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Abstract

Background: Recent progress in cDNA and EST sequencing is yielding a deluge of sequence data.
Like database search results and proteome databases, this data gives rise to inferred protein
sequences without ready access to the underlying genomic data. Analysis of this information (e.g.
for EST clustering or phylogenetic reconstruction from proteome data) is hampered because it is
not known if two protein sequences are isoforms (splice variants) or not (i.e. paralogs/orthologs).
However, even without knowing the intron/exon structure, visual analysis of the pattern of
similarity across the alignment of the two protein sequences is usually helpful since paralogs and
orthologs feature substitutions with respect to each other, as opposed to isoforms, which do not.

Results: The IsoSVM tool introduces an automated approach to identifying isoforms on the
protein level using a support vector machine (SVM) classifier. Based on three specific features used
as input of the SVM classifier, it is possible to automatically identify isoforms with little effort and
with an accuracy of more than 97%. We show that the SVM is superior to a radial basis function
network and to a linear classifier. As an example application we use IsoSVM to estimate that a set
of Xenopus laevis EST clusters consists of approximately 81% cases where sequences are each
other's paralogs and 19% cases where sequences are each other's isoforms. The number of
isoforms and paralogs in this allotetraploid species is of interest in the study of evolution.

Conclusion: We developed an SVM classifier that can be used to distinguish isoforms from
paralogs with high accuracy and without access to the genomic data. It can be used to analyze, for
example, EST data and database search results. Our software is freely available on the Web, under

the name IsoSVM.

Background posed of introns and exons separated by canonical splice
Typical eukaryotic genes are composed of several rela-  sites. These mRNA precursors are shortened by a process
tively short exons that are interrupted by long introns. The ~ called RNA splicing in which the intron sequences are
primary transcripts of most eukaryotic genes are com-  removed yielding the mature transcript consisting of
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Figure |

Visualization of a part of an alignment of (A) two paralogous sequences (the human ABCB4 and ABCBI protein) and
(B) two isoforms (the human ABCB4 protein and its isoform c), representing an ideal case. Positions with matches between

the two sequences are indicated by

, mismatches by "#" and amino acids vs. gap characters by ":". The values of the three fea-

tures (cf. Methods, section Features) for the full-length sequences compared in panel (A) are (i) sequence similarity 75.76%, (ii)
inverse CBIN count 0.0027, (iii) fraction of consecutive matches and mismatches 0.71 1 1. For the full-Hlength sequences compared in
panel (B) we have (i) sequence similarity 96.33%, (ii) inverse CBIN count 0.3333, (iii) fraction of consecutive matches and mis-
matches 0.9969.

Page 2 of 14

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:110

1.00

A AR '

0.95 W Fr 2o
0.90 fris:

=

S

g

£

€

@

£

k]

E

5

@©

=

000 005 010 0.15 020 025 030 035 040 045 050 055

Inverse CBIN count

L
¥ Y et o i
- . .
A

) O .
(4 WL St T, 4 s,
0.95 7 .'..--"\‘oo . '_:.' .'_'
0.90 : & P
. .
- ."«- ",-_‘ S, s <3
§ 085 s Bl ey X
k2] gt s LTI
& 080 AR C R s
= 72 AP IR
£ 0754 A L
. .
£ e ':i:'-‘ ..' 5 '
& 070 ] e ¥ 5]
£ -.u‘,-_’ CR R
= AN T i .
§ 065 A X
T A I
= 0560 ol BPEL
0.55 3
0.50

0.0 0.1 0.2 03 04 05 0.6 0.7 08 08 1.0
Sequence similarity

Figure 2

http://www.biomedcentral.com/1471-2105/7/110

0.55 4
B 0.50 4 .  memaems s s w——

0.45

0.40 4

0.35 4

S Simmems tme mWEs memmmees mm . ee——

0.30 4

0.25 4 e s e

0.20 4

Inverse CBIN count

0.15 4
0.10 4

0054,

s
0.00 +
0.0 0.1 0.2 03 04 05 06 07 08 09 1.0

Sequence similarity

Features displayed by the samples in the canonical training dataset. Panels (A) to (C) illustrate combinations of two
of the three features. Panel (D) illustrates all three features at the same time. Samples arising from the comparison of paralo-
gous sequences are shown in blue, whereas isoforms are shown in red. An inverse CBIN count of I/n arises if n CBINs are fea-
tured by a given sample. Though the samples of both classes separate well in general, some samples of one class "overlap" into

the other class.

exons only [1]. However, cells can splice the primary tran-
script in different ways and thereby generate different
polypeptides from the same gene (reviewed in [2]). This
process is called alternative splicing. The different
polypeptides are termed alternatively spliced gene prod-
ucts, splice variants or protein isoforms [3].

To generate correctly spliced, mature mRNAs, the exons
must be identified and joined together precisely and effi-
ciently by a complex process that requires the coordinated
action of five small nuclear RNAs (termed U1, U2 and U4
to U6) and more than 60 polypeptides [3]. According to

[3], five common modes of alternative splicing are
known: (i) exon skipping or inclusion, (ii) alternative 3'
splice sites, (iii) alternative 5' splice sites, (iv) mutually
exclusive exons, and (v) intron retention which corre-
sponds to no splicing. In complex pre-mRNAs, more than
one of these modes of alternative splicing can apply to dif-
ferent regions of the transcript, and extra mRNA isoforms
can be generated through the use of alternative promoters
or polyadenylation sites [3].

Alternative splicing is a frequent process in eukaryotes. It

is estimated that up to 60 percent of human genes are sub-
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Illustration of the different cases of consecutive blocks of identities or non-identities (CBINs). (A) CBIN of
matches, (B) CBIN of gaps (counted as mismatches), (C) CBIN of mismatches, (D) example of a comparison of two
sequences with an alignment length of 32. Matches are denoted by "|", mismatches by "#" and amino acids aligned to gaps by ":".
The example alignment of length 32 features eight CBINs. The values of the three features are: (i) sequence similarity 0.594, (ii)
inverse CBIN count 0.125, (iii) fraction of consecutive matches and mismatches 0.75.

jected to alternative splicing [3]. Thus, alternative splicing
is probably an important source of protein diversity in
higher eukaryotes. For example, the fruitfly Drosophila mel-
anogaster contains fewer genes than Caenorhabditis elegans
while exhibiting significantly higher protein diversity [2].
Furthermore, alternative splicing of primary transcripts is
often tissue- or stage-specific (cf. the expression of differ-
ent alternatively spliced transcripts during different stages
of the development of an organism [4]), and is thus an
important regulatory mechanism.

For a protein in an organism, other proteins can be found
that are homologous, i.e. that are similar due to common
evolutionary ancestry. Following Fitch [5], there can be
orthologs, which are homologs due to a speciation event,
and paralogs, which are homologs due to a duplication
event. Even if genomic information on intron/exon-struc-
ture is not available, isoforms can usually be visually dis-
tinguished from homologs based on protein sequence
alone, since only the latter feature substitutions with
respect to each other (cf. Figure 1). For the remainder of
this paper, without loss of generality, we will consider par-
alogs only. Comparing a protein with an isoform of its
paralog, we still find a predominance of substitutions,
and we consider these two proteins to be paralogs.

Available databases of proteins and their isoforms con-
sider only a small number of protein families and species
(see e.g. [6-8]). We wanted to identify isoforms without
knowledge of genomic information and independently of
specific protein families or species, in a fashion well suited
for high-throughput genomics and proteomics.

Visual inspection of large datasets such as complete pro-
teomes (meaning the totality of all proteins expressed in

an organism) would be time-consuming and prone to
misclassifications. To enable automation, a set of three
different features was derived based on the pairwise align-
ment of the two protein sequences to be compared. These
features take into account such parameters as the distribu-
tion of substitutions and sequence similarity. The three
features are overall sequence similarity, the number of consec-
utive blocks of identities or non-identities (CBINs) and the
overall number of consecutive matches (and mismatches), see
also Figures 2 and 3, and Methods, section Features.

For automation the approach of supervised learning using
a Support Vector Machine (SVM) [9-11] was chosen.
SVMs are gaining popularity in Bioinformatics [12-15]
and are often superior to Neural Networks and Bayesian
Learning [16]. SVM classifiers distinguish two classes of
input data by calculating separating hyperplanes (deci-
sion surfaces) in a vector space V that is endowed with a
dot product. The dot product is used as a measure of sim-
ilarity. Data samples from the input space are mapped to
the vector space V (usually of dimensionality higher than
the input space), making it easier to find a separating
hyperplane. The position and margin of the hyperplane
are optimized in V, maximizing the distance of the hyper-
plane to instances of both classes. The kernel function
used to measure similarity behaves in input space like the
dot product in space V. Thus, similarity of input data can
be measured easily in V. Without a kernel function, com-
putation of the dot products in V would be necessary, con-
suming a large amount of time, depending on the
structure of V. For an in-depth description of properties
and theory of SVMs, please see [11]. The Support Vector
Machine implementation SVMLight [17] was used. In this
paper, we introduce a highly accurate SVM-based method
to distinguish between isoforms and paralogs on the pro-
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Table I: Mean accuracy and standard error of the mean of various classifiers, using three features derived from the alighment of the
sequences to be compared. 100-fold jackknife resampling was employed. " " denotes the standard error of the mean.

SVM classifier

Accuracy Precision True Positives

True Negatives False Positives False Negatives

99.55% + 0.008 99.31% £ 0.015 1897.1 £ 0.21

1887.9 £ 0.28 13.1 £0.28 39+0.21

RBF network classifier

Accuracy Precision True Positives

True Negatives False Positives False Negatives

99.33% £ 0.011 98.91% + 0.019 1896.5 + 0.22

1880.1 £+ 0.38 20.9 £ 0.38 4.6 +0.22

3-feature linear classifier

Accuracy Precision True Positives

True Negatives False Positives False Negatives

99.42% + 0.011 99.22% + 0.020 1893.8 £ 0.35

1886.0 + 0.39 15.0 £ 0.39 72 +035

tein level (that is, without the need for genomic informa-
tion). Our software is freely available on the Web (see
Conclusions).

Results and discussion

Importance of maximizing accuracy in distinguishing
isoforms and paralogs

Why does isoform detection require such a high degree of
accuracy? Why do we want to use an SVM even though
this approach is usually employed in case the input space
has dimensionality (much) larger than three? For exam-

ple, when performing 2,000 sequence comparisons, even
a 0.2% improvement in accuracy results in 4 fewer mis-
classifications. Such numbers are typical, for example, in
applications of our automated phylogeny pipeline RiPE
[18,19]. Analyzing a large protein family with RiPE, few
misclassifications make a difference since paralogs misi-
dentified as isoforms (false positives) are deleted from the
dataset, which may result in the loss of key members of
the protein family, compromising the interpretation of
the evolution of sequence, domain structure and function.

Table 2: Performance of the SVM classifier (accuracy/precision) on four testing scenarios.

Full-length-sequence (canonical testing dataset)

Accuracy Precision True Positives True Negatives False Positives False Negatives
99.63% 99.37% 1899 1889 12 2
Selected Xenopus EST data
Accuracy Precision True Positives True Negatives False Positives False Negatives
97.93% 99.23% 129 155 | 8
Homologous-regions-only
Accuracy Precision True Positives True Negatives False Positives False Negatives
98.98% 97.57% 2529 5455 63 19
ABC protein homologous-regions-only
Accuracy Precision True Positives True Negatives False Positives False Negatives
- 95.65% 110 - 5 -
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Accuracy of classifiers measured by jackknife resam-
pling, employing all three features. Performance of the
SVM classifier is compared to classifiers based on an RBF net-
work as well as a linear classifier. Mean accuracy and stand-
ard error of the mean were assessed by 100-fold jackknife
resampling using 7604 samples resulting from a visual inspec-
tion process of protein sequences taken from Genbank.

(In this specific application, isoforms misidentified as
paralogs (false negatives) do not pose a major problem.)

Performance statistics of different classifiers based on
three features

We investigated three different classifiers designed to dis-
tinguish isoforms and paralogs. We calculated the mean
accuracy and standard error of the mean for an SVM, a radial
basis function (RBF) network [20] and a linear classifier.
Classification was based on three features and samples
were derived from protein data taken from Genbank [21]
(cf. Methods, section Assessing performance of classifiers
based on three features by jackknife resampling). The SVM
classifier showed better accuracy and a smaller standard
error of the mean than the two other classifiers. In detail,
the SVM classifier shows a mean accuracy of 99.55% and
a standard error of 0.008. In contrast, the classifier based
on the RBF network shows a mean accuracy of 99.33%
and a standard error of 0.011, while for the linear classifier
a mean accuracy of 99.42% and a standard error of 0.011
was observed. Mean accuracy, mean precision and true
positive/true negative (TP/TN) and false positive/false
negative (FP/FN) numbers for the three classifiers are
given in Table 1 and illustrated in Figure 4.

Performance of different classifiers using a canonical
training/testing dataset

In the following, we report results that are not supported
by resampling but derived from a specific ("canonical")
training and testing dataset (cf. Methods, section Canonical

http://www.biomedcentral.com/1471-2105/7/110

training and testing dataset). In this way, we were able to
explore, on a large (3802 samples) dataset, a wide variety
of classifiers in reasonable time.

The SVM classifier distinguishes isoforms and paralogs of
the canonical testing dataset with an accuracy of 99.63%
and a precision of 99.37% (cf. Table 2 and 3). All three
sequence-based features used by the SVM (cf. Figure 2)
contributed to accuracy; results based on any combina-
tion of two features only were inferior, as shown in Table
3.

A linear classifier that was calculated using all three fea-
tures of the samples in the canonical training dataset was
found to classify the canonical testing dataset with an
accuracy of 99.42%. Linear classifiers that were trained
using all possible combinations of only two features
showed at least slightly inferior results compared to the
linear classifier based on all three features. Not surpris-
ingly, the best-performing classifier based on two features
does not use the weakest feature that is sequence similarity.
Classifiers based on sequence similarity alone appear to be
weak in distinguishing between isoforms and paralogs
and perform much worse than any other of the tested clas-
sifiers; a linear classifier derived by line-sweeping using
the feature sequence similarity alone results in an accuracy
of approximately 82%. Linear classifiers based on one of
the other features perform surprisingly well, however (cf.
Table 3).

Finally, the radial basis function (RBF) network classifier
[20] (cf. Methods, section Training of the radial basis func-
tion network) applied to the canonical testing dataset using
all three features results in an accuracy of 99.32%.

Application of the SYM classifier to EST data

As a first real-life application we used IsoSVM to search for
isoforms within the CAP3-derived contigs of 722 Xenopus
laevis EST clusters [22]. Xenopus laevis, as an allotetraploid
species, has undergone a genome wide duplication. There-
fore, many genes are represented by two paralogs. Iso-
forms of X. laevis proteins have not been studied yet in any
systematic way. Sequencing the X. laevis genome is made
difficult by its sheer size, and genomic sequence data are
too few in number to study intron-exon structures of most
genes. Contigs were derived from 350,468 Xenopus ESTs
downloaded from GenBank. After cleanup of the EST data
(high quality sequence clipping, vector and repeat mask-
ing), sequences were clustered using an enhanced suffix
array based approach [23] implemented in the tool
Vmatch [24]. Clustering resulted in 25,971 clusters which
were assembled into 31,353 contigs using CAP3 [25].
Table 4 summarizes the results of the clustering process.
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Table 3: Performance comparison of the three-feature SVM classifier to linear classifiers, an RBF network classifier and other SVM

classifiers, using canonical training and testing datasets.

Feature(s)

Accuracy

Canonical testing dataset Homologous-regions-only

testing dataset

3-feature SVM classifier Sequence similarity, inverse 99.63% 98.98%
CBIN count, match/mismatch
fraction (cf. Table 2)
2-feature SVM classifiers Match/mismatch fraction, 97.50% 96.68%
sequence similarity
Inverse CBIN count, sequence 99.32% 98.97%
similarity
Match/mismatch fraction, 99.42% 98.91%
inverse CBIN count
RBF Network classifier Sequence similarity, inverse 99.32% 98.79%
CBIN count, match/mismatch
fraction
3-feature linear classifier Sequence similarity, inverse 99.42% 98.80%
CBIN count, match/mismatch
fraction
2-feature linear classifiers Match/mismatch fraction, 99.03% 98.75%
sequence similarity
Inverse CBIN count, sequence 99.32% 98.67%
similarity
Match/mismatch fraction, 99.37% 98.77%
inverse CBIN count
|-feature linear classifiers Sequence similarity 82.22% 82.02%
Match/mismatch fraction 98.05% 98.62%
Inverse CBIN count 99.37% 98.75%

To assess whether the splitting of clusters by CAP3 into
several contigs was caused by grouping isoforms into the
same cluster, or whether the splitting was due to paralogs,
we extracted 722 clusters that have multiple contigs
(2,243 contigs total), and for which each contig has a full
length protein match in the protein NR database [21].
Most of the 722 clusters consist of only two contigs and
only a fraction features three or more contigs. Treating
each contig consensus as a sequence, 5,459 sequence pairs
were compared by IsoSVM within clusters; 986 of these
samples (19.3%) were classified as isoforms and 4,125 as
paralogs (80.7%). 348 samples were left out, representing
contigs with almost no overlap, i.e. sequence pairs of low
(<1%) similarity. As a further check, to assess the accuracy
of this analysis, 290 randomly chosen samples were

reviewed manually and the result was noted (cf. Table 2);
an accuracy of 97.93% and a precision of 99.23% was
found. (In a few cases, early EST sequencing termination
events produce a block of amino acids aligned with gaps
at the end of the two sequences compared, causing classi-
fication of such cases as isoforms, and they were counted
as such.)

Application of the SVM classifier to an automated
phylogeny pipeline

As a second application, the classifier was incorporated
into a pipeline for automatic generation of protein phyl-
ogenies called RiPE [18,19], with the aim to further reduce
the redundancy of the RiPE-retrieved protein data by rec-
ognizing and deleting sequences that are isoforms. Iso-
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Table 4: Summary of Xenopus EST cleanup and clustering.

Total number of ESTs and cDNAs 350,468
Number of good sequences 317,242
Average trimmed EST length (bp) 536

Number of clusters 25,971
Number of singletons 40,877
Number of CAP3 contigs 31,353
Number of CAP3 singletons 4801
Average CAP3 contig length (bp) 1,045
Max. cluster size (no. of ESTs) 6,332
Average cluster size (no. of ESTs) 10.6
Cluster sizes: #EST
4,097 - 8,192 |
2,049 — 4,096 |
1,025 — 2,048 2
513-1,024 I5
257 -512 35
129 — 256 116
65128 414
33-64 973
17 -32 1,755
9-16 2,974
5-8 4,571
3-4 6,444
2 8,670
forms are wusually considered irrelevant data in

phylogenetic tree inference and analysis. RiPE data are
generated by homology search (PSIBLAST, [26]), retriev-
ing hits with putative homology to a search profile and
assembling HSP-based homologous-regions-only data as
described in Methods, section Homologous regions only. The
pipeline already features a redundancy minimization
stage, sorting out hits that are similar to other hits (95%
identity or more). The IsoSVM classifier was incorporated,
enabling the detection and deletion of isoforms, thus
decreasing dataset size and redundancy while simultane-
ously increasing computational speed and legibility of the
phylogenetic tree. We first tested the ability of our classi-
fier to deal with homologous-regions-only data (using the
testing dataset described in Methods, section Homologous
regions only), noting an accuracy of 98.98% and a preci-
sion of 97.57% (cf. Table 2). Training on homologous-
regions-only data did not improve classifier performance
(data not shown).

Following our interest in ABC (ATP-binding cassette) pro-
teins, which are found in a wide variety of species and are
of major biomedical importance, a dataset of 1,349 ABC
protein hits was then retrieved by RiPE from 20 model
proteomes (12 eukaryotes, 6 bacteria and 2 archaea) using
48 known human ABC proteins [27] as search profile. 115
hits were identified as isoforms of another hit by the SVM
classifier. As a further check, all 115 putative isoforms
were inspected visually, the automatic classification (iso-
form or paralog) was checked, and a precision of 95.65%
was found. The accuracy of the classifier was not calcu-
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lated in this case since RiPE reports only samples classified
as positives (i.e. isoforms). While the precision reported is
based on the number of false positives (i.e. sequences rep-
resenting paralogous sequences being reported as iso-
forms), assessment of accuracy would require the visual
inspection of tens of thousands of samples of (putative)
paralogs, i.e. putative false negatives. Removal of isoforms
resulted in a reduction of dataset size by about 8%, ren-
dering the eukaryotic parts of the tree much more legible.

Limitations of the classifier

Despite showing reliable performance, the SVM classifier
is not perfect. It may misleadingly classify a small portion
of paralogs with high similarity as isoforms, since they
feature long stretches of identical amino acid sequence.
Further, sequences that are fragments of other sequences
will be classified as isoforms.

Conclusion

The SVM classifier, trained using visually classified cases
of isoform and paralog relationships, proved to be relia-
ble in all tests, exhibiting an accuracy of over 97% and a
precision of over 95%. We are thus able to distinguish iso-
forms and paralogs in a satisfactory way, no matter
whether full-length, homologous-regions-only or EST
cluster sequences are handled. In particular, for species
such as Xenopus laevis, for which few detailed analyses of
the evolution of genes and proteins exist, the analysis of
paralogs and isoforms can improve statistical models of
sequence evolution, e.g. regarding the likelihood of gene
duplication and alternative splicing. Overall, the [soSVM
tool should be useful for researchers in several fields of
genomic research and EST analysis as a reliable method of
automatic isoform identification. Our software is freely
available at the IsoSVM Website [28], under an open
source license.

Methods

To automatically determine if one protein sequence is an
isoform of another, we first derive three features, charac-
terizing the degree and pattern of matches and mis-
matches in a pairwise alignment of the two sequences as
detailed in the paragraphs below. The three features
depend on the length of the alignment of the two
sequences and consecutive blocks of identities or non-
identities (CBINS).

Prerequisites

Length of the alignment (1)

The length of the alignment of two protein sequences a
and b is used in two of the features described below to
normalize their values to a range from 0 to 1. This was
done in order to avoid numerical problems that may
affect classification performance and to exclude features
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of large absolute amount that may numerically dominate
smaller ones during training of the SVM (cf. [29,30]).

Consecutive blocks of identities or non-identities (CBIN)

A CBIN is a block in which the alignment features consec-
utive matches or mismatches (cf. Figure 3). Few large
CBINs are characteristic for comparisons of isoforms
whereas many short CBINS are typically found in compar-
isons of paralogs (cf. Figure 1, illustrating the comparison
of two isoforms and two paralogs).

There are two possible cases of a CBIN. First, if sequence a
features a subsequence of length ¢ starting at position i
(with ¢ between 1 and I-i) that is a maximum run of exact
matches (that cannot be extended any further) to its
aligned counterpart of sequence b, then this block of con-
secutive matches is a CBIN of length c. Second, if sequence
a features a subsequence of length ¢ starting at position i
(with ¢ between 1 and I-i) that is a maximum run of mis-
matches to its aligned counterpart of sequence b, then this
block of consecutive mismatches is a CBIN of length c.
Formally, for internal CBINs that are not located at the
beginning or at the end of the alignment, we have

a,=b,forallkk=i,..i+c and a;,#b,; and a;,,
bi+c+1

or

a#bforal kk=i,..i+tc and a;,=b,, and a;.,

= bi+c+1 ( 1 )

where i is the start coordinate and i+c the end coordinate
of the maximum block of matches or mismatches. For
CBINs that are not internal, the definition can be general-
ized in an obvious way. Amino acids aligned with gaps are
considered mismatches.

Features

Sequence similarity

Sequence similarity is the overall number of matches in
the alignment of the sequences a and b, divided by its
length I:

i,i=1,...,1la =b
Featurel=|{” l @ l}|/ (2)

where |M| denotes the number of elements in a set M.

Inverse CBIN count
As the second feature we us the reciprocal value of the
number of CBINs # in the pair of aligned sequences:

L (3)

Feature 2 = —
n
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Fraction of consecutive matches and mismatches

This feature describes the overall number of consecutive
matches and mismatches (not counting the match or mis-
match at the first position of a CBIN). In other words, it is
the sum of the lengths ¢; minus one, of all n CBINs (with

j
j=1..n), divided by [:

(-1

Feature 3=2"— (4)
l

The feature fraction of consecutive matches and mismatches is
abbreviated as match-mismatch fraction in all figures and
tables. In the following we describe the procedure of the
generation of the training and testing datasets, the learn-
ing pipeline and the validation of classifier performance.

Generation of the training and testing datasets

Sequence retrieval, homology search and visual classification

The NCBI non-redundant (NR) database [21] was used as
the source for retrieving protein sequences and was down-
loaded from the NCBI FTP server on March 8, 2004. The
NR database was then searched for sequences annotated
as "isoform" or "splice variant". 13,061 sequences featur-
ing at least one of the two keywords were found and
retrieved from the NR database, establishing a set of unre-
lated sequences that are from any species for which iso-
forms can be expected to exist. From this set, 250
sequences were randomly selected to give rise to the
canonical training and testing datasets, as follows (for a
complete list of taxa included in this set please consult the
supplementary material [see Additional file 1]).

For all 250 sequences a BLAST search [26] was performed,
again on the NR database, using each sequence as the
query sequence. BLAST standard parameters and an E-
value threshold of 1090 were used to ensure that no unre-
lated hits were retrieved. For 176 of the 250 query
sequences, hits corresponding to putative homologous
sequences or isoforms were found. All sequences corre-
sponding to hits from the same species as the query were
retrieved from the NR database in full length. Sequences
were then aligned using the program fftnsi of the MAFFT
package [31] using default values (PAM200 log-odds
matrix [32], gap open penalty 2.4, gap extension penalty
0.06). The resulting multiple alignment gives rise to pair-
wise alignments of all pairs of sequences. We obtained
each pairwise alignment from a multiple alignment to
improve the quality of the pairwise alignment (see e.g.
[33]). Finally, each pair of sequences was assigned to one
out of two possible classes (+1,-1) based on visual inspec-
tion (cf. Figure 5). A value of +1 indicates isoforms and a
value of -1 paralogs. A few cases where no clear decision
was possible and sequence pairs of low similarity (<1%)
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Figure 5

Visual inspection process. Matches in the alignments are colored in blue and mismatches in red. Amino acids aligned to gaps
are indicated in green. Panels (A) to (D) illustrate alignments of two protein sequences classified as isoforms (panels (A) and
(B)) or as paralogs (panels (C) and (D)). The sequences shown in panel (A) feature a shared subsequence (a putative consti-
tutive exon), marked in blue. The upper sequence features an additional exon at the beginning (marked in green) that is missing
in the lower sequence. In contrast, a putative exon at the end (also shown in green) is found in the lower sequence only. Com-
parison of the two putative isoforms shown in panel (B) reveals two constitutive exons in the middle and towards the end of
the alignment, colored in blue (the only mismatch is interpreted as a sequencing error, or a polymorphism). These are sepa-
rated by a stretch of amino acids aligned to gaps, interpreted as an exon skipped in the lower sequence. At the beginning of the
alignment, the upper sequence features a long stretch of amino acids aligned to gaps and a few mismatches; two mutually exclu-
sive exons are a plausible interpretation, since the lower sequence (starting with G and not with M) is incomplete and its first
exon is probably much longer. At the end of the alignment both sequences feature a stretch of mismatches and gaps (colored
in red), interpreted as mutually exclusive exons (indicated by a black frame). The sequences compared in panel (C) give rise to
a sample of the paralog class. In general, the alignment features many mismatches, interpreted as substitutions, and six
stretches of amino acids aligned to gaps (putative deletions). Panel (D) illustrates another putative paralog. Besides a shared
stretch (featuring numerous substitutions) in the middle of the alignment, the upper sequence features putative deletions, or
missing exons. It may thus be a case of an isoform of a paralog.
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were not included in the data. More specifically, two
sequences are classified as isoforms if their alignment dis-
plays the following evidence:

1. We observe large blocks of (almost) identical sequence
with no (or few) mismatches that can be interpreted as
common exons, except for a few sequencing errors or pol-
ymorphisms.

2. Additionally, we observe either one or both of the fol-
lowing:

i. We observe one or more sequence blocks that do not
match (interspersed with a few random matches) which
can be interpreted as mutually exclusive exons of similar
size that are spuriously aligned and which are embedded
in blocks of (almost) identical sequence.

ii. We observe one or more sequence blocks that align to
gap characters which can be interpreted as surplus amino
acids that arise if mutually exclusive exons of different
length are spuriously aligned, or if exon(s) are missing in
one of the sequences, or if an exon has an alternative
splice site such that it is observed in a short and in a long
version, and which are again embedded in blocks of
(almost) identical sequence.

In contrast, two sequences are classified as paralogs if
there is a large sequence block that displays sufficient sim-
ilarity to allow assumption of common evolutionary ori-
gin, interspersed with a sufficiently large number of
mismatches that must be interpreted as substitutions and
that cannot be interpreted as sequencing errors, etc. Para-
logs may feature deletions that give rise to observations
similar to the ones in (i) and (ii) which are however
embedded in blocks of sufficient similarity with many
mismatches.

Canonical training and testing dataset

The dataset resulting from visual inspection featured
3,802 samples of the isoform class and 8,757 of the para-
log class. We started training with many more paralogs
than isoforms, with inferior testing results (data not
shown). Therefore, to prevent one class from outweighing
the other during SVM training, the number of samples of
the larger class was truncated to 3,802 samples. One half
of the dataset, consisting of 1,901 isoform and 1,901 par-
alog samples, was designated the canonical training data-
set, the other half is the canonical testing dataset. As can
be seen from Figure 2, the two classes separate quite well,
although close inspection reveals that the boundary
between them is in fact quite complex.

http://www.biomedcentral.com/1471-2105/7/110

Homologous regions only

Another testing dataset was generated directly from the
database search reports obtained before. They were con-
verted into FASTA-formatted alignments of merged HSPs
(partial hits called high-scoring segment pairs) using MVIEW
[34]. These merged HSPs can be viewed as the concatena-
tion of the homologous regions of the full hit sequences.
Some of the queries contained internal repeats that do not
give rise to a single concatenation; these sequences were
left out. By automatically transferring the visual classifica-
tion of the corresponding full-length-sequence-based
samples above to the merged HSP data, a set of 8,066 clas-
sified samples was obtained (5,518 samples of the paralog
and 2,548 samples of the isoform class).

Training of the SVM

To find an optimum SVM classifier for a given problem, a
kernel has to be specified. As kernel function the radial
basis function (RBF) kernel was used. For SVMs with RBF
kernels, two parameters, C and g need to be determined.
C describes a penalty for training errors and is part of the
soft margin concept of SVMs. It allows for a number of
(misclassified) training samples to be located within the
margin. Thus, a certain amount of noise is tolerated in the
training data. The parameter g describes the width of the
Gaussian bells of the radial basis function of the RBF ker-
nel

K(xirxj)=exp(—8"xi—xj"2 Jr8>0r (5)

where x;, x; denote feature vectors of training samples. We
scanned for best parameter values in a specific range using
a so-called grid-search.

The grid-search was carried out for parameter C ranging
from 10-5 to 105 and for parameter g ranging from 10-15
to 103, following [28]. Both parameters were scanned
using 10 steps per axis on a logarithmic scale, resulting in
a total number of 100 grid points. The grid-search was
based on a cross-validation procedure intended to prevent
overfitting of the classifier on the canonical training data-
set, again following [28]. We split the training dataset into
n = 4 subsets (cf. Figure 6, each subset is denoted by an
encircled number). For each point of the grid evaluated by
the grid-search, n-1 of the n subsets are used to train a clas-
sifier using the kernel parameters C and g corresponding
to the point in the grid. The resulting classifier is then
tested on the one remaining subset of the training dataset,
and accuracy is recorded. The overall accuracy of the SVM
classifier trained at a specific point of the grid is then the
mean over all n accuracies. The maximum accuracy was
identified and the corresponding kernel parameters C and
g were noted. New parameter ranges (10-1-103 for C, 10-2-
103 for g) were then used to run a second grid-search with
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Figure 6

SVM training process. The complete dataset generated by
visual inspection was split into two parts, yielding a canonical
training dataset of 3,802 samples and a canonical testing data-
set of 3,802 samples, each consisting of an equal number of
isoform and paralog instances. The canonical training dataset
was again split into four subsets (denoted by numbers in cir-
cles) and submitted to the grid-search procedure. The result-
ing classifier was then tested on the canonical testing dataset.

higher resolution in the area in which maximum accuracy
was found. Inside this new grid, the point of maximum
mean accuracy (99.58%) was chosen and its correspond-
ing kernel parameters (C = 12.5; g = 6.25) were noted.
Final training was then carried out on the entire canonical
training dataset, resulting in a final SVM classifier. To
assess its performance true positive/true negative (TP/TN)
and false positive/false negative (FP/FN) ratios were tal-
lied and accuracy

TP + TN
(TP +TN + FP + FN)

(6)

and precision (cf. [35])

P
(TP + FP)

were calculated.
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Training of the radial basis function network

To compare the performance of the SVM classifier to
another machine learning technique, a neural network
classifier (more precisely a radial basis function (RBF) net-
work [20]) was trained on the canonical training dataset.
The implementation of RBF networks with adaptive cent-
ers by [36] was used with default values (number of centers
3; regularization 10-4; iterations for optimization 10).

Assessing performance of classifiers based on three
features by jackknife resampling

To estimate the mean accuracy and standard error of the
mean of a classifier, it was trained and tested on datasets
derived from random splits of the canonical samples
derived from Genbank using a 100-fold jackknife resam-
pling process [37]. More specifically, the canonical train-
ing and testing datasets described
concatenated yielding a dataset of 7,604 samples, with
3,802 samples of each class. For each jackknife run, 1,901
samples of each class were chosen randomly from this
dataset for training, while the remaining samples were
used for testing. The mean accuracy and the standard error

above were

of the mean (c/+/N , where ¢ denotes the standard devi-

ation and N the number of jackknife resamplings) were
calculated.

For each jackknife run, an SVM, RBF network and linear
classifier were trained using all three features of the corre-
sponding training dataset. For training the SVM classifier,
the kernel parameters as derived by the grid-search on the
canonical training dataset (C = 12.5; g = 6.25) were used.
The RBF network was trained using default parameter val-
ues (number of centers 3; regularization 10-4; iterations for
optimization 10). With respect to the linear classifier,
threshold calculation by line-sweeping (cf. supplemental
Figure S1 [see Additional file 1]) in case of three features
cannot be accomplished by an exhaustive search in feasi-
ble time, since the search space is cubic. Therefore, we esti-
mated lower and upper bounds and searched for the
optimum thresholds within these bounds. To be precise,
based on visual inspection (cf. Figure 2) only the follow-
ing feature ranges were searched by line-sweeping on the
training datasets:

1. Sequence similarity: 0.01...0.05
2. Inverse CBIN count: 0.01...0.03

3. Fraction of consecutive matches and mismatches:
0.90...0.94

Although line-sweeping is not exhaustive, the best combi-

nation of thresholds found in the reduced search space
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should represent the optimum; these are 0.01832 for
sequence similarity, 0.01613 for inverse CBIN count and
0.92827 for the fraction of consecutive matches and mis-
matches.

Accuracy, precision and true positive/true negative (TP/
TN) and false positive/false negative (FP/FN) ratios were
averaged over all jackknife runs and the standard error of
the mean of each of these properties was calculated (cf.
Table 1 and Figure 4).

Classifiers based on fewer features, thresholds and
parameters; measuring performance

Performance of the classifiers based on three features was
compared to the performance of classifiers based on a
reduced set of two or only one feature(s), using the canon-
ical training and testing datasets only. In contrast to the
studies using resampling, all linear classifiers were derived
by exhaustive line sweeping, that is, by an exhaustive
search for the best combination of thresholds or the best
single threshold in case of one feature. The thresholds for
linear classifiers are listed in the supplementary data,
Tables S1 and S2 [see Additional file 1]. The kernel param-
eters (cf. Methods, section Training of the SVM) for SVM
classifiers based on canonical training datasets are listed
in Table S3 of the supplementary data [see Additional file
1]. Performance (in terms of accuracy) of all classifiers was
noted on canonical testing datasets and homologous-
regions-only datasets and is given in Table 3.
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