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Abstract

Background: Low-level processing and normalization of microarray data are most important
steps in microarray analysis, which have profound impact on downstream analysis. Multiple
methods have been suggested to date, but it is not clear which is the best. It is therefore important
to further study the different normalization methods in detail and the nature of microarray data in
general.

Results: A methodological study of affine models for gene expression data is carried out. Focus is
on two-channel comparative studies, but the findings generalize also to single- and multi-channel
data. The discussion applies to spotted as well as in-situ synthesized microarray data. Existing
normalization methods such as curve-fit ("lowess") normalization, parallel and perpendicular
translation normalization, and quantile normalization, but also dye-swap normalization are revisited
in the light of the affine model and their strengths and weaknesses are investigated in this context.
As a direct result from this study, we propose a robust non-parametric multi-dimensional affine
normalization method, which can be applied to any number of microarrays with any number of
channels either individually or all at once. A high-quality cDNA microarray data set with spike-in
controls is used to demonstrate the power of the affine model and the proposed normalization
method.

Conclusion: We find that an affine model can explain non-linear intensity-dependent systematic
effects in observed log-ratios. Affine normalization removes such artifacts for non-differentially
expressed genes and assures that symmetry between negative and positive log-ratios is obtained,
which is fundamental when identifying differentially expressed genes. In addition, affine
normalization makes the empirical distributions in different channels more equal, which is the
purpose of quantile normalization, and may also explain why dye-swap normalization works or fails.
All methods are made available in the aroma package, which is a platform-independent package for
R.
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Background

The objective of most gene-expression measurements is to
assess the expression levels of (all or a subset of) genes in
one or several cell populations. Typically, mRNA abun-
dances are measured, although techniques for measuring
protein-levels also exist. The microarray technique [1] pro-
vides a way to measure mRNA transcripts for a large
number of genes simultaneously, typically in the order of
103 - 105 or more. Microarrays have well defined immo-
bilized regions, which each consists of clones or synthe-
sized sequences of DNA specific to a unique gene. We
refer to these (non-hybridized) regions or spots as probes
[2]. A cocktail of cDNA created from the RNA extract from
the cell population in study is then, for a few hours,
hybridized to the DNA on the microarray after which excess
cDNA is washed off. The result is that each region of the
microarray contains a certain amount of hybridized DNA
unique to the corresponding gene. By first labeling the
c¢DNA strands in the sample cocktail with a radioactive or
a fluorescent probe, the amount of hybridized DNA can
be measured utilizing radioactive sensitive film or a color-
sensitive scanner, respectively.

By measuring the gene expression for a specific gene, we
try to assess how active that gene is (measured on some
scale). Because it is hard to identify an absolute scale to
measure on, often, but also for various other reasons, a
reference is used to obtain a relative scale. As even genes
from the same sample are not directly comparable to each
other, each gene gets its own reference, which is typically
the same gene from a reference sample. With this
approach, we can obtain gene-expression ratios for every
gene, which for instance can be used to test the hypothesis
if a gene (in the test sample) is differentially expressed or not
(compared to the gene in the reference sample). This is the
core idea behind the two-channel microarray technology,
in which the test and the reference cDNA cocktails are
hybridized simultaneously and in a competitive way to
the same array. The same idea has been adopted by single-
channel hybridization technologies where the compari-
son instead is done numerically in the data analysis step.
Even if gene-by-gene references are used, the measure-
ments are not perfect and they are likely to contain sys-
tematic errors, which possibly vary from measurement to
measurement, and the obtained gene-expression ratios
may still be biased and not comparable to each other.
What we ultimately would like to do is to measure all con-
trol and all reference samples under identical conditions.
The aforementioned two-color microarray technology
tries, in some sense, to do this by measuring the control/
reference pairs for each gene in one hybridization
(although it is not clear if the gain from co-hybridizing
two samples with different labels is larger than hybridiz-
ing twice with identical labels and then scanning the sam-
ples separately).
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In this paper, we present an affine model that explains
many of the systematic effects frequently observed when
gene-expression levels from two (or more) samples are
compared. The main contributors to such systematic
effects are offsets in the individual channel signals, which
give non-linear systematic effects in ratios. We will not
provide an error model, but only a deterministic model.
The main reason for this is that an error-free model makes
it easier to understand the impact that channel offsets
have on the downstream analysis regardless of gene-
expression technology used. This is especially of interest
as these are often implicitly assumed to be small and of no
effect, which we believe is a too strong assumption. The
impact of channel offsets is much larger that the noise,
which is why we allow us to assume zero noise in the dis-
cussion. Although some error models have been suggested
for microarray data [3], we believe research beyond this
article is required before we can understand and correctly
model the various error sources introduced in the micro-
array process.

The outline of this paper is as follows. In the Model sec-
tion, a general model that incorporates all steps of any
gene-expression technology is given. By dissecting the
generic model and focusing more on the microarray tech-
nologies, an affine model is introduced. Here is also the
widely adopted and accepted log-ratio log-intensity trans-
form under affine transformations formalized. The
Results section consists of three main parts. In the first, we
show how the affine transform introduces intensity and
fold-change dependent biases in the log-ratios. In the sec-
ond part, we revisit common normalization methods, to
which dye-swap and background correction may also be
counted, and discuss them using the affine model. In the
third and concluding part, we suggest a novel and multi-
purpose robust normalization method to back-transform
data to the linear (proportional) space. We end the paper
with a Discussion section where we give similarities to
other normalization methods followed by a Conclusions
section. Details on calculations and the data set used are
given in the Methods appendix.

Results

General model

Consider an experiment with genes i = 1,..., I from RNA
extracts ¢ = 1,..., C. For example, in oligonucleotide micro-
arrays each slide measures the gene-expression levels of
exactly one RNA extract whereas for a two-color microar-
rays each slide measures two RNA extracts, one in each
channel. From now on, we refer to the RNA extracts or
replicates of such as channels. Let x_; be the true gene-
expression level of gene i in channel ¢ and let y, ; be the
corresponding observed gene-expression level. The rela-
tionship between the observed and the true expression
levels can be written as
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Vei= fc(xc,i) + & (1)

where f,is a channel specific measurement function, which
includes all steps in the gene-expression acquisition proc-
ess. Most generally, we have that E [g;] =0 and V [g, ;] =

0'52, i » where the variance can take any form. Importantly,

the properties of &, are not well understood and depends

on platform used, but also which part of the process that
is studied. For this reason and because of the many inter-
esting effects that the affine transformation (presented
below) generates by itself, we conduct this study under the
assumption of noise-free data. Relationship (1) may be
specified for subsets of genes or probes, e.g. print tip [4],
microtiter plate or clone library [5] groups. Spatial
dependencies may also be modeled. However, to simplify
the discussion that follows, we avoid such details.

Since inference is ideally based on x_; the inverse of f_has
to be identified, something that, in theory, is possible if it
is strictly increasing. Violation of this constraint has been
observed in, for instance, two-color microarray data. This
can be due to too high concentrations of fluorophores,
which sometimes quenches the signal so much that the
signal decreases when the concentration increases [6,7].
Extreme saturation in the scanner, which is commonly
observed when the PMT gain is set too high, results in cen-
sored signals, which in turn prevents a unique inverse of
the measurement function to be found. This paper does
not discuss saturation further, because we believe that sat-
uration can and should be avoided.

Dissection of the overall measurement function

Formally, each step in the microarray process can be seen
as a function that takes a set of input objects and outputs
another set of objects. The sequential nature of the process
makes it possible to think of the measurement function f,
as a composite function (function of functions); f, = f. s° f. 5.
1° U o f ,, where S is the number of steps in the process.
For instance, and of course simplified, it could be that f,
models the extraction of the RNA from the cell, f, , models
the reverse transcription of RNA into cDNA and so on.
Some of these submeasurement functions are shared by sev-
eral channels and others are channel specific or even gene
specific. Moreover, there may be joining subfunctions too,
e.g. the hybridization of labeled cDNA sequences to the
probes on the array. In this paper, measurement functions
of different channels are treated independently.

A first-order Taylor series expansion of an arbitrary meas-
urement function f (x,;), has the form

fc(xc,i) =d.+ bcxc,i + Rc(xc,i)' Y. (2)
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From the above dissection of a measurement functions, it
is easy to argue that some of the subfunctions may intro-
duce offset (bias) and that there for this reason ought to
be an offset in f. (we will use the terms bias and offset
interchangeably). For instance, the offset terms may be
due to non-uniformity of the reverse transcription, the
labeling [7] or the hybridization, due to dark noise in the
PMT [8] or laser scatter light in the scanner, background
noise, non-uniformity of the scanned glass slide [9], or
threshold effects etc. In [10] it is shown how various back-
ground estimates based on different image analysis meth-
ods may introduce bias. Similarly, we have shown that
different scanners may introduce bias [11].

The affine measurement function
In order to focus on the effects of a. and b, but also
because it results in the simplest parametric measurement
function possible, we assume R (x,;) in (2) to be small.
The affine measurement function is

fc(xc,i) = ac + bcxc/il vc/il (3)

with unique inverse

Xei = fcﬁl(yc,i) = M’ Ve, i, (4)
bC

where a_ is the overall offset (bias) and b> 0 is the overall
scale factor in channel ¢. The a, parameters are commonly
positive, but under certain circumstances, for instance, as
demonstrated later, when two different measuring tech-
niques are compared, the effective offset may be negative.
Modeling microarray data by an affine transform is not
novel [3,12-14], but the reasons for it might have been
different in those papers.

The log-ratio log-intensity transform

In two-color but also in oligonucleotide microarray exper-
iments, it is convenient to do statistical analysis on the
log-ratios and the log-intensities [15] of the gene-expres-
sion levels in two channels instead of on the expression
levels directly. For gene i we have that

M; =log, TRi _ log Jrlxr,) (5)

2
YG,i fe(xgi)

1
Aj =—logy(yri Yai)
2 (6)

=ilogz(fR(xR,i)-fc(xc,l-))-

For simplicity, we denoted channels 1 and 2 by R and G,
which are mnemonics for the red and the green dyes com-
monly used in two-color microarray data. A rationale for
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Affine transformation of the red and the green signals. Left: Affine transformation of the red and the green signals for
A, ={(ag ag) = (200, 20), (be, bg) = (1.4, 0.8)}. The observed log-ratios as a function of the observed log-intensities for differ-

ent fold changes. The blue dot-dash curve corresponds to the non-differentially expressed genes and the thinner curves above
and below this curve represent log,r = £ |, + 2,... as labeled to the right of the curves. The lines in the gray grid, which is

rotated 45 degrees (in (2A, M)), show the levels where the true signals log, xz and log, x; are equal to ..., -1, 0, I,..., 16. These

levels have been labeled to the left of the grid. No observations can lie outside this grid. Right: Real-world example of an affine
transformation. The same slide was scanned four times at four different PMT settings. For each of the six scan pairs, the within-
channel log-ratio and log-intensities were calculated. Data shown is from the red channel, which was estimated to have an off-

set of ag = 20.3 for all scans.

this bijective transform (if the observed signals are posi-
tive) is that the main measure of interest, the fold change,
is contained in one variable. However, since the transform
is based on observed expression levels and not the true
ones, M alone does indeed not carry all information about
the biological fold change. This can be seen if the true fold
change for an arbitrary gene i is considered;

1= Xpilxci  (7)

where ;> 0. Dropping gene index i in (5) and (6), M and
A can be written as functions of x; and r, i.e. M = g.(x¢)
and A = h(x;). Thus,

M=m,(A)= g (7' (A)), (8)

which shows that M is a function of A (and r). Hence, and
discussed thoroughly below, commonly observed inten-
sity-dependent effects in the log-ratios may contain valu-
able information, and consequently, applying
normalization methods without care may result in loss of
information and introduced bias.

Log-ratios as a function of log-intensities with affine
transformations

Under an affine transformation, the relationship between
the observed log-ratios and the observed log-intensities
for a fixed fold change r, omitting gene index i, is

M=m,.(A)=log, r+log, B

;a(r)+\/i[a(r)]2 +rB2% (9)

+log,

— o)+ \/l[a(r)]z +rB2

where o(r) = ag - rfa; quantifies how much M depends on
A at the given fold change, and £ = by/b, is the relative scale
factor between the two channels compared. See Methods
for details. Recall that log,r is the variable of interest. The
derivative of M with respect to A for a fixed fold change r is
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Bias in the log-ratios introduced by the affine transform. Left: Bias in the log-ratios introduced by the affine transform
A, . Each line displays the relationship between the observed and the true log-ratios at a certain (observed) log-intensity A.

Each curve is marked with the value of A. We have chosen to truncate the curves when the signals become saturated and the
labels for those curves are positioned approximately where they have been truncated. For low intensities there is a great bias
(deviance from the diagonal line), especially for large fold changes. At higher intensities the bias is smaller. The curves intersect
at the one fold-change level that is independent of the intensity. Right: Real-world example of log-ratios for non-normalized

versus affine normalized (with 5% negative) signals. The affine parameters are (d¢, dg, log, 8 ) = (45.7, 27.0, -0.418). To clarify

the intensity-dependent effect only data points close to A = 0.0, 0.5,...,16 are shown.
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Consider a fixed r and define & = ¢(r). Then there are only
two parameters in (9) and (10) that determine the shape
of m, (A), namely @ and . Consequently, when ay, a,# 0,
M is independent of A if and only if « = 0, that is, when r
= (bgag)/(brac). For this particular value of r, we have that
the observed log-ratio is M = log, (ag/a.), which is inde-
pendent of scale factors. Moreover, for log-ratios of non-
differential expressions, that is log,r = 0, to be independ-
ent of A, it must be true that boay = bra, or, equivalently,
bp/bg = ag/ac. It is also clear from (10) that the scale
parameters cannot introduce any curvature themselves,
but only enhance or decrease curvature introduced by the
offset. In addition to this, relative scale different from one
shifts the log-ratios up or down. Moreover, the size of the
effect that the offset terms have on the log-ratios decreases
as the intensity increases. At high intensities the only

observable effect is that from the relative scale between
the two channels. The observed log-ratio for non-differen-
tially expressed genes at high intensity is M ~ log, . In the
case of a linear transform (ai = a; = 0), « is (always) zero
and M is therefore independent of A for all r. The remain-

ing log-ratio bias is log,f. If ag, a; > 0, the "weakest"
observable data point is (A, M,) = (1/2-log,(agac),
log,(ag/ac)), which is independent of both gene expres-
sion and scale parameters. All fold-change curves con-
verge to this point. In the left graph of Figure 1 the effect
of the affine transform A; = {(acag) = (200,20), (be, by)
= (1-4, 0.8)} at different fold changes is depicted. The dif-
ferent curves plotted are the functions M = m,(A) for dif-
ferent fold changes. Note the asymmetry in curvature
between up and down regulation. From the above discus-
sion we know that the observed log-ratios are independ-

ent of the log-intensities for log,r ~ -2.51 with value M,
-3.32. The log-ratio for non-differentially expressed genes
at high intensities is M, = -0.81. A real-world example

taken from [11], where the same array was scanned four
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times at various scanner PMT (sensitivity) settings, is
shown in the right plot of Figure 1. Observed within-chan-

nel log-ratios M, = log,( y*) /() ) are plotted against the
within-channel log-intensities A_ = log,(y") y*)) /2 for

the red channel (c = R) where y*) and y*) are observa-

tions at two different scanner PMT settings. In this case it
turned out that all scans share the same offset. For more
details, see [11]. For another example, see Figure 9.

Bias in the log-ratios

From (9) we see that the bias in the log-ratios introduced
by the affine transform is intensity dependent. This non-
linearity can be observed as a propeller shaped graph in
Figure 2, where the log-ratios under the affine transform
A, are plotted against the true log-ratios at different log-

intensity levels. If a regression line is fitted between the
affine transformed log-ratios and the true log-ratios, the
slope will always be less than one. Moreover, this is true
for all normalization methods that do not overcompen-
sate for channel offsets. This may explain why some stud-
ies show that cDNA microarrays tend to compress the
absolute log-ratios compared to oligoarrays and QRT-PCR
[16-18] including a recent study [19]; the channel offsets
in cDNA microarrays are probably larger. When [20] com-
pared cDNA microarray log-ratios to Northern blot log-
ratios for their background correction method they found
similar behavior, which emphasizes the close relationship
between offset and background estimates. We will return
to this later. The same patterns is seen in an M versus M
scatter plot for non-normalized versus (affine) normal-
ized data. See right scatter plot in Figure 2. To visualize the
intensity dependency of the log-ratios, only data points at
certain log-intensity levels are plotted. For details on data,
see Methods.

Normalization in general

Depending on the design of the microarray experiment,
we expect to observe different types of patterns in data. A
typical example is where a subset of the genes studied is
expected to be non-differentially expressed in a test sam-
ple compared to a reference sample. However, it is com-
mon that the patterns of the observed expression levels are
not in line with the expected patterns of the true expres-
sion levels. Whenever this happens various strategies can
be adopted in order to make the normalized data meet the
expectations. Normalization of microarray data is about
identifying and removing such artifactual variations that
are not due to noise or natural variability. An example is
the intensity-dependent log-ratio artifact.

http://www.biomedcentral.com/1471-2105/7/100

In the following section we will, with the affine model in
mind, revisit various more or less well known normaliza-
tion methods that directly or indirectly remove intensity-
dependent artifacts. With the gained knowledge, we then
propose a generic and robust multi-dimensional normal-
ization method for affine transformed data.

To be more precise in what follows, we will refer to meth-
ods that correct for differences in observed and expected
data, that is, conform the signals to a standard or a norm,
as normalization methods, where normalization has the
meaning of conforming to expectations. Sometimes cali-
bration data, also known as control data, which contains
true relative or absolute expression levels, is available.
Such data can be used to correct for discrepancies between
observed and true expression levels. We refer to methods
that use calibration (read known) data points to correct for
artifacts as calibration methods. To this category we also
count methods that are based on models for which we can
find the inverse of the measurement function. For precise
definitions, see the introduction of [21]. Calibration
methods are not discussed further in this paper.

Typically a normalization method is only capable of esti-
mating « = ag - fa; for r = 1 in (9) and not the individual
offset terms. This is because the often used assumption that
most genes are non-differentially expressed (and/or that there
is an equal amount of up and down regulated genes) will
only help us identify one fold-change curve, namely log, r
= 0. For a normalization method, like most calibration
methods, to be able to estimate both a, and a; more con-
straints are needed and without known data this can only
be done based on more assumptions. As more research is
needed, we will not elaborate on such additional assump-
tions in this paper. Thus, the rest of this paper will only
discuss normalization methods based on the commonly
accepted assumption that it is possible to identify a set of
genes that can be used to normalize the non-differentially
expressed genes.

Curve-fit normalization revisited

When [4] first observed the intensity-dependent effects on
the log-ratios they suggested a curve-fit normalization
method that is often referred to as lo(w)ess normalization.
The simplest version of this assumes that the majority of
the genes are non-differentially expressed regardless of
expression level and for this reason the log-ratios are
expected to be centered around zero for all intensities.
Under the above assumption, curves estimated using
robust local regression methods such as lowess [22,23] or
loess [24], or curves modeled by smoothing splines [25]
will be good approximations for the m, _,(A) function,
which then can be subtracted from the observed log-ratios

M M-m,_, (A) = m, (A) - m,(A). (1)

Page 6 of 18

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:100 http://www.biomedcentral.com/1471-2105/7/100

0 _|

— w0 4

o | ” o | 12

13
% 1
14
< © < o 4 5 10
> > 9
= z 2
> >
X o - <X o 4 6 é
g g
] 1w’ o
= L? — = [ — 8
7y 0 13
o 12
2 v T 710 11
] s
Yo
2 T
|
T T T T T T T T T T T
0 5 10 15 -15 -10 -5 0 5 10 15
A=logz(yrya)/2 r=logx(xa/xa)

Figure 3

Curve-fit normalization of affine transformed data. Curve-fit normalization of A; transformed data. Left: Log-ratios as
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intensity is the same before and after the normalization. Right: Normalized log-ratios versus true log-ratios. We see that inten-
sity-dependent artifacts have been removed for the observed and true log-ratios where all curves intersect (here at (0, 0)).
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Perpendicular translation normalization of affine transformed data. Perpendicular translation normalization of A;

transformed data. The optimal amount of normalization shift in the raw data is a = 60, which corresponds to ap = 80 and a;
= 140. Left: Log-ratios as a function of log-intensities for certain fold changes. The r = | curve (dot-dash blue) is horizontal, that
is, for this specific value of r and a the log-ratios are independent of the log-intensities. Right: Normalized log-ratios versus true
log-ratios. From this graph it is clear that we obtain the minimum error in log-ratios at zero-fold change. The dotted curves
correspond to the minimum and maximum log-intensities possible to observe.
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Under an affine transform, m,(A) and m,_; (A) are as in
(9), but we do not know of a closed form expression for
(11). An example of a curve-fit normalization under the
affine transform is depicted in Figure 3. Note that the
asymmetry between up- and down-regulated genes is not
corrected for. Moreover, if we look at the overlaid (log,x,
log,xz) grid in the left graph of Figure 3, we find that the
curve-fit normalization warps it and removes the other-
wise orthogonal relationship between log,x; and log,x.
(if the (24, M) plane is considered).

Perpendicular translation normalization revisited

The perpendicular (shift-log) normalization method pro-
posed by [13] corrects for differences in the channel off-
sets. It normalizes log-ratios using a translation transform
where a constant, a € R, is added to the signals in one
channel and  subtracted from  the  other;

yR,i < ap +bRxR,i +a; Vi

(12)

We refer to this translation normalization transform as
the perpendicular translation normalization, because it
moves (x., xz) perpendicular to the x, = x line. From (9),
we get that the observed log-ratios m,(A) can be made
independent of the intensities if and only if

yC,i —dg + bcx(;'i —a, Vi.

q= TdeG — bGaR

, r>0.
bG+rbR

(13)

As this is a function of r, it is only for a single fold change
at a time this method can make M independent of A. The
most common choice is r = 1 for which the optimal per-
pendicular shift is

o = brAG ~bcar
bG + bR

(14)

which is the weighted difference between ag and ag with
weights b/ (b + bg) and by/(be + by), respectively. The dis-
tance from the r = 1 curve to the M = 0 curve for the opti-
mal perpendicular shift is log, S In other words, the

perpendicular shift normalization will not remove an
overall bias in the log-ratios (although it is not hard to

estimate S afterward). The optimal shift for A; is a = 60
with log, = 0.57. The result of this normalization is
depicted in Figure 4. Note that m,(A) after normalization

is constant forr = 1.

As suggested by [13], one way to find the optimal shift a
is to minimize the curvature by minimizing the variation

http://www.biomedcentral.com/1471-2105/7/100

of the log-ratios after applying the shift a. To do this
robustly, the median absolute deviation (MAD) can be
used as a measure of variation;

(15)

We have found that the variance of a is unnecessarily

a = argmin MAD(M; (a)).
a 1<i<I

large.

A problem with the perpendicular translation normaliza-
tion methods, which is not related to estimator (15), is
that the optimal shift can result in non-positive signals
making a huge number of expression ratios invalid. The
normalization method discussed next does not have this
problem, but on the other hand, it will not work or work
badly under certain conditions.

Parallel translation normalization revisited

For historical reasons, but also because it contributes to
our discussion about background correction, the shift-log
method proposed by [26] for stabilizing (read decreasing
or shrinking) the variance of the measured log-ratios is of
interest. A side effect of this method is that it can correct
for intensity-dependent curvature. It is based on a transla-
tion transform where the same constant, a € R, is added
to the signals in both channels;

YR,i < dp +bRxR,i +a; Vi

(16)

Because (16) moves data (xg, xg) parallel to the x; = x¢
line, it is referred to as the parallel translation normalization.
Again, as this is a function of r, M can only be made inde-
pendent of A for one unique r at the time, cf. (9). Forr =
1 the optimal parallel shift is

YG,i —dag + beC,i +a, Vi.

“=wfbc¢bm
G YR

(17)

which may be estimated as in (15). For example, for A,

the optimal parallel shift is a = 220 with the r = 1 curve
0.57 units below the M = 0 line. The result of this normal-
ization is depicted in Figure 5. From the above expression,
we also see that an optimal value of a can indeed be neg-
ative. For example, if (ag, ai) = (200,140) and (b, bg) =
(1-4, 0.8), the optimal parallel shift is a = -60, which cor-
responds to an effective shift of (ag, ai) = (140, 80).
However, it can also result in non-positive signals and
therefore undefined log-ratios. For example, with (a, ag)
= (20, 200) and (b, bg) = (1-4, 0.8), the optimal parallel

shift is a = -440, which corresponds to an effective shift of
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(ag, ag) = (-420, -240). Moreover, from (17) we see that
when the scale parameters are equal there is no solution.
This is because in such cases data is moved in parallel to
the x, = x; line making it impossible to get closer. As in the
case of the perpendicular shift normalization, the distance
between the r = 1 curve and the M = 0 curve is log, f.

Hence, a parallel shift normalization will not remove an
overall bias in the log-ratios either and rescaling is neces-

sary.

Single-channel translation normalization

A hybrid of the previous two methods is a normalization
method that translates the signals in one of the channels
at the time according to

YRi < ag +brxg; +a-I(a=0); Vi

YG,i < ag tbgxg; —aI(a <0); Vi,

(18)
where T is the indicator function and a € R. This will not
generate non-positive signals as only positive translations

are applied. Moreover, because only one channel is
shifted an optimal shift will always be found.

Rescale normalization

The above translation normalization methods remove
curvature for non-differentially by adjusting the offset
parameters in « = ay - fa; keeping the relative scale S fixed.
Similarly, if the offset parameters are kept fixed, curvature
can be removed by adjusting the relative scale 4. In [11]
we show that the scanner may introduce scale (PMT)
insensitive (read fixed) biases to the channels. Thus, by
adjusting the PMT settings such that the curvature of the
pre-scanned data is as small as possible one minimizes ||
= |ag - Pac|. Indeed, this strategy may in practice be used
by many. However, from above we know that this can
equally well be done numerically. It is much more impor-
tant to adjust the PMT (and laser) settings such that the
dynamical range of the signals is as large as possible. Fur-
thermore, as scanner settings are often adjusted for each
array separately, there will be a discrepancy between
arrays, which in any case has to be normalized for.

Dye-swap normalization revisited

Dye-swap normalization, also known as reverse labeling and
paired-slides normalization, is a balanced experimental
design for two-color microarrays that can be used when-
ever two technically replicated hybridizations are availa-
ble. Consider an experiment with two sets of cell
populations, A and B, for which relative gene expressions,
{r;}; are to be investigated. After cDNA is obtained
through reverse transcription, the two samples are each
split into two identical parts, one which is labeled with a

http://www.biomedcentral.com/1471-2105/7/100

red fluorescent dye and one which is labeled with a green
fluorescent dye. The red cDNA cocktail from sample A is
mixed with the green ditto from sample B and co-hybrid-
ized to the DNA on the first array. After scanning, expres-

sion levels {(f¢, (xp;) fr, (*a,i))}i are observed. The same

is done for the remaining red-green pair for which
{(fc,(xa,i). fr,(xp;))}i are observed. Dropping gene

index i, the dye-swap normalization suggested by [27] is

_1 og le (x4) “log fR2 (xp)
2|7 e () e, (xa) (19)
1 le (x4) +1 fc2 (x4)

T2 B ()RR ()

1 4 ’
ZE(M1 +M;)

and similarly for the log-intensities

A :%(Al +4)

_ lOgZ(fR] (xa )f(;] (xg)) +log; (fR2 (xp )f(;2 (xa))
4

_ logz(le (xa )fR2 (xg)) +1og, (sz (xa )fc1 (xg))
4

(20)

1
=—(A] + A)).
(4] + 49)

Thus, the result of a dye-swap can be written as the average
of two "virtual" hybridizations ( A}, M;)and (A5, M5).
Moreover, if (and only if) the measurement functions are
equal for each array, that is, fp =fg, and fg =fc,.

then the observed ratios will be identical to the true ratios
for non-differentially expressed genes. For this to be true for
differentially expressed genes we know that they also have
to be linear, that is, affine with zero intercept.

Several authors [28,29] have reported that dye-swap nor-
malization does remove curvature, but less successful
results have also been reported [30]. To better understand
the reasons why and when dye-swap normalization works
or not, we dissect the measurement functions f_ of the four
channels c =R, Gy, R,, G, into (v,ou ot °s.) wheres,mod-
els the process of all steps up to the step where the (not yet
labeled) cDNA sample is obtained, t, models the labeling,
u, models the following steps including the hybridization,
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and v, models the scanning etc. As channel R, and G, are
from sample A and the other two are from sample B, we
know that sp =sg, =54 and sp =sg =sp. Further-
more, if the labeling process is well controlled, we can
assume that tp ~tp ~tgp and fg =ig, =t;. When
channel R, and G, are hybridized to array 1 and the other
two to array 2 we have that up ~ug ~u; and

U, = Ug, = uy. Moreover, if the same scanner settings are

2

used for both arrays and everything else is equal, we have
that vg =vg ~vp and vg =vg, =vg. The overall

measurement functions for the channels are then approx-
imately

fry =vReupotgosy
fe, =vgeuyotgesp
fr, =vRouyotgeosg

fo, =vgeugetgesy.

(21)

For the dye-swap normalization to be efficient, we con-
clude that we must control the process of extracting the
RNA etc. to an extent such that we can expect s, ~ s;. More-
over, we must also be able to reproduce hybridizations
well enough such that u; ~ u,. If these requirements are
met, data will be self-normalized. Turning to the affine
model, from (19) we have, if fr =fr, and fg =fc, .
that a dye-swap normalization of affine transformation
data gives

, +b
Ml = logz —aR RxA ’
ar + bR'xB
, +b
M, =log, 26764 (22)
ag +beB

and similar for A] and A . For both virtual arrays, the

signals in both channels have undergone identical affine
transformations. We know from before that identical
transformation in both channels does not introduce cur-
vature for the non-differentially expressed genes and that
symmetry between up- and down-regulated genes is pre-
served, cf. perpendicular and parallel shift normalization.
If the offsets in any of the two replicated channels are not
equal (ag #ag, or ag # dg, ), the dye-swap normaliza-

tion will not work.

http://www.biomedcentral.com/1471-2105/7/100

The above discussion assumed that the same cell samples
have been replicated. If biological replicates are used, an
additional source of variability is introduced. However, as
long as it is possible to assume that for most genes
xp ~Xp, and xp =xp . dye-swap normalization

should still perform well.

In [11] we observed that scanners can introduce channel-
specific offsets that are stable over time, i.e. ag = ap, and
ag, = dg, - Assume that everything else is perfect, but the
PMT is adjusted separately for each array resulting in
br, /bg, # bg, [bg, so that (22) is not obtained. This may

be a reason why dye-swap normalization sometimes fails.

Alternative dye-swap normalization

An alternative dye-swap normalization method is to aver-
age the observed expression levels before taking the loga-
rithm

og (fr, (xa) + fc,(x4)) /2
* (fr, (x8) + fo, (x3)) /2
_ fr,(xa) + fc, (xa)
=108, ’
fr, (xg) + fg, (xB)

and analogously for A. This approach uses the arithmetic
mean of the observed signals whereas the previous dye-
swap method used the geometric mean. To be able to say
more about the difference between the two approaches,
we turn to the affine transformation for which we have

M=1

(23)

M=1082w
a’ +b'xg (24)
Ao log,(a’+b'x4)(a” + b'xg)
2

where a' = ap + a;and b' = by + b Again, we note that the
dye-swap method makes the transforms in the resulting
two virtual channels equal. Comparing the bias in log-
intensities between the geometrical and the arithmetical
approaches, for the latter we have

+
A =log, R=1E (25)
whereas for the former we have
Ay =log, \Jagac . (26)

Because (ag + a¢)/2 = \Jagag , we conclude that the log-

ratio biases are always larger for arithmetic than geometric
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Parallel translation normalization of affine transformed data. Parallel translation normalization of ‘A; transformed

data. The optimal amount of normalization shift in the raw data is a = 220, which corresponds to an effective shift of (ag, ag)

= (420, 240). Left: Log-ratios as a function of log-intensities for certain fold changes. The r = | curve (dot-dash blue) is horizon-
tal, that is, for this specific value of r and a the log-ratios are independent of the log-intensities. Right: Normalized log-ratios ver-
sus true log-ratios. From this graph it is clear that we obtain the minimum error in log-ratios at zero-fold change.

dye swap. However, there are other differences too. For
instance, if each microarray glass array (the u, functions

above) introduces the same offset to both channels and
this offset is different between arrays, but otherwise every-

thing else is the same, that is, ag =ap +a and
ac, =dg, +a, then geometric dye-swap fails whereas

arithmetic dye-swap succeeds to remove curvature.

Two-channel quantile normalization

Two-channel or in general multi-channel quantile normal-
ization [31,32] is based on and relies on the assumption that
the true gene-expression levels in the two biological samples are
approximately equally distributed. If the measurement func-
tions in the two channels, say f; and f, are different, then
the distributions of the measured signals in the two chan-
nels are different even if underlying distributions of true
expression levels are identical. By estimating the distribu-
tions of the two channels and making them equal, for
instance to an average distribution, the log-ratios for the
non-differentially expressed genes will be unbiased and
independent of the intensities. Thus, making the density
functions of measured data equal for the two channels is
the same as making their transformation functions equal,
say to fre which makes M independent of A for non-dif-
ferentially expressed genes. If fp. could be made linear
too, this would be true for all fold changes.

For affine transformations, two-channel quantile normal-
ization removes intensity-dependent effects, because the
offsets agand a; are identical after normalization. In addi-

tion, the constant log-ratio bias log,/ is also removed.
Hence, two-channel quantile normalization can be con-
sidered to be both a method that corrects for differences
in offset between two channels, but also a method that
corrects for biases in the expression ratios. In Figure 6, the
quantile normalization of A; transformed data is

depicted. The curvature for non-differentially expressed
genes is removed.

Background subtraction as a normalization method

We have observed that log-ratios of background signals
show the same intensity-dependent effects as ditto for
foreground signals do, which suggests that background sig-
nals undergo the same transformation as foreground sig-
nals. An example of this is shown in Figure 7, where
background and foreground estimates are plotted in the
same M versus A scatter plots. A probable reason for this
is the existence of scanner biases [11]. A widely adopted
rationale for background correction is the assumption
that the region that defines the spot is contaminated with
the same physical noise that can be observed in the sur-
rounding regions. Background noise is believed to be due
to dust particles, DNA contaminated buffers, failed wash-
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Equalizing the signal densities of the two channels removes the intensity dependency of the log-ratios for non-
differentially expressed genes. Equalizing the signal densities of the two channels remove the intensity dependency of the
log-ratios of non-differentially expressed genes. Left: Equal gene-expression distributions in both channels will under the non-
channel balanced affine transform A; turn into two different densities for the measured data. The (upside-down and dashed)

curve at the bottom shows a hypothetical density function, ¢,(-), of the true (log) gene-expression levels expected to be equal
in both samples. The distributions of the affine transformed signals are shown in the (rotated and dashed) density functions,
{(Z},E (1)};, at the left (red and green curves). The average signal density (middle gray curve) to be normalized toward corre-

sponds to a common measurement function (gray function in the main plot). Right: Normalizing the non-equal densities of the
two channels makes the log-ratios of the non-differentially expressed genes zero for all intensities.

ing during printing or hybridization, cross hybridization
etc. [20,33]. This type of background noise is often
assumed to add to the foreground signal. Thus, in order to
obtain true signals, background is subtracted from fore-
ground signal as

fi b
yei < 118~y (27)

(bg)

where yE,fig) is the estimated foreground signal and y, ;
is the estimated background signal for channel ¢ and spot
i. Under a transformation that is dominated by an affine
function at lower intensities (of the same level as the back-
ground), subtracting the background from the foreground
will shift the biases toward zero and background sub-
tracted signals will have less curvature in the (A,M) plane
than non-background subtracted signals (not shown). In
this sense we can consider background subtraction to be a

normalization method. However, just because the log-

ratios as a function of the log-intensities become more
flat, it does not imply that foreground regions are contam-
inated by the same noise as in background regions; unnec-
essary noise may be introduced. Instead, it may be that the
background estimates from the image analysis happen to
be close to a non-image-related offset in the foreground
signals. Moreover, different image analysis software esti-
mate the background signal differently based on different
algorithms such as fixed-size circles, adaptive circles, mor-
phological estimates, and pixel intensity distributions.
Although comparative studies have been conducted
[10,34], it is still not clear which background estimate is
most correct. Some methods give higher background esti-
mates than others, which means that they all correct for
channel biases by different amounts, which by the way is
another argument for why there exist channel offsets.
makes use of this is [20], which emphasizes that the true
signal can not be negative and uses a Bayesian approach to
correct for this.
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been transformed identically. Right: A zoom-in of the left graph. Data is from [50].

Result of a (relative) negative translation

If too much background is subtracted, or a threshold has
to be passed before the reverse transcription takes place,
one can imagine that a., ay < 0. Negative bias also applies
if the observed signals are compared, not to the true sig-
nals, but to the signals obtained by another measuring
technique that has a larger bias. Examples of such compar-
isons can be two-color microarray data compared to oli-
gonucleotide (Affymetrix) data or two-color microarray
data compared to QRT-PCR data. Negative bias may also
be observed when control clones, spike-ins, negative and
positive controls etc. are compared to the genes/ESTs of
interest. The effect of a negative translation is depicted in
Figure 8. The fan-out effect in the fold-change curves for
the lower intensities is due to the negative translation.
Note that this should not be mistaken for the fan-out
effect due to decreasing signal-to-noise levels in the same
way as lack of a fan-out effect due to a positive offset
should not be mistaken for low noise.

Robust affine normalization

From the above discussion, it is clear that it is essential to
correct for channel offsets when normalizing gene expres-
sion data. For two-channel data, we can obtain estimates
of ag, acand f as follows. For non-differentially expressed
genes (without noise) we have that

Yri=a+ Pygi Vi (28)

with a = ag - fa;and S = by/b;. Define y = {y; }{:1 where
yi= (yc/ir )/R,i) and let

I
2
Qo Biy) = Y widi(e, Biyi)
i=1
be our objective function where d(a, Sy;) > 0 is the
orthogonal Euclidean distance between y; and the line
L(e, B) with intercept « and slope S. The estimates of «
and g are then

(29)

(afﬁ)=arg$iﬁn)Q(a/ﬁ;y). (30)

With w; = 1 for all observations we obtain standard princi-
pal component analysis (PCA), which minimizes the
orthogonal distances in the L, norm [35]. With w; # 1,
(sample-) weighted PCA (WPCA), a special case of gener-
alized PCA, is obtained [35,36]. With weights w; = 1/

(d(a, ,3 ;¥;) + ) we can minimize the distances in the L,

norm, if we let § — 0+. The distance d; (¢, B ;y;), which
equals the sum of squares of the values of all but the first
principal component, was first suggested by [37]. Thus,
our choice of weight function down-weigh outliers as
defined by [37] in order to obtain a robust estimate of

L(e, p) corresponding to the first principal component.
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Our procedure is related to principal component analysis
applied to an M-estimator of the covariance (scatter)
matrix of data. The main difference is that we use weights
w=w(d;) = 1/ (5 + d;) based on the orthogonal distance d;
from y; to L(a, f) whereas for M-estimation one uses
weights w = w(d,) based on a robustified Mahalanobis dis-
tance of y;, which is computed from an M-estimator of the
covariance matrix of data. M-estimation of location and
scatter was first defined by [38], and subsequently applied
to principal component analysis by [39]. For other more
recent papers on robust multivariate analysis, see [40,41]
and the references therein. Alternative robust estimators
can be obtained by choosing other weight functions w(d,),
but we choose to optimize in L,. Moreover, if one suspects
a non-symmetric distribution of data points around the
line, a trimmed version of the weight function may be
considered. In practice, the above optimization can be
performed by an iterative reweighted principal component
analysis (IWPCA) scheme. For iteration [ = 1,2,..., mini-

mize (29) using WPCA where wl(l) =1 and wl(m) =1/
(d(a®,p0;y,) + 6) with Sbeing a small positive number to
avoid infinite weights.

As a last step, in order to get estimates of the four param-
eters ag, dg, by, and b from the two parameter estimates

& and B, we introduce additional constraints. Let y, ;)=

miny, ;forc = {R, G} and choose

S

G =1

R =B

S

(31)

ac =max{ag;ac < ycn) A&+ Bag <yr)} (32)
g =6+ Bac

to be the estimates of the bias and the scale parameters in
model (3). Constraint (32) is only correct in the noise-free
case. If we allow noise, say

YC,i = ac + bcxc/i + gc,i' (33)

where E[¢, ;| = 0 and V][g ;| = Gcz,i for c = {R, G}, itis pos-
sible that the bias terms a; and 4, are larger than the small-
est observed value in the respective channel. This is
especially important if the distributions of & ; for ¢ = {R,

G} have heavy negative tails. An alternative, which intro-
duces negative estimates, is to replace y, ;yin (32) with y,,

http://www.biomedcentral.com/1471-2105/7/100

(j) for some order index (j) such thatj - 1 non-positive sig-
nals are obtained in channel ¢. Choosing an optimal value
on j is currently investigated by the authors, but beyond
this article. Furthermore, it has been observed that the
noise in each channel is roughly proportional to the signal
strength, that s, o, ; o x, ;. Thus, a positive side effect of the
above estimation algorithm is that, contrary to have equal
weights for all spots (w; = 1), more weight will be given to
low-intensity spots compared to high-intensity ones. This
makes the method more robust to saturation and other
non-linear effects that might occur at high intensities,
effects for which classical line fits, which rely on homo-
scedasticity, would fail. Finally, with backward transfor-

mation (4) based on estimates (dg, dg, bg, bg), data is

translated and rotated such that it falls around the diago-
nal line that goes through (0, 0) and (1, 1).

To illustrate the affine normalization method we have
applied it to six two-color microarray data sets each con-
taining 240 spike-in controls designed to have log, r = (-2,
0, +2) at various intensities. See also Methods. These con-
trols were not used to estimate the normalization param-
eters. As shown in Figure 9, which is for one of the arrays,
there is a small curvature for non-differentially expressed
genes (and spike-ins) before normalization, a curvature
that corresponds to - & =~ +7 > 0 (small positive derivative)
at log, r = 0, cf. (10). More importantly, the intensity
dependent effect is profound for the log, r = + 2 controls.
Affine normalization allowing no negative signals
removes curvature (« ~ 0) for log, r = 0, but not for the
log, r = + 2 controls, which indicates equal affine transfor-
mation in both channels, cf. right graph of Figure 6. If 5%
negative signals is allowed, the log-ratios of all controls
become roughly independent of intensity, which indi-
cates that the observed signals are proportional to the con-
centrations of the spike-ins. All six arrays in this study
show very similar properties.

Generalization to multiple channels and multiple arrays

A multi-dimensional version of the above algorithm can
be summarized as follows. Say there are N arrays each
hybridized with K samples (colors) such that there is in
total C = NK channels. Let'y; = (1 s Vicire-s Y(N-1)K + 1,70
Ynki) be the NK observations for gene i. Thus, {y;}, spans
an NK-dimensional space. Analogously to the above two-
dimensional procedure, we can fit a robust line L through
data in RNKand constrain the estimate of a = (ay,..., dyy)
by enforcing that a <y;; Vi, where < is the component-wise
inequality. Backward transformation (4) translates and
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is due to the negative translation. The grid and the fold-change curves in the left graph, and the intensity curves in the right

graph have been truncated such that xg,x; 2 |.

rotates data such that it lies along the diagonal line. By
normalizing all arrays at once, signals from all hybridiza-
tions are brought onto the same scale and no further, so
called, between-slide scale normalization is needed.

To apply the multi-dimensional normalization, the
assumption that most genes are non-differentially
expressed for all possible hybridization/channel pairs
must be added. For most experimental setups this is not a
problem. For instance, in two-channel microarrays exper-
iments it is common to hybridize one test sample and one
reference sample, which is selected such that it does not
differ too much from the test sample, to the same array.
The same reference is then used between arrays (in either
channel). Thus, since each test-reference pair is "close" to
each other, all test-test pairs should be approximately
"close" to each other too. Alternatively, all reference chan-
nels can be normalized together. Then, keeping the refer-
ence signals fixed, each test channel is normalized toward
the corresponding reference channel.

An implementation of the above algorithm is made avail-
able in the R [42] package named aroma [43], which is
platform independent. In addition, the methods are avail-
able as an R plugin [44] for BASE [45]. A typically call is
normalizeAffine(rg), which will normalize all arrays and
all channels in the microarray object rg at once. The first
parameter that has to be specified in the above algorithm

is 8. However, its value is not critical and we have found
that for instance 6 = 0.02 works well in general and is
therefore the default value. The second parameter to be
specified is the number of negative signals allowed after
normalization. By default the method allows 5% negative
signals, but any fraction (or absolute number) of negative
signals can be specified. Moreover, the method can be
applied to any subsets of genes separately such as print-tip
groups, clone groups and spike-ins. Finally, support for
datapoint weights has been implemented so that the
influence each spot has in the estimation procedure can
be specified (not to be mistaken for the iterative weights
above). Such weights may for instance be calculated from
spot quality measures obtained by image analysis meth-
ods.

Discussion

If we compare the robust affine normalization method
with the perpendicular and the parallel translation nor-
malization methods optimized by minimizing the curva-
ture, we find that there are similarities, because
minimizing the curvature is identical to finding estimates
of the bias parameters along the line L( &, £; y). Assuming
a pure affine transformation, there are also similarities to
the curve-fit method, which fits approximately the same
line (curve) through data. The difference is how data is
transformed to meet the assumptions. The affine method
translates and rescales data in the original domain
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Log-ratios versus log-intensities before and after a robust affine normalization. Log-ratios versus log-intensities
before and after a robust affine normalization. Left: Non-normalized data. Spike-ins designed to have log,r = +2, 0, and -2 are

highlighted in red, yellow and green, respectively. Middle: Affine normalization utilizing constraint (32) resulting in no negative

signals. Parameter estimates used in back transformation are (dc, dg, log, ) = (39.0, 22.0, -0.418). Right: Affine normaliza-

tion where 5% (default) negative signals has been allowed; Parameter estimates used in back transformation are (dc, dg,

log, B ) = (45.7, 27.0, -0.418). The rotated binning effects of data points at low intensities are due to (unnecessary) rounding of

average spot pixel intensity to nearest integer by the image analysis software.

whereas the curve-fit method operates in a rotated and
log-transformed domain.

Moreover, the translation and the curve-fit methods rely
on two-dimensional data (log-ratios) and it is not clear
how to generalize them to multi-dimensional data,
although re-iterative versions such as the cyclic loess [31]
and the (multi-dimensional) contrast based method [46]
have been suggested. Our affine normalization method is
not limited to two-dimensional data, but can be applied
to any number of channels, which means that three and
four-color microarray data can be normalized as easily as
two-color data.

It is interesting to note the close relationship between the
quantile and the affine normalization method. In quan-
tile normalization data points are shifted such that the
sample densities of both channels are made identical. This
results in new measurement functions, which may not be
linear (or affine), but for which log-ratios for non-differ-
entially expressed genes are zero. The affine normaliza-
tion method can be though of as a quantile normalization
method with special constraints on the underlying densi-
ties. An interesting continuation of the affine method and
quantile normalization method is to relax the affine con-
straint by using other parametric or semi-parametric mod-
els. One possibility is to add smoothness constraints to
the transformation functions using smoothing splines
[25].

In previous sections, we did not discuss the variance stabi-
lizing methods suggested by [12,47,48], which are based
on error models that also contain channel-specific bias
terms. Thus, those methods do indeed correct for inten-
sity-dependent effects. Because they are based on specific
error models and target hypothesis testing of non-differ-
entially expressed genes, but also because they stabilize
the log-ratio variances, they do not fit well into the above
deterministic discussion. In addition, stabilizing the vari-
ance introduces bias for differentially expressed genes,
which is not useful if absolute expression levels are of
interest. However, we do believe that the directions drawn
up by their underlying error models are promising,.

Moreover, in the spirit of [20], it would be interesting to
incorporate an empirical Bayes component to allow for
non-positive signals more naturally.

An interesting study on microarray scanner calibration
curves was published while submitting this article [19].
From their results on under-estimated log-ratios and pro-
peller-shaped log-ratio versus log-ratio scatter plots, we
suspect that they observe nothing but affine transformed
signals. It would be of great interest to redo their analysis
with affine normalization.

Finally, offset and scale parameters in (3) can be extended
to incorporate, say, spatial structures by replacing them
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with a,(u;) and b (u;) where u; = (u;,, u;,) is the spatial
position of spot i.

Conclusion

We have proposed a robust non-parametric normaliza-
tion method for affine transformed gene-expression data,
which centers and symmetrizes log-ratios at all intensities.
Symmetric log-ratios are fundamental for statistical tests
on non-differentially expressed genes, typically utilizing t-
tests or similar. In addition and contrary to other normal-
ization methods (except quantile normalization), which
are exclusively for paired channels, the method applies
equally well to multi-array and multi-channel data. We
believe that normalization based on affine transforma-
tions, such as our proposed IWPCA method, is very prom-
ising and has the potential of being used for many
microarray applications. However, more comparison with
other normalization methods is needed to fully under-
stand its advantages and disadvantages.

Methods

Log-ratios as a function of log-intensities

Let x, = bxg = 0. Equation (6) for affine transformations
(3) can then be written as

ST

with f=Dbp/b.and r = xp/x. After a few steps, one gets that

X = (BY" [—%(aR i)+ an —rBac) + 122 J
It follows that

ag +beG =dag +xg

~ 0B -2ty TP +rp22?

ag +brxg =ag + rﬁxg

- %a(r)+\/i[a(r)]2 +rB22A

with a(r) = ag - rfa.. Equation (9) follows immediately.

Data

Arrays and hybridization

Six arrays were used in this study. The arrays contain
Operon's Human Array-Ready Oligo Sets™ and 240 Strat-
agene SpotReport™ (Alien and Alien Oligo) control spots
with layout of 12-by-4 print-tip groups each containing
25-by-25 spots. In total there are 30000 spots on each
array. The arrays were produced by the SWEGENE DNA
Microarray Resource Centre, Department of Oncology at

http://www.biomedcentral.com/1471-2105/7/100

Lund University using a MicroGrid II 600R arrayer fitted
with MicroSpot 10 K pins (BioRobotics). Arrays were
spotted on UltraGAPS™ coated slides (Corning Incorpo-
rated). Printing was performed in a temperature (18-
20°C) and humidity (44-49% RH) controlled area. After
printing was completed, arrays were left in a desiccator to
dry for 48 hours, rehydrated for 1 second over steaming
water, snap dried on a hot plate (98°C), UV-cross-linked
(800 mJ/cm?) and subsequently hybridized with various
test and reference RNA samples. Samples and Stratagene
RNA spikes were labeled, purified and hybridized using
Pronto!™ Plus System 6 (Corning Incorporated) accord-
ing to manufacturer's instructions.

Scanning and Image analysis

The arrays were scanned on an Agilent G2505A DNA
microarray scanner (Agilent Technologies) at laser power
and PMT gain both at 100% and scan resolution 10 #m/
pixel. The so called dark offset intentionally added to all
signals by the Agilent scanner [[49], p. 18] has been unin-
stalled. Multiscan calibration [11] was not used for this
study.

The scanned images (65536 gray scales) were analyzed
using the Axon GenePix Pro v4.1.1.40 software (Axon
Instruments). The median spot pixel intensity was used
for the foreground signal. Background estimates were not
considered in this analysis. No spot signals were dis-
carded.
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