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Abstract
Background: Supervised learning for classification of cancer employs a set of design examples to
learn how to discriminate between tumors. In practice it is crucial to confirm that the classifier is
robust with good generalization performance to new examples, or at least that it performs better
than random guessing. A suggested alternative is to obtain a confidence interval of the error rate
using repeated design and test sets selected from available examples. However, it is known that
even in the ideal situation of repeated designs and tests with completely novel samples in each cycle,
a small test set size leads to a large bias in the estimate of the true variance between design sets.
Therefore different methods for small sample performance estimation such as a recently proposed
procedure called Repeated Random Sampling (RSS) is also expected to result in heavily biased
estimates, which in turn translates into biased confidence intervals. Here we explore such biases
and develop a refined algorithm called Repeated Independent Design and Test (RIDT).

Results: Our simulations reveal that repeated designs and tests based on resampling in a fixed bag
of samples yield a biased variance estimate. We also demonstrate that it is possible to obtain an
improved variance estimate by means of a procedure that explicitly models how this bias depends
on the number of samples used for testing. For the special case of repeated designs and tests using
new samples for each design and test, we present an exact analytical expression for how the
expected value of the bias decreases with the size of the test set.

Conclusion: We show that via modeling and subsequent reduction of the small sample bias, it is
possible to obtain an improved estimate of the variance of classifier performance between design
sets. However, the uncertainty of the variance estimate is large in the simulations performed
indicating that the method in its present form cannot be directly applied to small data sets.

Background
It is crucial to show that a classifier designed using super-
vised learning performs sufficiently well for the applica-

tion of interest. A minimum requirement is that it is
performs better than random guessing. Recently gene
expression profiling using microarray technology has
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been widely used for classification of tumors based on
supervised learning [1-3]. Various cross-validation and
resampling methods aimed at providing reliable and
robust estimates of classifier performance have been pro-
posed [4,5]. A natural measure of the robustness of an
algorithm is the variance of the distribution of error rates
when the classifiers are designed using the number of
training examples available. Recently attempts have been
made to obtain confidence intervals based on small sam-
ple sizes [6,7]. These approaches correspond to an ideal-
ized case where the bounds on the unknown performance
of a classifier designed using Nd samples are obtained by
repeated designs and tests using new examples. If this pro-
cedure would yield a large set of high quality performance
estimates, their distribution could be used to estimate a
95% confidence interval (CI) of the true error rates. Nota-
bly, in this approach no point estimate of the perform-
ance for the particular classifier of interest is calculated.
The quantity of interest is the 95% CI for the whole distri-
bution of possible true performances. Since this CI covers
the true performance of interest with probability 95%,
without any additional information available, e.g. from a

conventional holdout test, it represents the current state of
uncertainty about the true performance.

Since estimation of CI using this method would require
access to large amounts of data that are not available in
practice, a suggested alternative approach is to estimate
the CI using resampling techniques like in the recent work
by Michiels et al. [6]. In their work, a performance estima-
tion method called repeated random sampling (RRS), that
was originally described by Mukherjee et al. [7], is applied
to seven large gene expression data sets. For almost all the
data sets, Michiels et al. demonstrate that the sizes of the
CIs obtained from the RRS procedure increase with
increasing sizes of the design sets. This is counterintuitive
as the variance σd

2 of the true performances should
decrease with increasing size of the design sets. With more
data used for design, the placement of the decision
boundary of the classifier will be more stable and as a con-
sequence the resulting σd

2 will be lower [4]. Hence, the
variance and confidence interval obtained from RSS often
have a bias.

In this paper we identify small test-set size as one factor
that can lead to the bias in the variance estimate observed
using RRS. We also introduce a first order model of the
variance estimate as a function of the number of test
examples for a refined, less biased, estimation method
called Repeated Independent Design and Test (RIDT).
Furthermore, we demonstrate that by modeling the unde-
sirable small sample bias in RIDT, it is possible to greatly
reduce the bias in the estimates of σd

2 and therefore in the
resulting CIs. For the special case of repeated designs and
tests using completely novel samples, we present an exact
analytical expression for how the bias in the estimates of
σd

2 decreases with increasing size of the test sets.

Results
The estimated variance in repeated cross-validation 
depends on the number of test data
Fukunaga and Hayes [8] pointed out that small test set
size Nt affects the variance of the performance estimates
obtained in repeated hold out experiments. This variance
may be regarded as an estimate of σd

2and is denoted
RHσdt

2 to indicate that it depends on Nt. We argued that a
similar effect may also affect similar repeated cross-valida-
tion methods including RRS. Since the total number of
examples is fixed, the number of test examples is automat-
ically decreased when the size of design data is increased
in RRS. To be able to study the effect of test data size on its
own, we modified the RSS procedure and kept the size of
the design data constant while varying the size of the test
data. We used a colon cancer microarray data set contain-
ing 22 normal and 40 colon cancer cases [9] and classified
the samples using a modified Fisher's linear discriminant
classification algorithm (see Methods). The size of the

Repeated random sampling with different test set sizesFigure 1
Repeated random sampling with different test set 
sizes. Results from repeated random sampling where the 
size of the design sets was set to 30% of the total sample size 
and the size of the test set was varied from 5% to 70%. For 
each test set size the data was divided randomly into design 
and test sets 1,000 times, with the class proportions kept 
constant. The endpoints (dotted) of a two-sided 95% CIs, 
based on a histogram of 1,000 estimates, is displayed for the 
different values of the test set size, Nt. Apparently the widths 
of the empirical CIs decrease as Nt increases. Also displayed 
are the estimated averages as a function of the test set size 
(solid). Since each CI is based on the histograms instead of 
estimates of the average and variance, note that the CIs are 
asymmetric with respect to the estimated average.
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design was constant at 30% of the total data set size, while
the size of the test set, Nt was varied in steps from 70%,
(identical to RRS using all data), down to 5%. For each
value of Nt, the original data set was divided randomly
into design and test sets 1,000 times, while maintaining
class proportions. An almost trivial fact discussed formally
by Fukunaga and Hayes [8] is that the mean md and the
variance σd

2 of the distribution of true error rates is inde-
pendent of the number of test examples Nt. Consequently,
the CIs for the distribution of true error rates are constant
for every choice of the number of design examples Nd. The
results in Figure 1 clearly show that the sizes of the CIs
obtained using repeated cross-validation are not constant
but decreasing with increasing values of Nt. This is similar
to what can be observed using RRS in Michiels et al. [6]
where the number of design examples (and consequently
also the number of test examples) is varied. As shown in
Figure 1 the estimated CI stabilizes as the size of the test
set becomes large. The bias in the CI will be eliminated as
the size of the test set becomes very large. However, for the
usually limited set of examples available in most real
world problems, the bias is too large to be neglected.

Repeated independent design and test
Limited testing of each classifier is not expected to be the
sole cause of undesirable bias in the RSS estimate. Bias
may also be attributed to three different statistical
dependencies between data sets caused by the repeated
design and testing performed using the bag of limited
examples available: 1) Each pair of design and test sets are
dependent. Once the design set has been selected, the
remaining examples become the test set deterministically.
2) The design sets are inter-dependent. Given information
about the samples in a first design set, a lot of information
is gained about the possible samples that may occur in the
next design set obtained by means of resampling. 3) The
test sets are also inter-dependent. Given information
about the samples in a first test set, information has been
gained about the possible samples that may occur in the
next test set. In this work we introduce a novel procedure
denoted Repeated Independent Design and Test (RIDT),
which eliminates the first type of dependence by splitting
the original data set of size N into a design bag with ND
samples, and a test bag, with NT = N-ND test samples.
Thus, for each design a fixed number of examples Nd with
equal number of samples from each class are drawn with
replacement form the bag of ND samples. This makes the
resampling of design examples completely independent
of the selection of test set examples. Notably, the design
sets remain inter-dependent due to the small design bag
and similarly the test sets remain inter-dependent due to
the finite size of the test bag. By repeatedly selecting
design sets of size Nd from the design bag and testing with
data from the test bag, a number of error rate estimates are
obtained that subsequently are used to obtain an almost

unbiased estimate of the true variance σd
2. This variance

estimate can in turn be used to construct the desired CI of
the distribution of true performances.

A variance model for the RIDT procedure
Analogous to the variance RHσdt

2 associated with idealized
repeated holdout experiments discussed above, the vari-
ance of the error rate estimates obtained with RIDT is
dependent on the finite value of Nt, as well as on NT and
is denoted σdt

2. To study and reduce estimation biases
caused by small sample size, we propose that for a given
data set D, the RIDT estimate of σdt

2 may be approximated
as

This equation involves first order linear approximations
of the biases introduced by the finite values of NT and Nt
(see Methods). For very large values of NT and Nt, the esti-
mate reduces to an unbiased estimate of σd

2(Nd). Hence
the first coefficient α0(D) should be an unbiased estimate
of σd

2(Nd), i.e. <α0(D) >D = σd
2 (Nd) where <>D denotes

the expectation operator. Notably, the model treats the
size of the test bag NT in a similar way as the size of the test
set Nt, but ignores effects due to size of the design bag ND.

By evaluating classifications using Nb design sets, varying
the test bag sizes NT and sizes of tests sets Nt for each value
of Nb, it is possible to estimate the data set dependent
coefficients α0(D), α1(D) and α2(D) in Eq. (1) by multi-
variate least squares fitting. In this process one constraint
is used that ensures the natural inequality α0(D) ≥ 0. With
access to the fitted coefficient α0(D) one has obtained an
unbiased estimate of the desired quantity σd

2(Nd).

We performed simulations using samples generated from
two 2-dimensional normal distributions with mean val-
ues and covariance matrices estimated from real micorar-
ray gene expression data [9]. The aim was to validate our
model, and to demonstrate its potential for elimination of
the bias caused by small sample size (see Methods). Since
the two features (artificial gene activities) in both distribu-
tions are correlated, the simulation takes the dependence
that may exist between features (genes) in real data sets
into account. One should also note that we have deliber-
ately chosen to use a classifier that does not contain a fea-
ture selection step to avoid additional complexity. Thus,
the problems and solution discussed in this paper are
equally relevant also for classifier using feature selection.
We have also chosen the strategy to evaluate the perform-
ance for each class separately, since it does not require
knowledge about the probabilities of observing examples
from class 1 or class 2.

ˆ , , ( )
( ) ( )

.σ α α α
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T t T tN N
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To emphasize that we focused the analysis on class 1, an
extra subindex was introduced when denoting the quanti-
ties of interest. Thus, the true mean value and variance
associated with class 1 are denoted md1 and σd1

2, respec-
tively, and corresponding quantities associated with test-
ing using finite data sets are denoted mdt1 and σdt1

2. In the
RIDT procedure the design bags had equal number of
samples from both classes and the number of samples
drawn with replacement was the same as the size of the

design bag, i.e. Nd = ND. We also made the assumption
that mdt1 is an unbiased estimate of md1 which was verified
(Figure 2).

The mean values of the estimated md1 and σd1
2, and the

corresponding two-sided 95% CIs for eight different val-
ues of NT1 (NT1 = 25, 50, 75, ..., 200), are presented in Fig-
ure 2 for Nd = ND = 100 . The true values md1 and σd1

2,
obtained by testing 10,000 independently designed classi-
fiers using 500,000 test samples each, are also indicated.
Apparently, unbiased estimates of md1 and σd1

2 are
obtained.

We observed that the reduction of the small sample bias
yields accurate estimates of σd1

2 on average. One should
note that in general the estimates contain contributions of
higher order terms. However, as the results indicate, the
biases caused by these higher order terms may be quite
small for commonly used sizes of data sets. For the data
set sizes commonly used it appears that it is possible to
obtain practically unbiased estimates of md1 and σd1

2 with
the RIDT method.

Variance for independent data
In the special case of truly independent data, i.e. when
each pair of design and test sets are drawn from the under-
lying true distribution of samples instead of from a finite
bag of examples, we derived an exact analytical equation
for σdt

2 (see Additional File 1):

This equation shows how the observed variance depends
on the number of test samples Nt as well as on md and σd

2.
It can also be noted that for very large values of NT, Eq. (1)
reduces to the same form as Eq. (2). Fukunaga and Hayes
[8] have previously published an approximation of Eq
(2). One advantage with the exact equation is that it can
be used to show that the second term always is larger than
zero and that σdt

2 is always larger than σd
2. Thus, if σdt

2

would be an approximation of the variance, the resulting
CI would always be conservative.

In order to empirically validate Eq. (2), simulations were
performed using samples drawn from two 8-dimensional
normal distributions (see Methods). We determined σdt

2

for different values of Nt and Nd (see Methods). Each value
of σdt

2 was obtained using a histogram of 1,000 independ-
ent point estimates (Figure 3). For comparison, 1,000 sep-
arate and independent high accuracy point estimates of
md and σd

2 were computed, each using 10,000 test samples
for varied design set sizes Nd. The true observed variances
in Figure 3 were then obtained from Eq. (2). This demon-

σ σ σ
dt d

d d d

t

m m

N
2

21
= +

− −2 ( )
. Eq. (2)

Unbiased estimates of md1 (top) and σd1
2 (bottom)Figure 2

Unbiased estimates of md1 (top) and σd1
2 (bottom). 

The true values of md1 and σd1
2 (dotted) are compared to the 

average of 50 conservative point estimates of md1 and σd1
2 

(solid) for the 2-dimensional normal distributions used 
where Nd = 100. Also displayed are two-sided 95% CIs, based 
on histograms of the 5000 estimates for different values of 
the test bag size NT1. The true md1 and σd1

2 were obtained by 
testing 10,000 independently designed classifiers using 
100,000 new, independently generated, test samples from 
the two normal distributions used. The estimates of md1 are 
unbiased and the estimates of σd1

2 are unbiased for NT1 ≥ 
100.
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strates excellent agreement between the theory and simu-
lations.

Discussion
RRS has been proposed as a practical method for estima-
tion of the distribution of error rates obtained when a
specified number of data samples are used for design
[6,7]. However, we have demonstrated that the variance
estimate of the performance for classifiers designed and
tested in a similar way results in a variance estimate that is
highly dependent on the number of samples used for test
(Figure 1). A qualitatively analogous effect should occur
also in RRS, which is equivalent to using all remaining
examples for test in our experiment. Consequently, highly
conservative estimates of the variance are obtained with
repeated testing methods when the number of examples
used for test is small. In practice the variance estimates
have a bias of unknown magnitude, due to the complex
statistical dependence between design and test sets. There-
fore, it is important to stress that the confidence interval
in RRS cannot be used to draw any conclusions about
whether it is likely that a classifier performs better than
chance. An example of this inappropriate use of RRS can
be found in [4] where the possibilities to predict cancer
outcome based on microarray gene expression patterns
were investigated in several data sets.

Perhaps even more importantly, a large bias in the vari-
ance estimate of interest is not a unique feature of the RSS
procedure but is expected to be found in all other sug-
gested resampling procedures for performance estima-
tion. For example, estimating the variance of a q-fold CV
performance estimate as suggested by McLachlan et al.
[10] (page 216) seems attractive but we are not aware of
any theoretical or numerical proofs that those and similar
methods result in unbiased estimates of the variance σd

2of
interest. On the contrary, the proof of Equation (2) in our
manuscript clearly shows that even if it would be possible
to draw infinitely many independent design and test sets
from the true distribution of samples, the resulting vari-
ance estimate of interest is heavily biased when the test
sets are small.

There are a number of features of the RIDT method that
have implications for the use of the method. First, the
RIDT performance estimates rely on a split of the data set
into two separate parts, one used for repeated design, the
other for repeated tests, which is not current practice in
cross-validation and bootstrapping and might be inter-
preted as inefficient use of the few samples available. We
view this as a price that has to be paid in order to provide
unbiased estimation of the variance of interest which can
not be obtained with other methods. Second, although
normal distributions were used in the computer simula-
tions performed to generate the results presented here, the

elimination of finite sample effects using Eq. (1) does not
assume normally distributed data, but can use data from
any type of distribution. Third, even though Eq. (1) does
not depend on ND, it is possible to reduce small sample
effects and provide unbiased estimates for the specific
problem considered here. The general applicability of this
observation awaits further studies but Eq. (1) can easily be
extended to include a fourth term that is explicitly
dependent on ND, see Eq. (7). One possible explanation
for the small influence of ND in the RIDT method used
here is that the design sets are drawn with replacement
from the design bag, a procedure that closely reflects what
happens in reality.

Although not yet explored in detail, there are several
explanations for the small bias in σd1

2 observed in Figure
2 when NT1 ≤ 50: 1) We are ignoring higher order terms in
the approximations. 2) We do not try to eliminate effects
caused by a finite value of ND. 3) We do not take any small
sample effects into account at all when estimating md. 4)
When using replacement, we employ on average only
63.2% unique samples in each design [11]. Notably, the
number of design examples Nd remains fixed and, as dis-
cussed above, there is no contribution to the bias due to
Nd being small.

We find that the variance of the inter-design set variance
estimate σd1

2 is relatively large and increases with decreas-
ing value of NT1. This means that the estimate of σd

2 for a
particular data set is unbiased, but that it may be associ-
ated with a large uncertainty especially if the size of the
data set is small. Therefore, it is difficult to directly use the
unbiased estimates of md and σd

2 to construct a CI. Thus it
appears that even though we can compensate for biases
caused by small sample size, the resampling approach has
not provided a method that is practically useful in its
present form. Therefore the only rigorous option for esti-
mation of classifier performance that we know of is the
classical hold out test combined with a Bayesian credibil-
ity interval [12], even though this interval is overly con-
servative and provides very wide intervals.

Conclusion
One major suggestion from the results of this paper is that
previously introduced resampling and cross-validation
methods for performance estimation using small sample
sets are expected to result in large biases in their estimates
of the inter design set variances. Consequently such
biased variance estimates lead to inappropriate confi-
dence intervals for the performance of a chosen classifier.
In addition this paper describes a method that is capable
of eliminating this bias for a new resampling method
(RIDT) also introduced here. Finally we would like to
point out that although this paper provides important
experimental and theoretical results, the large variability
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in the unbiased variance estimate obtained still leaves us
one step away from a practically useful solution for small
sample based estimation of confidence intervals using
resampling. We therefore also hope that this work will
inspire others to consider how to convert the unbiased but
highly variable variance estimate of our and similar future
procedures into a valid confidence interval.

Methods
Observed variance from repeated designs and tests using 
the colon data
We used a colon cancer microarray data set, containing
expression levels for 2,000 genes for 22 normal and 40
colon cancer cases [9]. The size of the design sets Nd was
set to 30% of the total sample size and the size of the test
set was varied in steps from 5% to 70%. With the class
proportions kept constant, the data was divided randomly
into design and test sets 1,000 times for each test set size.
A modified version of Fisher's linear discriminant classifi-
cation algorithm [13] that is made more robust against
small sample sizes was employed (Matlab code is availa-
ble from the authors upon request). The classification
algorithm was used together with the greedy pairs algo-
rithm [14] for selection of four genes as previously
described [15]. Since the exact procedure for the classifier
design including the gene selection is of secondary inter-
est in this study, an unbiased selection of the number of
genes was not performed.

Derivation of the variance model for the RIDT procedure
Consider the case where the number of samples in the
data set, D, is small. To avoid dependence between design
and test, the samples are first divided into a design bag
with ND samples and a test bag with NT samples. Without
loss of generality for illustration of how the variance can
be modelled and the bias eliminated, we assume that the
classification of one class is of main interest and that the
test bag only includes NT1 samples from one class, i.e. NT
= NT1. We consider the case where the number of samples
in the design, Nd, is the same as the number in the design
bag, ND. Now consider the design of Nb classifiers using
repeated random sampling for the design bags. Each clas-
sifier is designed with Nd samples, drawn with replace-
ment from a design bag, and is then tested with Nt1 test
samples drawn without replacement from a test bag con-
taining NT1 samples. Nb error rate estimates are obtained,
denoted

where b = 1, 2,..., Nb. The error rate estimates are used to
compute data set specific estimates of the mean mdt1 and
variance σdt1

2:

and

For infinitely large sizes of ND and NT1 the observed vari-
ance σdt1

2 equals the true variance. Therefore, without any
loss of generality, Eq. (5) can be written as

where w is a data set dependent small sample effect term
that vanish for large data set sizes. To estimate the first
term, a first order approximation is introduced, yielding

where α0(D) ≈ σd1
2(Nd).

By performing multiple repeated random sampling ses-
sions (each consisting of Nb repeated designs and tests as
described earlier) for different combinations of data set
sizes and the sizes of the design and tests sets, it is possible
to estimate the coefficients αi(D), i = 0,1, 2, 3, in Eq. (7)
by multivariate least squares fitting. With access to the fit-
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Eq. (7)

Least squares fitting for different sizes of NdFigure 3
Least squares fitting for different sizes of Nd. The vari-
ance σdt

2 plotted against 1/Nt, where Nt is the number of test 
(holdout) samples used. The solid lines are the least squares 
fittings of the simulated average values for 1/Nt. The dashed 
lines are produced by means of the analytical result in Eq. (2).
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ted coefficient α0(D), an estimate of the desired quantity
σd1 

2(Nd) is obtained.

Preliminary simulation results indicated that the coeffi-
cient α1 in Eq. (7) was relatively small. In other words, the
size ND of the bag of design examples did not seem to have
any large contribution to the bias. Therefore the results
presented in this work were based on the simplified
model:

The 2-dimensional normal distributions
Two probes from the colon cancer data set [9] with acces-
sion numbers R87126 and X57351 corresponding to the
genes Nonmuscle Type A Myosin Heavy Chain (NMMHC-A)
and Interferon induced transmembrane protein 2 (IFITM2)
which can be used for a reasonable discrimination
between the two classes considered were selected for the
definition of two-dimensional sample distributions for
two different classes. The following estimates of the mean
vectors mi and covariance matrices Σi were obtained for
the two genes used: m1 = (0.7889, -0.36883), m2 = (-
0.4339, 0.2028), Σ1 = (1.5598, 0.4208; 0.4208, 0.6045)
and Σ2 = (0.1800, 0.1027; 0.1027, 1.1197). In the simula-
tions, a pair of two-dimensional normal distribution with
these parameters was used to generate the examples
needed.

Simulation procedure for estimation of md1 and σd1
2 in Eq. 

(1)
First, 50 independent design bags of size ND = 100 with
equal number of samples from class 1 and class 2 and 50
corresponding test bags with NT1 = 25 samples from class
1, were generated from the 2-dimensional normal distri-
butions. Then for each pair of bags, Nb = 1,000 different
designs, each with Nd samples drawn with replacement,
were implemented. These classifiers do not include any
feature selection and used the same Fisher's linear discri-
minant classification algorithm that was used for the
colon data. Each classifier was tested using different sizes
Nt1 of the test sets. Multivariate least square fitting was
used to obtain 1,000 different values for α0(D) (see Addi-
tional File 2). The value of NT1 was then increased, NT1 =
50, 75,..., 200, yielding histograms for seven additional
sizes of the test bag. The mean value and a two-sided 95%
CI for the eight histograms were calculated. The true md1
and σd1 

2 were obtained by testing 10,000 independently
designed classifiers using 500,000 test samples.

Variance estimation for independent data
Monte-Carlo simulations were performed to verify the lin-
ear mapping between 1/Nt and σdt 

2 in Eq. (2). We deter-
mined σdt 

2 for different values of Nt and Nd for a Fisher

linear discriminant classifier where equal number of sam-
ples from class1 and class 2 were drawn for design and
testing. The samples were drawn from two 8-dimensional
normal distributions with means m1 = [0,0,0,0,0,0,0,0]T

and m2 = [2.56, 0, 0, 0, 0, 0, 0, 0]T where T denotes the
transpose operator. The covariance matrix used was the
identity matrix. Please note that the probabilities of
encountering a sample of class 1 or class 2 are not used
here. This statistical model is a nontrivial model suitable
for simulation based validation of our theoretical results
in Figure 3. The values of Nd considered were Nd = 20, 30,
40 and the number of test samples used for each value of
Nd were Nt = 20, 30,..., 90, 100. Each point (value of σdt 

2)
was obtained using a histogram of 1,000 independent
point estimates. To verify the results, 1,000 separate and
independent high accuracy point estimates of md and σd

2

were computed, each using 10,000 test samples for vary-
ing design set sizes Nd.

List of abbreviations
• α i – coefficients for the first order approximation of the
variance model, i = 0,1, 2, 3

• CI – Confidence Interval

• D – a dataset with N samples

• md – mean error (misclassification) rate based on design
with Nd design samples and test with a large number
(infinity) of test samples

• mdt – mean error rate based on Nd design samples and Nt
test samples

• N – total number of samples used

• Nb – number of times a procedure is carried out

• Nd – number of samples used for design

• ND – number of samples used in design bag

• Nt – number of samples used for test

• NT – number of samples used in test bag

• pdf – probability density function

• RIDT – Repeated Independent Design and Test

• RRS – Repeated Random Sampling

• σd
2 – variance of the error rate distribution from design

with Nd samples

ˆ , , ( )
( ) ( )

.σ α α α
dt

T t T tN N
D D

D

N

D

N1
2

0
1

1

2

1

1 1







 ≈ + + Eq. (8)
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• σdt 
2 – variance of the error rate distribution from design

with Nd samples and test with Nt samples

Authors' contributions
UWB implemented and evaluated the variance models
and drafted the manuscript. HG and MF made intellectual
contributions to the work and were involved in manu-
script preparations. MG derived the variance models and
participated in the implementation and evaluation. AI
participated in the implementation and evaluation. AI
and MG supervised the study. All authors read and
approved the final manuscript.

Additional material

Acknowledgements
This work was supported by the Wallenberg Consortium North, Cancer-
fonden, The Swedish Society for Medical Research (SSMF), the Göran Gus-
tafsson foundation, Carl Tryggers stiftelse, the Magnus Bergvall foundation, 
the Marcus Borgström foundation and the Faculty of Science and Technol-
ogy (Uppsala University).

References
1. Ciro M, Bracken AP, Helin K: Profiling cancer.  Curr Opin Cell Biol

2003, 15:213-220.
2. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov

JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD,
Lander ES: Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring.  Science
1999, 286:531-537.

3. Perou CM, Brown PO, Botstein D: Tumor classification using
gene expression patterns from DNA microarrays.  New Tech-
nologies for Life Sciences: A Trends Guide 2000, 6:67-76.

4. Hastie T, Tibshirani R, Friedman J: The Elements of Statistical
Learning.  New York, Springer; 2001. 

5. McLachlan GJ: Discriminant Analysis and Statistical Pattern
Recognition.  New York, Wiley; 1992. 

6. Michiels S, Koscielny S, Hill C: Prediction of cancer outcome
with microarrays: a multiple random validation strategy.
Lancet 2005, 365:488-492.

7. Mukherjee S, Tamayo P, Rogers S, Rifkin R, Engle A, Campbell C,
Golub TR, Mesirov JP: Estimating dataset size requirements for
classifying DNA microarray data.  J Comput Biol 2003,
10:119-142.

8. Fukunaga K, Hayes RR: Estimation of Classifier Performance.
IEEE Trans on Patt Anal and Mach Intell 1989, 11:1087-1101.

9. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine
AJ: Broad patterns of gene expression revealed by clustering

analysis of tumor and normal colon tissues probed by oligo-
nucleotide arrays.  Proc Natl Acad Sci U S A 1999, 96:6745-6750.

10. McLachlan GJ, Do KA, Ambroise C: Analyzing Microarray Gene
Expression Data.  Hoboken, New Jersey, Wiley; 2004. 

11. Efron B, Tibshirani R: Improvements on cross-validation: The
0.632 + bootstrap method.  J Amer Statist Assoc 1997, 92:548-560.

12. Webb AR: Statistical pattern recognition.  2nd edition. Chiches-
ter, Wiley; 2002. 

13. Hastie T, Tibshirani R, Friedman J: Linear Discriminant Analysis.
In The Elements of Statistical Learning: Data Mining, Inference, and Predic-
tion New York, Springer; 2001:84-94. 

14. Bo T, Jonassen I: New feature subset selection procedures for
classification of expression profiles.  Genome Biol 2002,
3:RESEARCH0017.

15. Fryknas M, Wickenberg U, Goransson H, Nilsson A, Gustafsson MG,
Foukakis T, Lee JJ, Landegren U, Larsson C, Hoog A, Grimelius L,
Wallin G, Pettersson U, Isaksson A: Molecular markers for dis-
crimination of benign and malignant follicular thyroid
tumors.  Tumor Biol 2006, In press:.

Additional File 1
The pdf-file contains the derivation of Eq. (2).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-127-S1.pdf]

Additional File 2
The pdf-file contains a more detailed description of the implementation of 
the RIDT procedure.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-127-S2.pdf]
Page 8 of 8
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-7-127-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-7-127-S2.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12648678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15705458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15705458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12804087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12804087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11983058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11983058

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	The estimated variance in repeated cross-validation depends on the number of test data
	Repeated independent design and test
	A variance model for the RIDT procedure
	Variance for independent data

	Discussion
	Conclusion
	Methods
	Observed variance from repeated designs and tests using the colon data
	Derivation of the variance model for the RIDT procedure
	The 2-dimensional normal distributions
	Simulation procedure for estimation of m
	Variance estimation for independent data

	List of abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

