
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
A quantitative analysis of secondary RNA structure using 
domination based parameters on trees
Teresa Haynes1, Debra Knisley*1, Edith Seier1 and Yue Zou2

Address: 1Mathematics and Statistics Department, Box 70663, East Tennessee State University, Johnson City, TN, USA and 2Department of 
Biochemistry and Molecular Biology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA

Email: Teresa Haynes - haynes@etsu.edu; Debra Knisley* - knisleyd@etsu.edu; Edith Seier - seier@etsu.edu; Yue Zou - zouy@etsu.edu

* Corresponding author    

Abstract
Background: It has become increasingly apparent that a comprehensive database of RNA motifs
is essential in order to achieve new goals in genomic and proteomic research. Secondary RNA
structures have frequently been represented by various modeling methods as graph-theoretic
trees. Using graph theory as a modeling tool allows the vast resources of graphical invariants to be
utilized to numerically identify secondary RNA motifs. The domination number of a graph is a
graphical invariant that is sensitive to even a slight change in the structure of a tree. The invariants
selected in this study are variations of the domination number of a graph. These graphical invariants
are partitioned into two classes, and we define two parameters based on each of these classes.
These parameters are calculated for all small order trees and a statistical analysis of the resulting
data is conducted to determine if the values of these parameters can be utilized to identify which
trees of orders seven and eight are RNA-like in structure.

Results: The statistical analysis shows that the domination based parameters correctly distinguish
between the trees that represent native structures and those that are not likely candidates to
represent RNA. Some of the trees previously identified as candidate structures are found to be
"very" RNA like, while others are not, thereby refining the space of structures likely to be found
as representing secondary RNA structure.

Conclusion: Search algorithms are available that mine nucleotide sequence databases. However,
the number of motifs identified can be quite large, making a further search for similar motif
computationally difficult. Much of the work in the bioinformatics arena is toward the development
of better algorithms to address the computational problem. This work, on the other hand, uses
mathematical descriptors to more clearly characterize the RNA motifs and thereby reduce the
corresponding search space. These preliminary findings demonstrate that graph-theoretic
quantifiers utilized in fields such as computer network design hold significant promise as an added
tool for genomics and proteomics.

Background
Predicting the final fold of RNA from its sequence is a
challenging problem, but has played a secondary role to

the protein structure prediction problem. Interest in both
the prediction of secondary and tertiary RNA structure is
currently gaining substantial momentum. Recently, the
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Journal Science devoted a special issue to the form and
function of RNA [1]. It is now known that RNA is involved
in a large variety of processes, including gene regulation.
Despite this, the important task of classifying RNA mole-
cules in order to identify structural motifs remains far
from complete. Many classes of RNA molecules are char-
acterized by highly conserved secondary structures. Since
RNA molecules maintain independently stable and highly
conserved secondary folds, RNA function is also highly
correlated with its secondary structure. Thus, we focus on
identifying structural characteristics of secondary RNA.

The utility of graphs as models of proteins and nucleic
acids is fertile ground for the discovery of new and inno-
vative methods for the numerical characterization of bio-
molecules. In this paper we address the applicability of
graphs in the analysis of secondary RNA structure. A
mathematical graph, or simply a graph, is a set of points,
called vertices, and connecting lines, called edges. Trees
are a familiar example of graphs since they are used exten-
sively to aid in phylogenetic studies. RNA tree graphs were
first developed by Le et al.[2] and Benededetti and Moro-
setti[3] to determine structural similarities in RNA. Sec-
ondary structure tree representation can also be found in
Waterman's classic text, An Introduction to Computational
Biology[4]. In a recent paper titled Exploring the repertoire of
RNA secondary motifs using graph theory; implications for
RNA design, researchers led by Tamar Schlick developed a
new method for representing secondary RNA structure as
a two dimensional RNA tree graph[5]. Unlike the classic
model developed by Waterman et.al. where atoms are rep-
resented by vertices and bonds between the atoms by
edges in the graph, the RAG (RNA as Graphs) project rep-
resents stems as edges and breaks in the stems that result
in bulges and loops as vertices. A nucleotide bulge, hair-
pin loop or internal loop are each represented by a vertex
when there is more than one unmatched nucleotide or
non-complementary base pair. This modeling method is
illustrated in figures 8 and 9. Their method has led to the
creation of an RNA topology database called RAG (Rna As
Graphs) that is published and available at BMC Bioinfor-
matics and Bioinformatics[6,7]. In this database, all pos-
sible unlabeled trees of a given order (number of vertices)
are presented for orders two through eleven. For trees of
order eight and below, a color scheme is used; red trees
represent a known native secondary RNA structure, blue
trees are listed as likely candidates and black trees are
those structures that are considered not likely to be found
as RNA structures. For trees of order nine and above, blue
is not utilized. That is, the likely candidates are not iden-
tified. In this work we demonstrate that a graphical analy-
sis of the trees that have been classified by the color
scheme, without the aid of thermodynamic properties of
the nucleic acids or other biophysical considerations, can
determine which trees are RNA-like in structure.

The total number of possible RNA tree graphs for a given
number of vertices is given by the tree enumeration theo-
rems of Harary and Prins[8]. Schlick et al.[5] found that
existing RNA classes represent only a small subset of the
possible tree representations of two-dimensional RNA
motifs. It is believed that many more will either be found
as a native structure, or synthetically developed. Thus,
investigating the quantitative properties of the trees not
known to exist as native structures is a natural way to pro-
ceed. In a successive paper by the Schlick group, candi-
dates for novel RNA topologies where identified [9]. The
RAG project uses two representations for secondary RNA;
trees as described above, and dual graphs which we have
not discussed here. In [8], dual graphs are used in the
analysis and in this work, we analyze the tree graphs. Dual
graphs have the advantage in that all secondary RNA struc-
tures have a dual graph representation, whereas only cer-
tain RNA structures can be represented as a tree. However,
part of the purpose of this work is to test the applicability
of the enormous amount of graphical invariants available
that might aid in the quantification of biomolecules. This
work demonstrates the potential for this line of investiga-
tion and in fact shows that invariants used in network
design and fault-tolerant computing lend themselves to a
quantitative analysis of secondary RNA structures.

Results
Graph-theoretic analysis

In the RNA database RAG, the trees are catalogued by their

Fiedler (second smallest) eigenvalue, denoted by λ2[6].

The trees are listed in increasing order, the tree with the

smallest value of λ2 first and the tree with the largest last.

Three trees of order 8Figure 1
Three trees of order 8 has three trees of order 8, Figure 
1a, 1b and figure 1c.
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The trees are labeled by the number of vertices in the tree
followed by their order of listing. The tree with eight ver-
tices in figure 1a is labeled 8.11 in the RAG database and
models a native structure. The tree in 1b is labeled 8.13
and is indicated by RAG as a candidate (RNA-like) struc-
ture, and the tree in figure 1c is labeled 8.14 and is classi-
fied as not RNA-like in structure by RAG. The candidate
tree structure in figure 1b is not predicted to be RNA-like
by the domination parameter models. However the dom-
ination based models agree with the database on all of the
other trees of order eight. In this paper we determine five
domination numbers for each tree, namely the domina-
tion, total domination, global alliance, locating-dominat-
ing and differentiation domination numbers. These
graphical invariants are defined in the section on graph
theory definitions and terminology. The domination
number of each of the three trees in figure 1 are four, three

and two respectively, placing the candidate numerically
between the known native structure and the structure clas-
sified in the RAG database as not RNA-like. With respect
to the total domination number and the global alliance
number, there is little or no indication of any variation in
the classification. That is, the domination numbers for the
tree in figure 1b are indicative that the tree's efficiency
(with respect to the domination numbers) is between the
RNA-like and not RNA-like trees. However, with respect to
the locating-dominating number, the tree in figure 1b
behaves very much like the tree in figure 1c. In particular,
the candidate's structure, when viewed in terms of this
particular domination invariant, is highly inefficient as is
the not RNA-like tree in 1c. In some sense, one could say
that the domination based parameters reveal an underly-
ing efficient communication network. Clearly, a single
graphical invariant such as the Fiedler eigenvalue or the

Table 1: Status and prediction for trees with seven and eight vertices

Vertices ID P1 P2 P(Native) 
model1

P(Native) 
model2

RAG Status Domination 
Predicted 

status

7 1 1.57143 1.00000 8.3867 1.00000 1.00000 native native
7 2 1.28571 1.28571 10.5778 0.99898 0.99991 native native
7 3 1.42857 1.00000 8.8221 1.00000 1.00000 native native
7 4 1.14286 1.28571 10.8753 0.00040 0.00392 candidate not RNA like
7 5 1.28571 1.28571 11.0685 0.99951 0.99991 candidate native
7 6 1.28571 1.14286 10.2519 0.99834 0.99908 native native
7 7 1.28571 1.14286 10.6740 0.99911 0.99908 candidate native
7 8 1.57143 1.00000 9.6740 1.00000 1.00000 candidate native
7 9 1.00000 1.42857 12.7881 0.00000 0.00000 not RNA like not RNA like
7 10 1.00000 1.42857 13.2613 0.00000 0.00000 not RNA like not RNA like
7 11 1.00000 1.71429 19.0000 0.00002 0.00000 not RNA like not RNA like
8 1 1.37500 1.12500 10.2176 1.00000 1.00000 candidate native
8 2 1.37500 1.12500 10.3336 1.00000 1.00000 candidate native
8 3 1.37500 1.12500 10.4912 1.00000 1.00000 native native
8 4 1.25000 1.25000 11.4912 0.98853 0.99359 candidate native
8 5 1.50000 1.00000 9.5848 1.00000 1.00000 native native
8 6 1.25000 1.25000 11.6184 0.99049 0.99359 candidate native
8 7 1.37500 1.12500 10.7096 1.00000 1.00000 native native
8 8 1.25000 1.12500 10.7944 0.96824 0.95104 candidate native
8 9 1.12500 1.37500 12.9072 0.00124 0.00269 not RNA like not RNA like
8 10 1.50000 1.12500 10.9472 1.00000 1.00000 native native
8 11 1.50000 1.00000 10.0072 1.00000 1.00000 native native
8 12 1.37500 1.12500 11.0304 1.00000 1.00000 candidate native
8 13 1.12500 1.25000 12.1432 0.00040 0.00034 candidate not RNA like
8 14 1.12500 1.37500 13.2192 0.00196 0.00269 not RNA like not RNA like
8 15 1.25000 1.25000 12.3104 0.99659 0.99359 native native
8 16 1.37500 1.12500 11.4520 1.00000 1.00000 candidate native
8 17 1.12500 1.25000 12.5496 0.00073 0.00034 not RNA like not RNA like
8 18 1.00000 1.50000 14.8336 0.00000 0.00000 not RNA like not RNA like
8 19 0.87500 1.50000 14.9904 0.00000 0.00000 not RNA like not RNA like
8 20 1.50000 1.00000 11.0560 1.00000 1.00000 native native
8 21 1.12500 1.25000 13.0560 0.00154 0.00034 not RNA like not RNA like
8 22 1.00000 1.50000 15.6200 0.00000 0.00000 not RNA like not RNA like
8 23 0.87500 1.75000 22.0000 0.00000 0.00000 not RNA like not RNA like

P2
*
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locating-dominating number is not sufficient to numeri-
cally characterize biological molecules. However, by
defining parameters that combine these measures, we
develop a meaningful prediction tool of the native struc-
tures. Accordingly, we define two parameters p1 and P2 by

the graphical invariants we define later in this paper. We
also modify P2 by the Fiedler eigenvalues to further inves-

tigate this parameter and denote it by .

Statistical results

The results from the statistical analysis are shown in Table
1. The objective of the statistical analysis was to explore
the possibility of predicting if a tree is RNA-like based on
the values of the two variables defined solely in terms of

domination P1 = (γ + γt + γa)/n (domination + total domi-

nation + global alliance)/n and P2 = (γL + γD)/n(locating

domination + differentiating domination)/n. As an alter-

native for P2, a third variable was considered  that also

incorporates the second smallest eigenvalue of the graph,

 = γL + γD + n λ2 (locating domination + differentiating

domination + n (second smallest eigenvalue)). Separate
dotplots were prepared for 7 and 8 vertices trees, both for

P1, P2 and . However since they exhibit a similar behav-

ior, they were combined into a single dotplot for both sets
of trees. In the individual dotplots it was observed that the
gap in P1 value between the native trees and the trees not

likely to represent RNA was wider for the 7 vertices trees
than for the 8 vertices trees; but in both cases, all native
trees had P1 > 1.2. In a similar fashion, the gap between

P2
*

P2
*

P2
*

P2
*

Dot plot for P2Figure 3
Dot plot for P2.

Dot plot for P1Figure 2
Dot plot for P1.
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the P2 and  values between native structures and those

not likely to represent RNA was wider in the 7 vertices
trees; but in both cases, the native trees have lower values
of P2.

The dot-plots in Figures 2, 3, and 4 for P1, P2 and 

respectively show that native structures tend to have high

values of P1 and low values of either P2 or . The scatter-

plots in Figures 5 and 6 also show that there is a strong

negative correlation between P1 and either P2 or ;

 = -0.92 and  = -0.809. The correlation is

slightly stronger for trees with eight vertices. The esti-
mated probabilities P(native) are plotted for a range of val-
ues of P1 in Figure 7. The class (native or not RNA-like)

predicted for the candidates is the same for both logistic
models. The logistic models, described in the methods
section of the paper, correctly identify all native structures

and agree with the RAG database prediction with respect
to the non RNA-like structures. However, it identifies two
structures that are indicated as RNA-like in the RAG data-
base as not RNA-like. The two RAG candidates that our
model rejects can be easily spotted in Figure 2. Figure 2
also shows that one of the candidates, listed in the RAG
database as a candidate is an "exceptionally good" candi-
date.

Discussion
RNA motifs

The RAG database classifies all possible tree structures
with eight or fewer vertices as either native structures that
have been found, candidate RNAs or non RNA-like in
structure. Those that are RNA-like in structure that have
not been verified as existing are considered candidates
that may later be identified or artificially produced. In this
study, we consider all of the tree structures with seven or
eight vertices. Using the graphical parameters P1, P2 and

P2
*

P2
*

P2
*

P2
*

r P P( , )1 2
r P P( , )*1 2

Scatter Plot for P1 vs P2Figure 5
Scatter Plot for P1 vs P2.
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, our findings are consistent with the database. That is,

the domination based parameters used in the logistic
models identify two clusters. All of the native structures
and almost all of the RAG candidate structures are pre-
dicted as RNA-like by our model and the structures iden-
tified by RAG as not RNA-like are also not RNA-like by our
models. We also conclude that the tree labeled 8.16 is an
exceptionally good candidate while the model rejects trees
7.4 and 8.13 (figure 1b). The emerging area of RNA as a
tool and target has produced a wealth of new and innova-
tive pharmaceutical applications. Chemically synthesized
RNA's have been produced to aid in the development of
novel therapeutics. Functional clusters of RNA, both
mRNA and regulatory RNA binding proteins are a rich
source of therapeutic tools for the management and
potential cures of human disease. This novel approach for
identifying tree structures that have definite RNA-like
characteristics shows promise as an added tool for the
design and analysis of nucleic acids.

Graphs as mathematical objects
A graph is a mathematical object that is frequently
described as a set of points (vertices) and a set of lines
(edges) that connect some, possibly all, of the points. If
two points in the graph are connected by a line, they are
said to be adjacent, otherwise they are nonadjacent. How
the lines are drawn, straight, curved, long, or short is irrel-
evant; only the connection is relevant. An alternate defini-
tion of a graph is a set of elements with a well-defined
relation. Each element in the set can be represented by a
point and if two elements in the set are related, then the
corresponding points are connected by an edge. So the
common definition of a graph is really a visual represen-
tation of a relationship that is defined on a set of ele-

ments. In graph theory, one then studies the relational
representation as an object in its own right, discerning
properties of the object and quantifying the results. These
quantities are called graphical invariants since their values
are the same regardless of how the graph is drawn. The
graphical invariants, in turn, tell us about the conse-
quences the relation has on the set. The domination
number of a graph is an example of such an invariant. The
idea of domination is based on sets of vertices that "are
near" (dominate) all the vertices of a graph. To illustrate
the definition of the domination number of a graph, we
consider an example of its application. Suppose each ver-
tex of the graph represents a computer and two computers
are adjacent if there is a direct link between them in the
network. Some of the computers are designated as file
servers to house the programs for the entire network. If the
file servers are selected in such a way that every computer
is either a file server or has a direct connection to a file
server, then the set of file servers is a dominating set. The
minimum number of file servers required so that every
computer in the network has access to one is the domina-
tion number of the associated graph. For more informa-
tion on the domination number of graphs see[10]. There
are numerous graphical invariants defined for graphs. Our
selection of the invariants for the trees is based on those
that are sensitive to a change in the structure of a tree. For
example, the locating-domination number of a graph is
defined as the minimum number of vertices in any locat-
ing-dominating set. A locating-dominating set of vertices
with the following properties:

1. any vertex outside the set must be adjacent to at least
one in the locating-dominating set.

P2
*

Dot plot for Figure 4

Dot plot for .

P2
*

P2
*
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2. given a a single vertex outside the dominating set, the
set of vertices in the locating-dominating set that this sin-
gle vertex is adjacent to is always unique.

If we think of two vertices in the tree as regions in the RNA
structure where interaction is most likely to occur due to
the fact that there are unpaired nucleotide bases, then if an
"interaction" occurs, a mechanism is in place that makes
it is possible to discern the location of the interacting
region. Graphs have been used extensively to aid in the
design and analysis of algorithms and hence are an inte-
gral part of the field of bioinformatics [11-13]. However,
the use of graphs as the biomolecules themselves has been
fairly limited. There have been some earlier models of bio-
molecules as graphs, but in those cases the graph's spec-
trum is the primary focus of the analysis[14-16]. For a nice
survey on some of the applications see graphs and pro-
teins see[17]. Spectral graph theory has been a useful tool
for chemist who have used graphs to model molecules.
And other graph theoretic measures have been defined

that are well suited for molecular description in the spirit
of chemical graph theory[18]. However, the field of graph
theory offers many other tools and techniques for further
quantification and analysis of graphs. In this work, we
show that graphical invariants, which aid in the optimiza-
tion of computer and electrical networks, are a remarkable
new source of information about the structure of second-
ary RNA molecules.

Conclusion
We have demonstrated that graphical invariants based on
domination numbers can numerically identify character-
istics of secondary RNA structure. Search algorithms such
as RNAMotif[19] can be used to mine nucleotide
sequence databases for motifs. RNAMotif allows users to
identify similar motifs within the database. However,
when the constraints are relaxed to provide more flexibil-
ity, the number of motifs identified by the algorithm may
become very large. Exhaustive methods to search for sim-
ilar RNA structure over these large search spaces are likely

Scatter Plot for P1 vs Figure 6

Scatter Plot for P1 vs .

P2
*

P2
*
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to be computationally intractable. Much of the work in
the bioinformatics arena is toward the development of
better algorithms to address the computational problem.
This work, on the other hand, uses mathematical descrip-
tors that can easily and more clearly characterize the RNA
motifs and thereby significantly reduce the corresponding
search space. The graphical invariants used to identify
structural characteristics of a class of biomolecules
depends on the corresponding graph. By representing bio-
molecules as graphs, we can then thoroughly investigate
the graph using the appropriate graphical invariants;
thereby quantifying the structure. Although determining
graphical invariants in general is computationally difficult
as well, for special classes of graphs such as trees there
exist fast algorithms for their computation. These prelim-
inary findings from this novel approach are intriguing and
the method shows promise as an added tool for genomic
and proteomic prediction tools.

Methods
Graph theory definitions and terminology
Trees have been highly studied as a family of graphs.
Therefore, in this work, we employ graphical invariants
that are indicative of variations in the structure of trees. In
particular, we utilize a number of domination parameters
that are highly sensitive to the structural changes of small
ordered trees. First we define the graphical invariants that
are utilized in this work. These definitions can be found in
Fundamentals of Domination in Graphs, Chemical Graph The-
ory or in Graph Theory and its Applications [10,20,21] We
denote the vertex set of a graph by V(G), or simply V. The
number of edges incident to a vertex v is the degree of the
vertex deg(v) and two vertices are adjacent if they are inci-
dent to the same edge. A vertex set S is a dominating set if
for every vertex u ∈ V - S, u is adjacent to at least one vertex
in S. The domination number γ(G) is the minimum cardi-
nality among all dominating sets in G. A set S is a total

dominating set if for every vertex u ∈ V, u is adjacent to at
least one vertex in S (note here that even the vertices in S
must be adjacent to a vertex in S). The total domination
number γt(G) is the minimum cardinality among all total
dominating sets in G. The neighborhood of a vertex v,
denoted by N(v), is the set of all vertices adjacent to v and
the closed neighborhood of a vertex u is N[u] = N(u) ∪ {u}.
A dominating set S is called a locating-dominating set if for
any two vertices v, w ∈ V - S, N(v) ∩ S ≠ N(w) ∩ S. Thus,
in a locating dominating set, every vertex in V - S is dom-
inated by a distinct subset of the vertices of S. The locating-
domination number of a graph G is the minimum cardinal-
ity among all locating dominating sets in G and is denoted
by γL(G). A dominating set S is called a differentiating dom-
inating set if for any two vertices v, w ∈ V, N[v] ∩ S ≠ N[w]
∩ S. The differentiating domination number of a graph G is
the minimum cardinality among all differentiating domi-
nating sets in G and is denoted by γD(G). The global alli-
ance number of a graph G is the minimum cardinality
among all global alliances of G, where a set S is a global
alliance if S is a dominating set and for each u ∈ S, the
number of "allies" it has in S are at least as many as it has
in V - S. In other words, S is a dominating set and for each
vertex u ∈ S, it is true that |N[u] ∩ S| ≥ |N(u) ∩ (V - S)|.
The adjacency matrix A = A(G) and the degree matrix D =
D(G) are the square matrices that contain information
about the internal connectivity of vertices in G. They are
defined as

The Laplacian matrix L = Lij(G) is the square matrix defined
by L = D - A

The eigenvalues of the Laplacian matrix of a graph is the
graph's spectrum. The eigenvalues are related to the density
distribution of the edge set. The second smallest eigen-
value, denoted by λ2 (often called the Fiedler eigenvalue)
is the best measure of the graph's connectivity among all
of the eigenvalues. Large values for λ2 correspond to verti-
ces of high degree that are in close proximity whereas
small values for λ2 correspond to a more equally dispersed
edge set.
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Graph of estimated probabilities for P1Figure 7
Graph of estimated probabilities for P1.
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Domination based parameters
We calculated a number of graphical invariants for each
tree and tabulated the results. As in the RAG database, the
trees were cataloged by their Fiedler eigenvalues. In so
doing, we noticed that the domination parameters
behaved in two distinct ways with respect to the Fiedler
eigenvalue. The domination, total domination, and glo-
bal alliance numbers tended to decrease as the eigenval-
ues increased. The locating-domination and
differentiating domination numbers tended to increase as
the eigenvalues increased. Thus, we grouped the invari-
ants into two classes and summed the values in each class.
To normalize the results, the sums were divided by the
total number of vertices in the tree, defining the two
parameters P1 and P2 In the case where the invariants
behaved oppositional to the eigenvalues, P2 was modified
in the following way. Instead of dividing by the total
number of vertices in the tree, the Fiedler eigenvalue was

multiplied by the number of vertices and included the
product in the sum. We denote this parameter by P2*. The
three formulas for P1, P1, P2 and P2* are given below and
are used to complete Table 1.

As seen above, P1 is the sum of the graphical invariants

that tended to decrease as the Fiedler eigenvalues

increased. The other case is given by P2 and .

P
n

P
n

P n

t a

D

L D

1

2

2 2

=
+ +

= +

= + +

γ γ γ

γ γ

γ γ λ

L

*

P2
*

Figure 8

A secondary RNA structure and resulting tree resulting from RAG 

modeling method. See http://monod.biomath.nyu.edu

(figures 8 and 9 copied with permission)
Page 9 of 11
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:108 http://www.biomedcentral.com/1471-2105/7/108
Statistical methods

Logistic models were used to predict the probability that a
tree is a native RNA structure based on its domination
numbers. Two different logistic models were estimated
using SAS, one based on P1 and P2(definitions based on

domination only) and another one based on P1 and 

(that considers domination and the second smallest
eigenvalue). Due to the abrupt change from native to not

RNA-like for small changes in P1 and P2 or P1 and , the

maximum likelihood estimation process does not con-
verge; however the predicted categories obtained with
those models were correct in 100% of the cases consider-
ing the 11 trees that are known to exist as RNA structures.
The estimated values for the parameters correspond to the
last iteration. Logistic models are usually evaluated by the
percent of concordant pairs and the percent of correctly
predicted values; for the two models the percent of con-

P2
*

P2
*

Figure 9
Page 10 of 11
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:108 http://www.biomedcentral.com/1471-2105/7/108
cordant pairs and the percent of correct predictions (for
those known to be native or predicted by RAG as 'not
RNA-like') is 100%. The two models are:

Model 1 : ln[ /(1 - )] = -146.1 + 104.3P1 + 16.6148P2

Model 2 : ln[ /(1 - )] = -145.3 + 106.1P1 + 1.4908

where  is the estimated probability of being native given

the values of P1 and P2 or P1 and . When  > 0.5 the tree

is predicted to be native. The values of  obtained with

each one of the two models are very similar and therefore
the predictions as native or not RNA-like for both models
are the same for each the trees. All of the 23 trees whose
status is either 'native' or 'RAG predicted not RNA-like'
were likewise predicted by the two domination models.
From the 4 RAG candidates with 7 vertices (RAG RNA-
like, but not yet found as a native structure), 3 are pre-
dicted by the domination model as RNA-like and one,
(7.4), as non-RNA like. From the 8 candidates with 8 ver-
tices, 7 are predicted to be native and only one, (8.13), is
predicted as not RNA-like. Table 1 displays the values of

P1, P2 and  for all trees with 7 and 8 vertices. The esti-

mated probability of being native  obtained with each

one of the models (ml and m2) and the RAG status are
also displayed.

A third model, using P1 as sole predictor was also esti-

mated. Again the estimation process does not converge
because of the abrupt change and total separation of val-
ues; P1 < 1.2 for all natives and P1 > 1.2 for all not RNA

like. The model with the estimates of the last iteration is

ln[ /(1 - )] = -109.3 + 91.407P1 The estimated proba-

bilities P(native) are plotted for a range of values of P1 in

Figure 7. The class (native or not RNA-like) predicted for
the candidates using this model is the same given by the
other two models.
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