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Abstract
Background: Nonlinear regression, like linear regression, assumes that the scatter of data around
the ideal curve follows a Gaussian or normal distribution. This assumption leads to the familiar goal
of regression: to minimize the sum of the squares of the vertical or Y-value distances between the
points and the curve. Outliers can dominate the sum-of-the-squares calculation, and lead to
misleading results. However, we know of no practical method for routinely identifying outliers
when fitting curves with nonlinear regression.

Results: We describe a new method for identifying outliers when fitting data with nonlinear
regression. We first fit the data using a robust form of nonlinear regression, based on the
assumption that scatter follows a Lorentzian distribution. We devised a new adaptive method that
gradually becomes more robust as the method proceeds. To define outliers, we adapted the false
discovery rate approach to handling multiple comparisons. We then remove the outliers, and
analyze the data using ordinary least-squares regression. Because the method combines robust
regression and outlier removal, we call it the ROUT method.

When analyzing simulated data, where all scatter is Gaussian, our method detects (falsely) one or
more outlier in only about 1–3% of experiments. When analyzing data contaminated with one or
several outliers, the ROUT method performs well at outlier identification, with an average False
Discovery Rate less than 1%.

Conclusion: Our method, which combines a new method of robust nonlinear regression with a
new method of outlier identification, identifies outliers from nonlinear curve fits with reasonable
power and few false positives.

Background
Nonlinear regression, like linear regression, assumes that
the scatter of data around the ideal curve follows a Gaus-
sian or normal distribution. This assumption leads to the
familiar goal of regression: to minimize the sum of the
squares of the vertical or Y-value distances between the

points and the curve. However, experimental mistakes can
lead to erroneous values – outliers. Even a single outlier
can dominate the sum-of-the-squares calculation, and
lead to misleading results.
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Identifying outliers is tricky. Even when all scatter comes
from a Gaussian distribution, sometimes a point will be
far from the rest. In this case, removing that point will
reduce the accuracy of the results. But some outliers are
the result of an experimental mistake, and so do not come
from the same distribution as the other points. These
points will dominate the calculations, and can lead to
inaccurate results. Removing such outliers will improve
the accuracy of the analyses.

Outlier elimination is often done in an ad hoc manner.
With such an informal approach, it is impossible to be
objective or consistent, or to document the process.

Several formal statistical tests have been devised to deter-
mine if a value is an outlier, reviewed in [1]. If you have
plenty of replicate points at each value of X, you could use
such a test on each set of replicates to determine whether
a value is a significant outlier from the rest. Unfortunately,
no outlier test based on replicates will be useful in the typ-
ical situation where each point is measured only once or
several times. One option is to perform an outlier test on
the entire set of residuals (distances of each point from the
curve) of least-squares regression. The problem with this
approach is that the outlier can influence the curve fit so
much that it is not much further from the fitted curve than
the other points, so its residual will not be flagged as an
outlier.

Rather than remove outliers, an alternative approach is to
fit all the data (including any outliers) using a robust
method that accommodates outliers so they have mini-
mal impact [2,3]. Robust fitting can find reasonable best-
fit values of the model's parameters but cannot be used to
compare the fits of alternative models. Moreover, as far as
we know, no robust nonlinear regression method pro-
vides reliable confidence intervals for the parameters or
confidence bands for the curve. So robust fitting, alone, is
a not yet an approach that can be recommended for rou-
tine use.

As suggested by Hampel [2] we combined robust regres-
sion with outlier detection. It follows three steps.

1. Fit a curve using a new robust nonlinear regression
method.

2. Analyze the residuals of the robust fit, and determine
whether one or more values are outliers. To do this, we
developed a new outlier test adapted from the False Dis-
covery Rate approach of testing for multiple comparisons.

3. Remove the outliers, and perform ordinary least-
squares regression on the remaining data.

We describe the method in detail in this paper and dem-
onstrate its properties by analyzing simulated data sets.
Because the method combines Robust regression and out-
lier removal, we call it the ROUT method.

Results
Brief description of the method
The Methods section at the end of the paper explains the
mathematical details. Here we present a nonmathemati-
cal overview of how both parts of the ROUT method
(robust regression followed by outlier identification)
work.

Robust nonlinear regression
The robust fit will be used as a 'baseline' from which to
detect outliers. It is important, therefore, that the robust
method used give very little weight to extremely wild out-
liers. Since we anticipate that this method will often be
used in an automated way, it is also essential that the
method not be easily trapped by a false minimum and not
be overly sensitive to the choice of initial parameter val-
ues. Surprisingly, we were not able to find an existing
method of robust regression that satisfied all these criteria.

Based on a suggestion in Numerical Recipes [4], we based
our robust fitting method on the assumption that varia-
tion around the curve follows a Lorentzian distribution,
rather than a Gaussian distribution. Both distributions are
part of a family of t distributions as shown in Figure 1. The
widest distribution in that figure, the t distribution for df
= 1, is also known as the Lorentzian distribution or Cauchy
distribution. The Lorentzian distribution has wide tails, so
outliers are fairly common and therefore have little
impact on the fit.

The Lorentzian distributionFigure 1
The Lorentzian distribution. The graph shows the t 
probability distribution for 1, 4, 10 and infinite degrees of 
freedom. The distribution with 1 df is also known as the 
Lorentzian or Cauchy distribution. Our robust curve fitting 
method assumes that scatter follows this distribution.
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We adapted the Marquardt nonlinear regression algo-
rithm to accommodate the assumption of a Lorentzian
(rather than Gaussian) distribution of residuals. Figure 2
shows three data sets which include an outlier. The solid
curves show the results of our robust nonlinear regression,
which are barely influenced by the outlier. In contrast, the
dotted curves show the least-squares results, which are
dramatically influenced by the outlier.

Our method fits data nearly as quickly as ordinary nonlin-
ear regression, with no additional choices required. The
robust fitting method reports the best-fit values of the
parameters, but does not report standard errors or confi-
dence intervals for these values.

Least-squares regression quantifies the scatter of data
around the curve by reporting Sy.x, sometimes called Se,
the standard error of the fit. It is computed by taking the
square root of the ratio of the sum-of-squares divided by
the number of degrees of freedom (N-K, where N is the
number of data points and K is the number of adjustable
parameters). Sy.x is in the same units as the Y values, and
can be thought of as the standard deviation of the residu-
als.

The presence of an outlier would greatly increase the value
of Sy.x. Therefore, we use an alternative method to quan-
tify the scatter of points around the curve generated by
robust nonlinear regression. We quantify the scatter by
calculating the 68.27 percentile of the absolute values of
the residuals (because 68.27% of values in a Gaussian dis-
tribution lie within one standard deviation of the mean).
We call this value (with a small-N correction described in
the Methods section) the Robust Standard Deviation of
the Residuals (RSDR).

Outlier detection
After fitting a curve using robust nonlinear regression, a
threshold is needed for deciding when a point is far
enough from the curve to be declared an outlier. We rea-
soned that this is very similar to the problem of looking at
a set of many P values and choosing a threshold for decid-
ing when a P value is small enough to be declared 'statis-
tically significant'.

When making multiple statistical comparisons, where do
you draw the line between 'significant' and 'not signifi-
cant'? If you use the conventional 5% significance level for
each comparison, without adjusting for multiple compar-
isons, you'll get lots of false positives. The Bonferroni
method uses a lower cut-off defined as 5% divided by the
number of comparisons in the family. It is a helpful tool
when you are making a few comparisons, but is less useful
when you make many comparisons as it can miss many
real findings (in other words, it has little statistical
power). Benjamani and Hochberg [5,6] developed a
method to deal with multiple comparisons that takes into
account not only the number of comparisons but the dis-
tribution of P values within the set. When using this
method, you set the value Q in order to control the False
Discovery Rate (FDR). If Q is set to 1%, you can expect
fewer than 1% of the 'statistically significant' findings
(discoveries) to be false positives, while the rest (more
than 99%) are real.

We adapted the concept of FDR to create a novel approach
to identify one or several outliers. First divide each resid-
ual by the RSDR. This ratio approximates a t distribution,
which can be used to obtain a two-tailed P value. Now use
the FDR method to determine which of these P values is
'significant', and define the corresponding points to be
outliers.

Robust curve fits vsFigure 2
Robust curve fits vs. least-squares curve fits. The three examples show that a single outlier greatly affects the least-
squares fit (dotted), but not the robust fit (solid).
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Choosing an appropriate value for Q
Outlier elimination by the FDR technique requires that
you choose a value of Q. If Q is small, then very few good
points will be mistakenly identified as 'outliers', but the
power to detect true outliers will be low. If Q is larger,
then the power to find true outliers is high, but more good
points will be falsely identified as outliers.

The graphs in Figure 3 show the consequence of setting Q
to 0.1%, 1% or 10%. In each of the graphs, there is one
outlier (open symbol) that is placed just beyond the
boundary of outlier detection. In every case, if the point
were moved a tiny bit closer to the curve, it would no
longer be detected as an outlier.

If Q is set to 10%, outlier removal seems a bit too aggres-
sive. The open circles in the right panels are not all that far
from the other points. If Q is set to 0.1%, as shown on the
two graphs in the left, outlier removal seems a bit too
timid. Points have to be pretty far from the rest to be
detected. The two graphs in the middle panels have Q set
to 1%. The choice is subjective, but we choose to set Q to

1%, although there may be situations where it makes
sense to set Q to a lower or higher value.

If all scatter is Gaussian, how many 'outliers' are 
mistakenly identified?
We simulated 18 different situations (different models,
different numbers of parameters, different numbers of
data points). For each, we simulated 10,000 data sets add-
ing Gaussian error, analyzed the results with the ROUT
method (setting Q to 1%), and recorded how many out-
liers were (mistakenly) eliminated. The fraction of data
points eliminated as "outliers" ranged from 0.95% to
3.10%, with a median of 1.5%. We observed no obvious
correlation between fraction of points eliminated as 'out-
liers', and the choice of model, sample size, or amount of
scatter but we did not investigate these associations in
depth.

How well are single outliers detected?
Figure 4 shows a situation where one of the data points is
much further from the curve than the rest. We simulated
the scatter in 5000 experiments like this by generating

Choosing a value for QFigure 3
Choosing a value for Q. The value of Q determines how aggressively the method will remove outliers. This figure shows 
three possible values of Q with small and large numbers of data points. Each graph includes an open symbols positioned just far 
enough from the curve to be barely defined as an outlier. If the open symbols were moved any closer to the curve, they would 
no longer be defined to be outliers. If Q is set to a low value, fewer good points will be defined as outliers, but it is harder to 
identify outliers. The left panel shows Q = 0.1%, which seems too low. If Q is set to a high value, it is easier to identify outliers 
but more good points will be identified as outliers. The right panel shows Q = 10%. We recommend setting Q to 1% as shown 
in the middle panels.
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Gaussian scatter with a standard deviation of 200, and
adding a single outlier that was 1400 Y units away from
the curve (shown as an open circle).

The ROUT method (with Q set to 1%) detected the outlier
in all but 5 of these simulations. In addition, it occasion-
ally falsely identified some 'good' points as outliers. It
identified one point to be an outlier in 95 simulated
experiments, two points in 14 experiments, three points
in one experiment, four points in one experiment, and
five points in one experiment. For each of the simulated
experiments, we expressed the false discovery rate (FDR)
as the number of 'good points' falsely classified as outliers
divided by the total number of outliers detected. For the
few experiments where no outliers were detected, the FDR
is defined to equal 0.0. The average FDR for the 5000 sim-
ulated experiments was 1.18%.

Figure 5 shows the first two of a different series of simula-
tions. Here the distance of the outlier from the curve
equals 4.5 times the standard deviation of the Gaussian
scatter. This makes the outlier harder to detect. The left
panel shows a simulation where the outlier was detected
(open circle). In the right panel, the outlier at X = 3 min-
utes was not detected.

In 5000 simulations, the ROUT method (with Q set to
1%) detected the outlier in 58.3% of the simulations.
Additionally, it mistakenly identified a 'good' point as an
outlier in 78 simulated experiments, and two points in 10,
and three points in 2. The average FDR was 0.94%. This
example shows that our method can also detect moderate
outliers most of the time, maintaining the false discovery
rate below the value of Q we set.

How well are multiple outliers detected?
We used the same setup as Figure 4 (the distance of the
outliers from the curve equals 7 times the SD of the Gaus-
sian scatter). When we simulated 5000 data sets with nine
(of 36 points) being outliers, the ROUT method (with Q
set to 1%) detected 86% of the outliers, with an average
FDR of 0.06%. With two outliers, it detected more than 99
% of them, with an average FDR of 0.83%.

We also simulated experiments with moderate outliers,
using the same setup as Figure 5. When we simulated
5000 experiments with two outliers, 57% of the outliers
were detected with an FDR of 0.47%. When we simulated
experiments where 5 of the 26 points were outliers, 28%
of the outliers were detected with an FDR of only 0.02%.

How well does it work when scatter is not Gaussian?
Even though the ROUT method was developed to analyze
data where the scatter is Gaussian with the addition of a
few outliers, we wanted to know if it also works well when

the scatter is not Gaussian. We simulated 1000 data sets
where the scatter follows a t distribution with two degrees
of freedom. Figure 6 shows three of these data sets, show-
ing the wide scatter.

Figure 7 shows the best-fit value of the rate constant k, for
1000 simulated data sets analyzed either by ordinary
least-squares regression or by our outlier-removal
method. Both methods find the correct rate constant (K =
0.1) on average. But the scatter among individual simula-
tions is much greater with standard least squares regres-
sion than with the ROUT method, which has a smaller
average error.

Is the method fooled by garbage data?
One fear is that an automated outlier rejection method
might report seemingly valid results from data that is
entirely random with no trend at all. Figure 8 shows the
first of 1000 simulated data sets where we tested this idea.

We fit these simulated data sets to a sigmoid dose-
response curve, fixing the bottom plateau and slope, ask-
ing the program to fit the top plateau and EC50. Both
curve fitting methods (least squares, or robust followed by
outlier elimination with Q set to 1%) were able to fit
curves to about two thirds of the simulated data sets, but
the majority of these had EC50 values that were outside
the range of the data. Only 132 of the simulated data sets
had EC50 values within the range of the data (fit either
with robust or ordinary regression), and all the R2 values

Identifying extreme outliersFigure 4
Identifying extreme outliers. This shows the first of 5000 
simulated data sets with a single outlier (open symbol) whose 
distance from the ideal curve equations 7 times the standard 
deviation of the Gaussian scatter of the rest of the points. 
Our method detected an outlier like this in all but 5 of 5000 
simulated data sets, while falsely defining very few good 
points to be an outlier (False Discovery Rate = 1.18%).
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were less than 0.32. Our outlier removal method found an
outlier in only one of these 132 simulated data sets.

These simulations show that the ROUT method does not
go wild rejecting outliers, sculpting completely random
data to fit the model. When given garbage data, the outlier
rejection method very rarely finds outliers, and so almost
always reports the same results (or lack of results) as least-
squares regression.

What about tiny data sets?
Another fear is that the outlier removal method would be
too aggressive with tiny data sets. To test this, we simu-

lated small data sets fitting one parameter (the mean) or
four parameters (variable slope dose-response curve). In
both cases, when the number of degrees of freedom was 1
or 2 (so N was 2 or 3 for the first case, and 5 or 6 for the
second), our method never found an outlier no matter
how far it was from the other points. When there were
three degrees of freedom, the method occasionally was
able to detect an outlier, but only when it was very far
from the other points and when those other points had
little scatter.

These simulations show that the ROUT method does not
wildly reject outliers from tiny data sets.

Simulated data sets where the scatter follows a t distribution with 2 degrees of freedomFigure 6
Simulated data sets where the scatter follows a t distribution with 2 degrees of freedom. These are the first three 
of 1000 simulated data sets, where the scatter was generated using a t distribution with 2 degrees of freedom. Note that the 
data are much more spread out than they would have been had they been simulated from a Gaussian distribution.

Identifying moderate outliersFigure 5
Identifying moderate outliers. These are the first two of 5000 simulated data sets, where the scatter is Gaussian but one 
outlier was added whose distance from the ideal curve equalled 4.5 times the standard deviation used to simulate the remain-
ing points. Our method detected the outlier in the left panel (with Q set to 1%), and in 58% of 5000 simulations, but did not 
detect it in the right panel or in 42% of simulations. The False Discover Rate was 0.94%.
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Discussion
Overview
Ordinary least-squares regression is based on the assump-
tion that the scatter of points around a fitted line or curve
follows a Gaussian distribution. Outliers that don't come
from that distribution can dominate the calculations and
lead to misleading results. If you choose to leave the out-
liers in the analysis, you are violating one of the assump-
tions of the analysis, and will obtain inaccurate results.

A widely accepted way to deal with outliers is to use robust
regression methods where outliers have little influence.
The most common form of robust regression is to itera-
tively weight points based on their distance from the
curve. This method is known as IRLS (iteratively
reweighted least-squares). This method is popular
because it can be easily implemented on top of existing
weighted non-linear least-squares fitting algorithms. The
drawback of most IRLS methods is that the weighting
schemes correspond to underlying distribution densities
that are highly unlikely to occur in practice. For this rea-
son, we chose not to use IRLS fitting, but instead to use a
maximum likelihood fitting procedure assuming that
scatter follows a Lorentzian distribution density. The best-
fit parameters from this approach are sometimes called m-
estimates.

Robust methods are appealing because outliers automati-
cally fade away, and so there is no need to create a sharp
borderline between 'good' points and outliers. But using
robust methods creates two problems. One is that while
robust methods report the best-fit value of the parameters,
they do not report reliable standard errors or confidence
intervals of the parameters. We sought a method that
offered reliable confidence intervals without resorting to
computationally expensive bootstrapping, but were una-
ble to find an accurate method, even when given data with
only Gaussian scatter.

The other problem is that robust methods cannot be read-
ily extended to compare models. In many fields of science,
the entire goal of curve fitting is to fit two models and
compare them. This is done by comparing the goodness-
of-fit scores, accounting for differences in number of
parameters that are fit. This approach only works when
both models 'see' the same set of data. With robust meth-
ods, points are effectively given less weight when they are
far from the curve. When comparing models, the distance
from the curve is not the same for each model. This means
that robust methods might give a particular point a very
high weight for one model and almost no weight for a dif-
ferent model, making the model comparison invalid.

We decided to use the approach of identifying and remov-
ing outliers, and then performing least-squares nonlinear

The ROUT method is not fooled by totally random dataFigure 8
The ROUT method is not fooled by totally random 
data. These data were simulated from a Gaussian distribu-
tion around a horizontal line. Each simulated data set was 
then fit to a sigmoid dose-response curve, fixing the bottom 
plateau and slope, and fitting the top plateau and the EC50. 
Our fear was that our method would define many points to 
'outliers' and leave behind points that define a dose-response 
curve. That didn't happen. Our method found an outlier in 
only one of 1000 simulations.

Best-fit value for the rate constantsFigure 7
Best-fit value for the rate constants. One thousand sim-
ulated data sets (similar to those of Figure 6, with scatter 
much wider than Gaussian) were fit to a one-phase exponen-
tial decay model with our method (left) or least-squares 
regression (right). Each dot is the best-fit value of the rate 
constant for one simulated data set. The dots are more 
tightly clustered around the true value of 0.10 in the left 
panel, showing that our outlier-removal method gives more 
accurate results (on average) than least-squares regression.
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regression. We define outliers as points that are 'too far'
from the curve generated by robust nonlinear regression.
We use the curve fit by robust nonlinear regression,
because that curve (unlike a least-squares curve) is not
adversely affected by the outliers.

Since outliers are not generated via any predictable model,
any rule for removing outliers has to be somewhat arbi-
trary, If the threshold is too strict, some rogue points will
remain. If the threshold is not strict enough, too many
good points will be eliminated. Many methods have been
developed for detecting outliers, as reviewed in [1]. But
most of these methods can only be used to detect a single
outlier, or can detect multiple outliers only when you state
in advance how many outliers will exist.

We adapted the FDR approach to multiple comparisons,
and use it as a method to detect any number of outliers.
We are unaware of any other application of the FDR
approach to outlier detection.

The FDR method requires that you set a value for Q. We
choose to set Q to 1%. Ideally, this means that if all scatter
is Gaussian, you would (falsely) declare one or more data
points to be outliers in 1% of experiments you run. In fact,
we find that about 1–3% of simulated experiments had
one (or rarely more than one) false outlier.

Why do we find that outliers are identified in 1–3% of
simulated experiments with only Gaussian scatter, when
Q is set to 1%? The theory behind the FDR method pre-
dicts that one or more 'outliers' will be (falsely) identified
in Q% of experiments. But this assumes that the ratio of
the residual to the RSDR follows a t distribution, so the P
values are randomly spaced between 0 and 1. You'd expect
this if you look at the residuals from least-squares regres-
sion and divide each residual by the Sy.x. Our simulations
(where all scatter is Gaussian) found that the average
RSDR from robust regression matches the average Sy.x
from least-squares regression. But the spread of RSDR val-
ues (over many simulated data sets) is greater than the
spread of Sy.x. In 1–2% of the simulated experiments, the
RSDR is quite low because two-thirds of the points are
very close to the curve. In these cases, the t ratios are high
and the P values are low, resulting in more outliers
removed.

What happens if the data set is contaminated with lots of
outliers? Since we define the RSDR based on the position
of the residual at the 68th percentile, this method will
work well with up to 32 percent outliers. In fact, our
implementation of the outlier removal method only tests
the largest 30% residuals. If you have more outliers than
that, this method won't be useful. But if more than 30%

of your data are outliers, no data analysis method is going
to be very helpful.

When should you use automatic outlier removal?
Is it 'cheating' to remove outliers?
Some people feel that removing outliers is 'cheating'. It
can be viewed that way when outliers are removed in an
ad hoc manner, especially when you remove only outliers
that get in the way of obtaining results you like. But leav-
ing outliers in the data you analyze is also 'cheating', as it
can lead to invalid results.

The ROUT method is automatic. The decision of whether
or not to remove an outlier is based only on the distance
of the point from the robust best-fit curve.

Here is a Bayesian way to think about this approach.
When your experiment has a value flagged as an outlier,
there are two possibilities. One possibility is that a coinci-
dence occurred, the kind of coincidence that happens in
1–3% of experiments even if the entire scatter is Gaussian.
The other possibility is that a 'bad' point got included in
your data. Which possibility is more likely? It depends on
your experimental system. If it seems reasonable to
assume that your experimental system generates one or
more 'bad' points in a few percent of experiments, then it
makes sense to eliminate the point as an outlier. It is more
likely to be a 'bad' point than a 'good' point that just hap-
pened to be far from the curve. If your system is very pure
and controlled, so 'bad' points occur in less than 1% of
experiments, then it is more likely that the point is far
from the curve due to chance (and not mistake) and you
should leave it in. Alternatively in that case, you could set
Q to a lower value in order to only detect outliers that are
much further away.

Don't eliminate outliers unless you are sure you are fitting the right 
model
Figure 9 shows the same data fit two ways. The left panel
shows the data fit to a standard dose response curve. In
this figure, one of the points is a significant outlier (with
Q set to 1%). That means that by chance alone (assuming
Gaussian scatter) you'd find a point this far from the curve
in only 1% of experiments. But this interpretation
assumes that you've chosen the correct model. The right
panel shows the data fit to an alternative 'bell-shaped'
dose-response model, where high doses evoke a smaller
response than does a moderate dose. The data fit this
model very well, with no outliers detected (or even sus-
pected).

This example points out that outlier elimination is only
appropriate when you are sure that you are fitting the cor-
rect model.
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Outlier elimination is misleading when data points are not 
independent
The left panel of Figure 10 show data fit to a dose-response
model using outlier elimination with Q set to 1%. One
point (in the upper right) is detected as an outlier. The
right panel shows that the data really come from two dif-
ferent experiments. Both the lower and upper plateaus of
the second experiment (shown with upward pointing tri-
angles) are higher than those in the first experiment
(downward pointing triangles). Because these are two dif-
ferent experiments, the assumption of independence was

violated in the analysis in the left panel. When we fit each
experimental run separately, no outliers are detected, not
even if we increase Q from 1% to 10%.

Outlier elimination is misleading when you haven't chosen weighting 
factors appropriately
The left panel of Figure 11 shows data fit to a dose-
response model. Four outliers were identified with Q set
to 1% (two are almost superimposed). But note that the
values with larger responses (Y values) also, on average,
are further from the curve. This makes least-squares regres-

Don't eliminate outliers when the data are not independentFigure 10
Don't eliminate outliers when the data are not independent. The left panel treats the values as unmatched duplicates, 
and one point is found to be an outlier. The right panel shows that, in fact, the graph superimposes two different curves from 
two distinct subjects, and none of the points are outliers.

Don't eliminate outliers unless you are sure you are fitting the correct modelFigure 9
Don't eliminate outliers unless you are sure you are fitting the correct model. The left panel shows the data fit with 
our method to a sigmoid dose response curve. One of the points is declared to be an outlier and removed. The right panel 
shows the data fit to an alternative model with a biphasic dose-response curve. When fit with this model, none of the points 
are outliers.
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sion inappropriate. To account for the fact that the SD of
the residuals is proportional to the height of the curve, we
need to use weighted regression. The right panel shows
the same data fit to the same dose-response model, but
minimizing sum of the squares of the distance of the
point from the curve divided by the height of the curve,
using relative weighting. Now no outliers are identified.
Using the wrong weighting method created false outliers.

Outlier elimination is misleading when a value can be an outlier due 
to biological variation rather than experimental error
Nonlinear regression is usually used with experimental
data, where X is a variable like time or concentration or
some other variable you manipulate in the experiment.
Since all the scatter is due to experimental error, it can
make sense to eliminate any extreme outlier since it is
almost certainly the result of an experimental mistake.

In other situations, each data point can represent a differ-
ent individual. In this case, an outlier may not be due to
experimental mistakes, but rather be the result of biologi-
cal variation, or differences in some other variable that is
not included in your model. Here, the presence of the out-
lier may be the most interesting finding in the study.
While our outlier method might prove useful to flag an
outlier in this situation, it would be a mistake to automat-
ically exclude such outliers without further examination
(perhaps repeating the measurement in those subjects).

Future directions
We foresee several extensions to our ROUT method. We
plan to extend the method so it can be used when compar-
ing alternative models. We also plan to investigate

whether the procedure can be simplified when identifying
possible outliers from a set of values assumed to be sam-
pled from a Gaussian distribution. Another extension
might be to base outlier detection on variations of the
FDR method [7-9].

Conclusion
We describe a new method for identifying outliers when
fitting data with nonlinear regression. This method com-
bines robust regression and outlier removal, and so we
call it the ROUT method. Analyses of simulated data dem-
onstrate that this method identifies outliers from nonlin-
ear curve fits with reasonable power and few false
positives. We have implemented this method in version 5
of GraphPad Prism, which we anticipate releasing in 2006
(http://www.graphpad.com).

Methods
Calculating the RSDR
Our method requires calculation of the robust standard
deviation of the residuals (RSDR). During each iteration,
this value scales the residuals and so adjusts the degree of
robustness (as shown in Equation 8 below). As the curve
gets closer to the points, the RSDR decreases, and so the
fitting method becomes more robust. After the robust fit-
ting is complete, we also use the RSDR to evaluate which
points are far enough from the curve to be eliminated as
outliers (as shown in Equation 18).

In a Gaussian distribution, you expect 68.27% of the val-
ues to lie within one standard deviation of the mean. To
find a robust standard deviation, therefore, therefore we
take the absolute value of the residuals and find the 68.27

Don't use outlier elimination if you don't use weighting correctlyFigure 11
Don't use outlier elimination if you don't use weighting correctly. The graph shows data simulated with Gaussian scat-
ter with a standard deviation equal to 10% of the Y value. The left panel shows our method used incorrectly, without adjusting 
for the fact that the scatter increases as Y increases. Four outliers are identified, all incorrectly. The right panel shows the cor-
rect analysis, where weighted residuals are used to define outliers, and no outliers are found.
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percentile (using proportional interpolation between val-
ues that bracket the 68.27 percentile). We call this value
P68.

We used simulations (of data with Gaussian scatter) to
compare the value of P68 with the standard error of the fit
(called Sy.x or Se). With low sample sizes, we found that
the P68 was too low, and that Equation 1 computes a
much more accurate robust standard deviation. In this
equation, N is the number of data points and K is the
number of parameters fit by nonlinear regression, so the
correction factor only matters when N is small.

We simulated several kinds of curves, with different num-
bers of data points and parameters, always analyzing 5000
simulated data sets with Gaussian scatter. We found that
average RSDR computed this way is always within a few
percent of the average Sy.x from least squares fit. The dis-
crepancies between the average values of RSDR and Sy.x
were much smaller (<30%) than the standard deviation of
the Sy.x values.

We have not seen the P68 used before to compute a robust
standard deviation. The most common method is to com-
pute the median absolute deviation (MAD) of the points
from the curve, and then compute a robust standard devi-
ation by dividing the MAD by 0.6745 (because 50% of a
Gaussian distribution lies within 0.6745 standard devia-
tions of the mean). We found that the RSDR values calcu-
lated this way vary more between simulations than do the
RSDR values computed from the P68. This makes sense
because the P68 takes into account more of the data. The
breakdown point of the MAD is 50%, which means you
can change 50% of the values (starting from the largest) to
an arbitrarily high value and not change the MAD. The
breakdown point of p68 is 32%. Since our method is
designed to detect a small percentage of outliers, a break-
down point of 32% is quite acceptable, and using the P68
rather than the MAD gives us a slightly more accurate
assessment of the standard deviation.

At low sample sizes, this MAD method underestimates the
sample standard deviation [10]. Croux and Rousseeuw
report some empirical correction factors that can be used
so the expected value of the MAD/0.6745 equals the sam-
ple standard deviation of the values [11]. But these correc-
tion factors are not quite right for our situation, where we
often are fitting multiple parameters (K>1) and so need to
make our RSDR match not the SD of the residuals (the
square root of the sum-of-squares divided by N-1), but
rather the Sy.x of the fit (the square root of the sum-of-
squares divided by N-K). Since the factors proposed by

Croux and Rousseeuw were derived empirically, with no
theoretical basis, we chose to use our own correction fac-
tors as shown above in Equation 1.

Rousseeuw and Verboven reported on a method for com-
puting a robust standard deviation from small samples
[12]. We tried using their equation 27, and found that it
did not result in a more accurate or less variable RSDR,
and did not remove the need for the correction factor for
small sample sizes.

Robust merit function
Why is ordinary regression called 'least squares'?
Before explaining how the robust regression works, let's
review ordinary regression, and explain why it has the
goal of minimizing the sum of square of the residuals.

First let's back up and ask: Given the assumption that scat-
ter is Gaussian, what is the chance that a point will be a
certain distance D from the curve? That can't really be
answered, but a related question can be answered: What is
the chance that the distance between point and curve will
be a certain distance D plus or minus ∆D? The area under
the entire probability density curve (Figure 12) represents
all possible values of D, so the area under a certain part of
the curve (for example the portion shown in black in Fig-
ure 12) represents the probability that D will be within
that range.

So the answer to our question is the ratio of the area in the
dark area (in Figure 12) divided by the total area (which
we'll call A). The area in the dark area, given that ∆D is
tiny, is the height of the Gaussian distribution at D multi-
plied by 2∆D, where ∆D is an arbitrary small number.

RSDR P
N

N K
=

−
68 1

A Gaussian probability density curveFigure 12
A Gaussian probability density curve. The ratio of the 
black area to the entire area under the curve is the probabil-
ity that a value selected from this Gaussian distribution will 
have a value of D plus or minus ∆D.
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That equation is for one data point. Now let's generalize
to the entire set of data points. What is the chance that a
particular set of parameters would have produced all the
data points we observed? To answer, we calculate Equa-
tion 1 for each data point, and multiply all those proba-
bilities together. The goal of curve fitting is to alter the
values of the parameters to find the curve that maximizes
that product of probabilities.

The simplest way to maximize the product of a set of num-
bers is to maximize the sum of their logarithms. That is
equivalent to minimizing the sum of the negative of the
logarithms. So we want to minimize this merit function:

When we change the values of the parameters, the curve
changes, so the values of D change. The value ∆D is an
arbitrary very small number, and the values of N and A
don't depend on the values of the parameters that define
the curve. Since the term on the right is constant, it can be
ignored when adjusting the parameters to minimize the
merit function. We can also remove the constant A from
the left side. So to find the values of the parameters that
have the maximum likelihood of being correct, we there-
fore minimize this simpler merit function:

Equation 4 shows the familiar goal of regression – to min-
imize the sums of squares of the distances (D) of the curve
from the points.

Merit function for robust regression
To adjust this equation for robust regression, we need to
use the equation for the Lorentzian, rather than Gaussian
distribution. The height of the Lorentzian probability
density function at a distance D from the center is

So the probability (corresponding to equation 1) that a
point will be a distance D (plus or minus a small value
∆D) is

We want to maximize the product of these probabilities,
which is the same as minimizing the sum of the negative
logarithms. Omitting the constant terms, this means we
want to minimize this merit function:

Equation 7 seems analogous to Equation 4, but in fact
Equation 7 isn't useful as written. The problem is that if
you change the units of Y, different parameter values (and
thus a different curve) will minimize that merit score. That
is not acceptable. As pointed out by Draper and Smith
[13] (pages 568–572) and Seber and Wild [14], the dis-
tances D must be divided by a scale factor expressed in the
same units as the Y values of the data points and curve. We
chose to scale the Y values to the RSDR, explained above.

The goal of our robust nonlinear regression method,
therefore, is to minimize:

Why does assuming a Lorentzian distribution of residuals make the 
fit robust?
Figure 13 shows how merit score varies with the distance
of the point from the curve. Recall that the goal is to min-
imize this merit function. At first glance, you may be puz-
zled by the right panel. Points that are far from the curve
(right side of the graph) have high values for the merit
score. How can the method be robust?

The influence of a point on regression is defined as the
change in goodness-of-fit score when the curve is moved
a bit closer to, or further from, that point. Consider first
the left panel, showing the least-squares regression. The
merit score changes substantially if the curve is moved
closer to, or further from, points far from the curve. Thus
points far from the curve have a huge influence. Now
compare to the right panel, showing the robust regression.
The merit score levels off, so does not change much if the
curve is moved closer to, or further from, points that are
already far from the curve. This is the definition of a
robust method.
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Why is the method adaptive?
Figure 14 shows the influence of a data point as a function
of its distance from the curve. We define the influence as
the derivative of the goodness-of-fit merit score (defined
in Equation 8) with respect to the distance of the point
from the curve. The RSDR is the peak of the influence
curve. About two thirds (68.27%) of the data points are
closer to the curve than the RSDR. For these points, robust
regression is very similar to least-squares regression, with
influence almost proportional to distance (the left portion
of the influence curve, up to its peak, is close to a straight
line). The one-third of points furthest from the curve (to
the right on this graph) get less influence with robust fit-
ting than they would with least squares.

Figure 14 also explains our choice to divide by the RSDR
in Equation 8. The choice of the denominator in that
equation is somewhat arbitrary (so long as it is related to
the scale of the Y values). Equation 8 would have been
more similar to Equation 7 if we had divided by twice the
RSDR. But if we did that, then about 95% of the points
would have been to the left the peak of Figure 14, and the
method would have been less robust.

Nonlinear regression is an iterative method. It begins with
initial estimated values of each parameter, and then grad-
ually changes those parameters to improve the merit
score. With robust regression, the RSDR is recomputed
with iteration, so the rule that about two-thirds of the data
points are to the left of the peak remains true during each

iteration. This makes the method adaptive. If the initial
values result in a curve far from many data points, the
RSDR has a high value. As the curve gets close to the bulk
of the data, the RSDR gradually becomes lower, and the
method gradually becomes more robust as the curve gets
closer to the bulk of the data. This allows the method to
work well even in situations where the initial values are
not well chosen.

Minimizing the merit function
How to minimize the sum-of-squares in ordinary nonlinear regression

Least-squares regression adjusts the values of one or more
parameters (a0, a1, ... ak) to minimize the weighted sum

(over all data points) of the squared distance between the
y value of the data point (y1, y2, ... yN) and the correspond-

ing y value of the curve. The equations below are written
assuming there are two parameters (denoted a0 and a1;

these might correspond to Vmax and Km when fitting

enzyme kinetics data). The Y value for the curve is denoted

by (xi, a0, a1) meaning the predicted value of y given par-

ticular values for x and the two parameters.

Equation 9 restates the merit function for ordinary regres-
sion and is equivalent to Equation 4.

ŷ

Gaussain Merit = −∑[ ( , , )]y y x a ai i
i

0 1
2 9

The influence curve of robust fittingFigure 14
The influence curve of robust fitting. This curve is the 
derivative of the curve shown in the right panel of Figure 13. 
The influence peaks for points whose distance from the 
curve equals the robust standard deviation of the residuals 
(RSDR). The RSDR is recomputed every iteration. This 
means that about two-thirds of the points get about the 
same influence they would have had with least-squares 
regression.

Why assuming a Lorentzian distribution of residuals makes the fitting process robustFigure 13
Why assuming a Lorentzian distribution of residuals 
makes the fitting process robust. The graph shows the 
contribution of a point to the merit score for Gaussian (left) 
and Lorentzian (right) as a function of the distance of a point 
from the curve. The goal of curve fitting is to minimize the 
merit score. The curve in the right panel starts to level off. 
This means that moving the curve a bit closer to, or further 
from, a point that is already far from the curve won't change 
the merit score very much. This is the definition of a robust 
fitting method. In contrast, the curve on the left does not 
level off, so points far from the curve have a huge impact on 
least squares fitting.
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Nonlinear regression requires calculating the Hessian
matrix (also called the design matrix). This is square, with
the number of rows and columns equal to K, the number
of parameters that will be fit by regression. Each diagonal
element in the matrix is the square of the partial derivative
of the merit function with respect to the parameter
defined by the row or column of the matrix. Each non-
diagonal element in the matrix is the product of the par-
tial derivatives of the merit function with respect to the
parameters defined by the row and column of the matrix.

First define the first derivative of the merit function with
respect to a parameter a0.

Now define the second derivative with respect to two
parameters.

The term in {braces}, when summed over all data points,
will be close to zero because the first part of that term [in
brackets] is the distance of the point from the curve, and
you expect about half of these distances to be positive and
half to be negative, making the resulting terms cancel out
(approximately). Most implementations of nonlinear
regression make the assumption that the term in brackets
will be negligible, and that any attempt to calculate it
might be counterproductive due to round off errors.
Therefore, the Hessian matrix used in least-squares non-
linear regression programs is:

The Marquadt-Levenberg method [15,16] uses the vector
of partial derivatives (Equation 10) and the Hessian
matrix (Equation 12) to determine how to change the val-
ues of the parameters to decrease the merit function. This
is repeated until any attempt to change the values of the
parameters leads to virtually no change in the merit func-
tion. At that point, nonlinear regression is said to have
converged, and you have obtained the best-fit values of
the parameters.

Minimizing the robust merit function
First, let's define RR to be the distance of a point from the
curve divided by the robust standard deviation of the
residuals.

Now we can restate Equation 8 in a simpler form.

The derivative of this merit function with respect to a
parameter (a0) is:

The Hessian matrix has three terms. One of those terms
includes second derivative terms, assumed to sum to
nearly zero, and so is ignored. Another term includes the
fourth power of the residuals and RSDR. We found that
including this term does not help, and actually leads to
slower convergence. So the Hessian matrix we use consists
of just one term:

Ignoring constant factors, both the gradient vector and the
Hessian matrix for robust nonlinear regression differs
from the corresponding values in least-squares regression
by the factor 1/(1+RR2). This ensures that data points far
from the curve, with large values of RR, have little influ-
ence on the curve fit.

Changing the definitions of the vector of partial deriva-
tives, Hessian matrix, and the merit score, was not enough
to make our robust method work consistently. We had to
make one other modification to the Marquardt-Levenberg
method. After every iteration, the new goodness-of-fit
merit score is compared to the one from the prior itera-
tion. If the new one is better, then the algorithm goes on
to the next iteration. If the fit is worse, then the new
parameter values are rejected, and the algorithm goes back
to the prior set of parameter values and decreases the step
size before trying again. But with robust fitting, moving
from one iteration to the next changes the value of RSDR
(the new parameter values create a new curve, and so a
new set of residuals). Since the value of RSDR is used in
calculating the goodness-of-fit merit score, the two merit
functions are not quite comparable, so their difference can
not be used to reliably determine whether or not the most
recent iteration improved the fit.

This problem is easy to solve. After each iteration, recom-
pute the goodness-of-fit of the prior iteration using the
new value of RSDR. Now the two goodness-of-fit scores
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are comparable, and can be used to decide whether the
most recent iteration improved or worsened the fit.

This extra step is essential. Without it, we found that the
method will not reliably converge on a reasonable best-fit
curve. Unfortunately, it appears to be impossible to pro-
gram this step into general purpose statistics packages that
let you enter your own loss function. Therefore, imple-
mentation of the robust fitting algorithm described here
requires custom programming.

Detecting outliers
A brief explanation of the FDR method
The FDR method of Benjamini and Hochberg [5,6] is used
to decide where to draw the line between 'significant' and
'not significant' results when you are testing many
hypotheses at once. We adapted this method to detect
outliers.

The FDR method first ranks the P values from high to low,
so P(1) is the largest P value and P(N) is the smallest P

value. Plot these ranks (X axis) against the individual P
values (Y axis). The dotted line in Figure 15 shows what
you would expect to see if the P values are randomly
spaced between 0 and 1. In this case, half the P values
would be less than .50, one tenth would be lower than
0.10, etc. Thus the prediction line (dotted) is straight, with
the largest predicted P value equalling 1.0, and the small-
est predicted P value equalling 1/N.

The solid line in Figure 15 shows the threshold used to
define P values as being low enough to call 'significant'.
This line is created by multiplying the prediction of the
dotted line by a fraction Q (whose value you pick).

The Hochberg and Benjamini method works in a stepwise
fashion. It starts with the highest P value in the list and
works step by step down to the smallest. At any step, if the
P value is lower than the threshold, then that P value –
and all lower P values – are defined to be "statistically sig-
nificant".

Applying the FDR method to detecting outliers
To use the FDR technique to detect outliers, we compute
a P value for each residual testing the null hypothesis that
that residual comes from a Gaussian distribution. Addi-
tionally, we restrict the maximum number of outliers that
we will detect to equal 30% of N, so only compute P val-
ues for the 30% of the residuals that are furthest from the
curve.

Follow these steps:

1. Fit the model using robust regression. Compute the
robust standard deviation of the residuals (RSDR, defined
in Equation 1).

2. Decide on a value for Q. We recommend setting Q to
1%.

3. Rank the absolute value of the residuals from low to
high, so ResidualN corresponds to the point furthest from
the curve.

4. Loop from i = int(0.70*N) to N (we only test the 30%
of the points furthest from the curve).

a. Compute

b. Compute

αi
Q N i

N
=

− −( )( )1
17

How the Benjamini and Hochberg method worksFigure 15
How the Benjamini and Hochberg method works. 
This method is used to decide which P values in a set of many 
are low enough to be defined to be 'significant'. The P values 
are ranked from large to small. The ranks are plotted on the 
X axis, with the actual P values plotted on the Y axis. The 
dotted line shows the expectation if in fact all null hypotheses 
are true – 50% of the P values are less than 0.5, 25% are less 
than 0.25, etc. The solid line shows the Benjamini-Hochberg 
threshold for declaring a P value to be significant. It is defined 
by multiplying the dotted line by a fraction Q (here set to 
1%). When the P value is lower than that threshold, that P 
value and all lower P values are defined to denote 'statistically 
significant' differences.
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c. Compute the two-tailed P value from the t distribu-
tion with N-K degrees of freedom (N is number of data
points; K is number of parameters fit by nonlinear
regression).

d. Test whether this P value (calculated in 4c) is less
than αi. (calculated in 4a).

• If yes, define the data point that corresponds to Residu-
ali, and all data points further from the curve, to be out-
liers (and stop the outlier hunt).

• If no, and if i = N, then conclude there are no outliers.

• If no, and i<N, then set i = i + 1 and loop back.

5. Delete the outliers, and run least-squares regression on
the remaining points.

Unequal weighting
So far, we have assumed that all points are weighted
equally. In fact, it often makes sense to perform nonlinear
regression with unequal weighting. The most common
case is when the average scatter of the data around the
curve is proportional to the height of the curve. The aver-
age size (absolute value) of the residuals is not consistent,
but the average size of the relative residual (the absolute
value of the residual divided by the Y value of the curve)
is consistent. One example is when most of the experi-
mental error is due to pipettes delivering variable vol-
umes. In this case, the average absolute value of the
residual increases as Y increases, but remains a consistent
percentage of the height of the curve. In this case, ordinary
nonlinear regression would minimize this weighted sum-
of-squares:

More generally, define wi to be a weighting factor:

When scatter is not uniform, we found that it does not
make sense to include weighting factors in robust regres-
sion, either by weighting the residuals or by weighting the
robust merit function itself. In either case, simulations
showed that the use of weighting factors reduced the accu-
racy of the fits, because outliers with very low Y values got
extra weight, and so influenced the curve too much.

Therefore we suggest always performing robust regression
without considering weighting factors.

Weighting factors should be considered when identifying
outliers. This is done by computing the weighted residuals
using Equation 22:

From the list of weighted residuals, calculate the P68 and
the weighted RSDR from Equation 1. Outlier identifica-
tion then works exactly as already explained. After any
outliers are removed, the data are fit using weighed least-
squares regression that minimizes Equation 20.

Worked example. Data with an outlier
In this section, we'll show in detail how the example
shown at the beginning of the paper is analyzed. The data
show a signal measured at various time points, fit to a sin-
gle-phase exponential decay. We are fitting three parame-
ters: the Y value at time 0, the rate constant, and the
plateau.

We start with the least-squares fit (Fig. 16).

The RSDR is 153.5. Figure 17 shows influence function at
the beginning of robust regression. Even the point with
the largest residual has quite a bit of influence.

Figure 18 shows the result at the end of robust fitting.
Now the outliers are relatively ignored, so the curve comes
closer to the bulk of the points. The RSDR has come down
to 78.24.

Figure 19 shows influence curve at the end of robust fit-
ting. Note that two of the points have much less influence
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Worked exampleFigure 16
Worked example. Data and least-squares fit. The 
dashed line shows the results of least-squares regression to a 
one-phase exponential decay model.
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than they had at the beginning of robust regression. As the
robust regression proceeds, the curve gets closer to the
bulk of the points, the RSDR goes down, so the outlying
points get less influence.

Now let's determine which points are outliers. For each
point, we compute the t ratio as the absolute value of the
residual divided by the RSDR, and then use that to deter-
mine a P value from the t distribution with 10 degrees of
freedom. We then sort the values by P value, and compute

the threshold P value for each point as Q* [N- (i-1)]/N.
Table 1 shows these thresholds computed for two differ-
ent values of Q.

If you set Q to 5%, the second to last row in the table is
the first row where the P value is less than the threshold.
Therefore, define that point to be an outlier, as well as all
points with smaller P values (in this case, just the point
defined by the last row).

If you set Q to 1% (our recommendation), only the point
at time = 3 has a P value less than the threshold, so only
that one point is eliminated as an outlier.

Outlier elimination is best understood graphically (Fig.
20). The X axis plots the rank of the P values, with rank 1
being the largest P value (corresponding to the point clos-
est to the curve) on the left. The Y axis plots the actual P
values. Each P value tests whether a point is an outlier by
testing the null hypothesis that the point came from a
Gaussian distribution with a mean of zero, a standard
deviation equal to the RSDR, and N-K (13 - 3 = 10)
degrees of freedom. The dashed line shows what you'd
expect to see if all scatter is Gaussian.

The solid line shows the cut-off defined by the False Dis-
covery Rate setting Q equal to 5%. Scanning left to right,
find the first point that is below this line. That point, and
all points further to the right are defined to be outliers. In
this example, the last two points on the right of the graph
are below the Q = 5% line. The dashed line shows the cut-
off defined by Q equal to 1%. Only the last point is below
it.

Worked exampleFigure 19
Worked example. The influence function for robust 
fitting, after the final iteration. Now that the curve is 
much closer to most of the points, the RSDR is lower, so the 
influence curve is shifted to the left. This makes two of the 
points (to the right) have much less influence than they had 
at the beginning (compare to Figure 17).

Worked exampleFigure 17
Worked example. The influence function for robust 
fitting, prior to the first iteration. The influence function 
is defined as RR/(1+RR2), where RR is defined in Equation 13. 
Even the points with the largest residuals (to the right on the 
graph) have substantial influence.

Worked exampleFigure 18
Worked example. Fit with robust nonlinear regression.
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Figure 21 shows the least-squares fit of the remaining data
points after eliminating the outlier (defining outliers with
Q = 1%, there is only one). The outlier is shown as an

open circle but is not included in the regression calcula-
tions.

Worked example. Data with no outliers
Figure 22 shows a second example. The least squares fit is
in dashed curve, and the robust fit in solid (RSDR = 95.6).
The two are almost indistinguishable.

Figure 23 shows the distribution of P values. The actual
distribution of P values is very close to the predicted dis-
tribution. The solid line shows the cutoff defined by Q =
1%. None of the P values are less than this threshold, so
none of the points are declared to be significant outliers.
Even if we increased Q to 5%, none of the points would

Worked exampleFigure 21
Worked example. Least squares regression after 
excluding the outlier. The outlier is shown with an open 
symbol. It was not included in the least squares regression 
(dashed curve).

Worked exampleFigure 20
Worked example. Using the Benjamini and Hoch-
berg method to detect outliers. A P value was deter-
mined for each point by computing a t ratio by dividing its 
residual by the RSDR, and computing a two-tailed P value 
from the t distribution. See Table 1. The P values are shown 
plotted against their rank. The dashed line shows what you'd 
expect to see if the P values are randomly scattered between 
0 and 1. All but lowest two of the P values lie very close to 
this line. The solid line shows the cutoff when Q is set to 5%. 
Both of the points with the lowest P values (the two points 
furthest from the robust best-fit curves) are defined to be 
outliers. The dashed line shows the cutoff when Q is set to 
1% as we suggest. Only one point is an outlier with this defi-
nition, which we choose to use.

Table 1: Worked example. Which points are outliers?

Time(X) Residual t ratio P value Threshold Q = 5% Threshold Q = 1%
8 0.31 0.00 0.9969 0.0500 0.0100
5 7.85 0.10 0.9221 0.0462 0.0092
10 -17.26 0.22 0.8298 0.0423 0.0085
4 25.38 0.32 0.7524 0.0385 0.0077
0 31.05 0.40 0.6999 0.0346 0.0069
7 35.16 0.45 0.6628 0.0308 0.0062
11 -40.49 0.52 0.6160 0.0269 0.0054
12 49.48 0.63 0.5413 0.0231 0.0046
6 56.23 0.72 0.4888 0.0193 0.0038
9 -76.82 0.98 0.3494 0.0154 0.0031
2 -108.51 1.39 0.1956 0.0116 0.0023
1 -302.88 3.87 0.0031 0.0077 0.0015
3 -395.21 5.05 0.0005 0.0039 0.0008
Page 18 of 20
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:123 http://www.biomedcentral.com/1471-2105/7/123
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

be designated as outliers. We used robust regression to
define a baseline from which to look for outliers. We
didn't find any, so report the results of least-squares
regression of all the data. For this example, therefore, the
results of our method are identical in every way to stand-
ard least-squares nonlinear regression.
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