoding algorithms, and in these cases the
1-best is preferred [20]. Nevertheless, we show that when

several concurring paths are present, as in the case of our
beta-barrel HMM, PV performs better than the others.
Although PV takes more time than other algorithms (the
posterior + the Viterbi time), the PV asymptotic computa-
tional time-complexity still remains O(N2-L) (where L
and N are the protein length and the number of states,
respectively) as for the other decodings. As far as the mem-
ory requirement is concerned, PV needs the same space-
complexity of the Viterbi and posterior (O(N-L)), while
1-best in the average case requires less memory, and can
also be reduced [20]. When computational speed is an
issue, Viterbi algorithm is the fastest and the time com-
plexity order is time(viterbi) < time(l - best) < time(PV).
Finally, PV satisfies any HMM grammar structures, includ-
ing automata containing silent states, and it is applicable
to all the possible HMM models with an arbitrary number
of labels and without having to work out a problem-
dependent optimization algorithm.

Methods

The hidden Markov model definitions

For sake of clarity and compactness, in what follows we
make use of explicit BEGIN (B) and END states and we do
not treat the case of the silent (null) states. However, their
inclusion in the algorithms is only a technical matter and

can be done following the prescriptions indicated in
[18,19].

An observed sequence of length L is indicated as O (=

0,...0;) both for a single-symbol-sequence (as in the
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standard HMMs) or for a vector-sequence as described
before [12]. A(s) indicates the label associated to the state
s, while A (= A;... A;) is the list of the labels associated to
each sequence position i obtained after the application of
a decoding algorithm. Depending on the problem at
hand, the labels may identify transmembrane regions,
loops, secondary structures of proteins, coding/non cod-
ing regions, intergenic regions, etc. A HMM consisting of
N states (indicated below with s and k) is therefore
defined by three probability distributions:

Starting probabilities
ag,=P(k[B) (1)

Transition probabilities

= P(s[k)  (2)

Emission probabilities

e(0;) = P(Ojlk)  (3)

The forward probability is

fu(i) = P(0,,0,...0,m;=k) (4)

which is the probability of having emitted the first partial
sequence up to position i ending at state k. The backward
probability is:

b(i) = P(Oy,1s-- Op 1, Of|m=k)  (5)

which is the probability of having emitted the sequence
starting from the last element back to the (i+l)th element,
given that we end at position i in state k. The probability
of emitting the whole sequence can be computed using
either the forward or backward probabilities according to:

P(O[M) = fenp(L + 1) = bp(0) ~ (6)

Forward and backward probabilities are also necessary for
updating the HMM parameters, using the Baum-Welch
algorithm [18,19]. Alternatively a gradient-based training
algorithm can be applied [18,20].

Viterbi decoding

Viterbi decoding finds the path (7) through the model
which has the maximal probability [18,19]. This means
that we look for the path which is

7 = argmax»,P(7|O, M)  (7)

where O(= O,,... Oy) is the observed sequence of length L
and M is the trained HMM model. Since the P(O|M) is

independent of a particular path 7z, Equation 7 is equiva-
lent to

7 = argmax»,P(7, O|M)  (8)

P(7, O|M) can be easily computed as

L
P(r,0 | M) = [ T ar(ic1) x(iyer(i)(O1) - ax(1),nD )
=1

where by construction 7(0) is always the BEGIN state (B).
Defining v,(i) as the probability of the most likely path
ending in state k at position i, and p;(k) as the trace-back
pointer, 7# can be obtained running the following
dynamic programming algorithm called Viterbi decoding:
e Initialization

vg(0)=1v,(0)=0fork=B

® Recursion

ve(i) = [I??}X(Us (i =Dage)ler (O;)

pi(k) = argmax v (i—1)ay

e Termination

P(O," | M) = 1?3}?[“5 (L)as,enp |
7p, = argmaxy \[vs(L)as,pnp |

e Traceback

wiq =pi(r}) for i=L...1

¢ Label assignment

A =An}) for i=1...L
where A(s) is the label associated to the s state.

I-best decoding

The 1-best labeling algorithm described here is Krogh's
previously described variant of the N-best decoding [20].
Since there is no exact algorithm for finding the most
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probable labeling, 1-best is an approximate algorithm
which usually achieves good results in solving this task
[20]. Differently from Viterbi, the 1-best algorithm ends
when the most probable labeling is computed, so that no
trace-back is needed.

For sake of clarity, here we present a redundant descrip-
tion, in which we define H; as the set of all labeling
hypotheses surviving as 1-best for each state s up to
sequence position i. In the worst case the number of dis-
tinct labeling-hypotheses is equal to the number of states,
hi is the current partial labeling hypothesis associated to
the s state from the beginning to the i-th sequence posi-
tion. In general several states may share the same labeling
hypothesis. Finally, we use @ as the string concatenation
operator, so that '"AAAA'®'B' = 'AAAAB' (the empty string is
" and the empty set is &). Thus 1-best algorithm can be
described as

e Initialization
vg(")=1v(")=0fork=B

b(A(K)) = a5-e,(0,)
Hy={Mk):a5,#0} H=Dfori+1

® Recursion

V he H;
v (h @ A(k)) =X v5(h) - 4 1) ler (Oie1)

k
hivy = argmaxpepy [ vs(h)-as ] ® A(k)
N
k
Hj < Hiy U{hi+1 }

e Termination

A = argmaxyepy, Y v5(h)- ag pnp
N

With 1-best decoding, we do not need to keep a backtrace
matrix since A is computed during the forward steps.

Posterior decoding

The posterior decoding finds the path which maximizes
the product of the posterior probability of the states
[18,19]. Using the usual notation for forward (f,(i)) and
backward (b,(i)) we have

P(7 = k|OM) = fi(i)b,(1)/P(O[M) ~ (10)

The path 77 which maximizes the posterior probability is
then computed as

ﬂip = argmax{S}P(fri =s|0O,M) (11)

fori=1... L. The corresponding label assignment is

A =AxP) for i=1..L (12)

If we have more than one state sharing the same label,
labeling can be improved by summing over the states that
share the same label (posterior sum). In this way we can
have a path through the model which maximizes the pos-
terior probability of being in a state with label 1 when
emitting the observed sequence element, or more for-
mally:

P(label(O;) = A10,8)= Y, P(m; =s|O,M) (13)
A(s)=A

A; = argmax;, P(label(O;) = 2|0, §)  (14)

where i ranges from 1 to L.

The posterior-decoding drawback is that the state path
sequences 7 or A may be not feasible paths.

However, this decoding can perform better than Viterbi,
when more than one highly probable path exists [18,19].
In this case a post-processing algorithm that recasts the
original topological constraints is recommended [21].

In the sequel, if not differently indicated, with the term
posterior we mean the posterior sum.

Posterior-Viterbi decoding

Posterior-Viterbi decoding is based on the combination of
the Viterbi and posterior algorithms. After having com-
puted the posterior probabilities we use a Viterbi algo-
rithm to find the best allowed posterior path through the
model. A related idea, specific for pairwise alignments was
previously introduced to improve the sequence alignment
accuracy [22].

In the PV algorithm, the basic idea is to compute the path
ﬂPV

L
oV = argmax. Ap}qP(ni | O,M) (15)
1=
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where A, is the set of the allowed paths through the
model, and P(7z]|O,M) is the posterior probability of the
state assigned by the path 7 at position i (as computed in
Eq. 10).

Defining a function 3*(s, t) equal to 1 if s — t is an allowed
transition of the model M, 0 otherwise; v, (i) as the proba-
bility of the most probable allowed-posterior path ending at
state k having observed the partial O;,... O;and p; as the
trace-back pointer, we can compute the best path 7V
using the Viterbi algorithm:

¢ Initialization
vp(0) =1v,(0)=0fork#B

® Recursion

(D)=l (i~ )3 * (5 1Pz = [ O M)
pi(k) = argmax gy [v(i=1)6 * (s.1)]

e Termination

P | M,0) = max,[v(L)6 * (s, END)]
V= argmax{s}[vs(L)S * (s, END)]

e Traceback

PV PV .
miy =pi(m; ") for i=L...1

e Label assignment

A =AYy for i=1...L

An alternative approach, that directly maximizes the most
probable labelling, is to substitute the posterior probabil-
ity of a given state P(7; = k|O, M), with the posterior sum
P(label(O;) = 2|O, M) (equation 14). In this case all the
states that share the same label have the same probability
for each sequence position. However, since the perform-
ances of this second version are slightly worse we do not
show them.

Datasets

The problem of the prediction of the all-beta transmem-
brane regions is used to test the algorithm on a real data
application. In this case we use a set that includes 20 con-

stitutive beta-barrel membrane proteins whose sequences
are less than 25% homologous and whose 3D structure
have been resolved. The number of beta-strands forming
the transmembrane barrel ranges from 2 to 22. Among the
20 proteins, 15 were used to train a circular HMM
(described in [12]), and here are tested in cross-validation
(1a0sP, 1bxwA, 1e54, 1ek9A, 1fcpA, 1fep, 1i78A, 1k24,
1kmoA, 1prn, 1qd5A, 1qj8A, 2mprA, 2omf, 2por). Since
there is no detectable sequence identity among the
selected 15 proteins, we adopted a leave-one-out
approach for training the HMM and testing it. All the
reported results are obtained during the testing phase, and
the complete set of results is available at http://www.bio
comp.unibo.it/piero/posvit. The other 5 new proteins
(1lmm4, 1nqf, 1p4t, luyn, 1t16) are used as a blind new
test. Since our goal is to predict the beta-strands that span
the membrane we score the methods using the annota-
tions derived from the PDB files. An alternative approach
not addressed here, is to predict the portion of the trans-
membrane beta-strands in contact with the lipid bilayer.
This prediction is however out of the scope of our
approach, since in real porins the localization of the beta-
strands in contact with the membrane, has been so far
estimated by means of different computational methods
and assumptions [25].

Measures of accuracy

We used three indices to score the accuracy of the algo-
rithms. The first one is Q, which computes the number of
correctly assigned labels divided by the total number of
observed symbols. Then we use the SOV index [26] to
evaluate the segment overlaps. Finally, we also adopt a
very stringent measure called Q_, : a prediction is consid-
ered correct only if the number of transmembrane seg-
ments coincides with the observed one and the
corresponding segments have a minimal overlap of m res-
idues [21]. The value m is segment-dependent and for
each segment pairs, is computed as

m = min{ |seg, /2, |segyl/2}  (16)
where [seg,,| and |[seg,,| are the predicted and observed
segment lengths, respectively.

List of abbreviations
e HMM: hidden Markov model.

e PV: Posterior-Viterbi.
¢ B: Begin state.
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