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Abstract
Background: The choice of probe set algorithms for expression summary in a GeneChip study
has a great impact on subsequent gene expression data analysis. Spiked-in cRNAs with known
concentration are often used to assess the relative performance of probe set algorithms. Given the
fact that the spiked-in cRNAs do not represent endogenously expressed genes in experiments, it
becomes increasingly important to have methods to study whether a particular probe set algorithm
is more appropriate for a specific dataset, without using such external reference data.

Results: We propose the use of the probe set redundancy feature for evaluating the performance
of probe set algorithms, and have presented three approaches for analyzing data variance and result
bias using two sample t-test statistics from redundant probe sets. These approaches are as follows:
1) analyzing redundant probe set variance based on t-statistic rank order, 2) computing correlation
of t-statistics between redundant probe sets, and 3) analyzing the co-occurrence of replicate
redundant probe sets representing differentially expressed genes. We applied these approaches to
expression summary data generated from three datasets utilizing individual probe set algorithms of
MAS5.0, dChip, or RMA. We also utilized combinations of options from the three probe set
algorithms. We found that results from the three approaches were similar within each individual
expression summary dataset, and were also in good agreement with previously reported findings
by others. We also demonstrate the validity of our findings by independent experimental methods.

Conclusion: All three proposed approaches allowed us to assess the performance of probe set
algorithms using the probe set redundancy feature. The analyses of redundant probe set variance
based on t-statistic rank order and correlation of t-statistics between redundant probe sets provide
useful tools for data variance analysis, and the co-occurrence of replicate redundant probe sets
representing differentially expressed genes allows estimation of result bias. The results also suggest
that individual probe set algorithms have dataset-specific performance.

Background
One of the most promising tools available today to
researchers in the life sciences is high-density oligonucle-

otide array technology [1]. Denoted as GeneChips®, high-
density oligonucleotide arrays allow one to monitor the
relative expression of tens of thousands of genes in a sin-
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gle assay. Upon its introduction within the last decade,
GeneChip technology, together with cDNA microarray
technology [2], has been viewed as state-of-the-art meth-
odologies that would fundamentally alter the scientific
landscape. Supporting this view, the number of published
GeneChip studies has exponentially expanded in the past
several years to reveal differentially expressed genes
(DEGs), gene expression patterns, and genetic networks
associated with many experimental conditions [3-5]. Yet
the very first step, the generation of expression summary
values, on which these studies rely is still open to exten-
sive debate.

On Affymetrix GeneChips, the expression intensity of a
gene is reported by a probe set that comprises 11–20 indi-
vidual probe pairs. Each probe pair contains a perfect
match (PM) 25 mer oligonucleotide probe, which is
designed to hybridize specifically to a unique gene, and a
mismatch (MM) probe of the same length, which differs
from the PM probe by one single base in the center of the
sequence. The MM probe is intended to measure non-spe-
cific hybridization. To compare gene expression levels
between GeneChips hybridized with cRNAs of biological
interest, the first step is to generate an overall probe set
intensity measurement ("expression summary"), which
represents the relative expression level of genes from their
corresponding probe pairs.

Many probe set algorithms [6-9] have been proposed to
generate expression summaries. As each one differs in its
strategies for background subtraction, signal intensity
normalization between arrays, non-specific hybridization
correction, and probe intensity summary, the choice of
probe set algorithm for expression summary has a great
impact on the subsequent expression data analysis. For
example, two lists of DEGs generated from the same data-
set by different probe set algorithms were more than 30%
different [10]. This discrepancy was also observed in our
previous GeneChip studies, in which lists of DEGs from
MAS5.0 statistical algorithm, Model Based Expression

Index (MBEI or dChip), or Robust Multi-array Analysis
(RMA) shared similarity between only 10.1% and 36.8%
(unpublished observation, Z. Hu and J. F. Collins). There-
fore, it is important to compare the relative performance
of different probe set algorithms. Comparative studies
that have been performed to date are mainly based on
spiked-in cRNAs from synthetic datasets [11-14]. These
datasets, which contain either small [15] or large [14]
numbers of spiked-in cRNAs at various known concentra-
tions, have provided useful means to estimate result bias
by comparing either the true expression ratios to observed
expression ratios or false discovery rate to true positives,
and therefore the relative performance of various probe
set algorithms. Despite the important information
obtained from these comparative analyses, there is cur-
rently no consensus as to which single algorithm yields
more reliable results. The performance of individual
probe set algorithms might be experiment-specific [16].
Since spiked-in cRNAs do not represent endogenously
expressed genes in most experiments, it would be useful to
have methods to determine whether a particular probe set
algorithm is more appropriate for a specific dataset, with-
out using such external reference data.

In this study, we propose to use probe set redundancy, a
quite common feature of Affymetrix GeneChips in which
a particular gene is represented by two or more probe sets
(denoted as redundant probe sets or RPSs), for the evalu-
ation of the relative performance of different probe set
algorithms. We present three approaches for analyzing
data variance and result bias using two sample t-statistics
from redundant probe sets, rather than analyzing them
from the hybridization intensities of RPSs on each indi-
vidual GeneChip. These approaches include 1) RPS vari-
ance analysis based on t-statistic rank order, 2) correlation
analysis of t-statistics between RPSs, and 3) analysis of the
co-occurrence of replicate RPSs in lists of DEGs. The
underling assumption is that these three analysis
approaches should result in consistent outcomes; that is,
data with lowest RPS variance are expected to also have

Table 1: Number of probe sets and redundant probe sets used in two-sample t-tests between liver and central nervous system (CNS) 
cell lines from the GeneLogic dilution dataset.

t-test Total # PS a 
(filtered)

# RPS % RPS # unigenesb # unigenes for RPS

Liver 1.25 vs. CNS 1.25 7257 1998 27.53 5812 901
Liver 2.5 vs. CNS 2.5 7329 2017 27.52 5871 909
Liver 5.0 vs. CNS 5.0 7755 2224 28.68 6164 998
Liver 7.5 vs. CNS 7.5 7905 2287 28.39 6265 1021
Liver 10.0 vs. CNS 10.0 7456 2092 28.06 5952 940
Liver 20.0 vs. CNS 20.0 7386 2042 27.65 5906 918

Notation: PS represents probe sets, RPS redundant probe sets. The numbers following Liver and CNS represent cRNA concentration.
a. The total # of probe sets in HG-U95A GeneChip is 12,627.
b. Only those with unigene labels were counted.
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the strongest RPS correlation and highest RPS co-occur-
rence in the list of DEGs.

We applied these approaches to expression summary data
generated from three datasets utilizing the individual
probe set algorithms of MAS5.0, dChip, or RMA. We also
utilized combinations of options from the three probe set
algorithms [14]. The three datasets we utilized include the
GeneLogic dilution dataset [17], a wholly defined control
dataset [14], and a dataset from a "real' experimental
study on diabetes [18]. The first two datasets have been
previously used by others in benchmarking studies to
evaluate the performance of probe set algorithms [11-14].
Thus, the comparative results from these previous analy-
ses can be readily used as the standard by which to judge
the reliability of the results from our proposed three anal-
ysis approaches. Our results demonstrate that probe set
redundancy can be used as an internal reference for probe
set algorithm evaluation, and therefore provide a novel
approach, by which researchers are able to assess the rela-
tive performance of different probe set algorithms on their
experimental data, without using exogenous controls (e.g.
spiked-in cRNAs). Furthermore, as GeneChips often con-
tain large numbers of RPSs, our approach allows research-
ers to better evaluate probe set algorithms, with direct
applications to experimental datasets of interest.

Results
For gene expression studies, the ideal scenario is that RPSs
for a given gene will have identical or similar expression
values under given experimental conditions. This is how-
ever often not the case due to variances introduced by bio-
logical variability and differing RPS design, such as
alternative RNA splicing [19], probe location within a
gene, probe base composition, and location of RPSs on
the GeneChip. To reduce or avoid such variances, we pro-
pose the use of two sample t-statistics of RPSs across all
GeneChips in an experiment instead of hybridization
intensities of RPSs on each individual GeneChip for ana-
lyzing data variance and result bias.

Data variance and result bias analyses using GeneLogic 
dilution dataset
Data filtering and RPS assignment
In GeneChip studies, a large proportion of genes are usu-
ally not expressed across all samples to be compared and,
as a common practice, are filtered out before performing
statistical analysis. To mimic the real experimental situa-
tion, we used MAS5.0 "present calls" to filter out probe
sets whose expression intensities were close to the back-
ground noise across all samples in a t-test. We applied the
same filtering of at least one "present call" out of 10 sam-
ples in a t-test to data obtained from each probe set algo-
rithm, since all of them used the same set of CEL files,
from which "present calls" were generated. This led to a

~42% data reduction in all comparisons as shown in
Table 1. To assign RPSs, we used the UniGene ID (or
LocusLink ID) and designated probe sets as redundant if a
UniGene ID appeared two or more times in the filtered
probe set list. As shown in Table 1, the RPSs constitute
~28% of the total probe sets in all comparisons.

RPS variance analysis based on t-statistic rank order
We first computed RPS variances for individual genes (e.g.
1,021 individual genes at the dilution level 7.5) as
described in "Methods". We then depicted the overall RPS
variances by computing either the average RPS variances
from all individual genes or the relative RPS variances for
data generated by different probe set algorithms. Data
from RMA clearly showed much lower variance than
those generated by MAS5.0, dChip-PM, and dChip-PM/PM
(Figure 1a). This result was highly reproducible at all dilu-
tion levels.

To compute relative RPS variance, we used MAS5.0 out-
puts as baselines and compared RPS variance of individ-
ual genes to that of the corresponding genes in data from
dChip-PM, dChip-PM/MM, or RMA. The relative RPS vari-
ance was represented as the percentage of genes whose
RPS variance was smaller than the corresponding genes in
data generated by MAS5.0. Thus, a number greater than
50% indicated an overall smaller relative RPS variance
than MAS5.0. In agreement with the average RPS variance,
data from RMA displayed smaller relative RPS variances
when compared to those from other probe set algorithms
(Figure 1b), in which 54.7% to 58.9% of genes had
smaller RPS variance than those from MAS5.0. By con-
trast, the difference in the relative RPS variance between
data generated by MAS5.0 and those from dChip-PM, or
dChip-PM/MM was not consistent at different dilution lev-
els, in which 46.7% to 54.4% of genes had smaller RPS
variance than those from MAS5.0. We also verified the sta-
tistical significance of the relative RPS variance between
MAS5.0 and RMA, dChip-PM, or dChip-PM/MM by using
the Wilcoxon signed-rank test. We found that median RPS
variances for data from RMA were significantly different
from those from MAS5.0, with < 10-5 p-values for all dilu-
tion levels. Conversely, data from both dChip-PM and
dChip-PM/MM did not display significant differences in
RPS variance for all dilution levels, with the exception
being dilution level 7.5 in which result from dChip-PM
had p-value of 0.031. Thus, of all data generated by differ-
ent probe set algorithms, those from RMA had the small-
est RPS variance.

Correlation analysis of t-statistics between RPSs

The second approach we used for analyzing data variance
was to investigate the correlation of t-statistics between
RPSs. The underling hypothesis is that t-statistics of RPSs
with similar expression patterns in two sample groups
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should be highly correlated. In this study, we employed
Pearson correlation coefficients to estimate the correla-
tion between paired t-statistics from RPSs. For genes with
more than two RPSs, we generated all combinations of

paired t-statistics to the number of  pairs, where N is

the number of RPSs for a given gene. As shown in Figure
2a, the paired t-statistics clearly show stronger correlations
for data generated by RMA than those from other probe
set algorithms at all dilution levels, indicating that data
from RMA have more similar RPS expression patterns in
two sample groups, and thus possibly lower variance.

We were concerned that the superior results from data
generated by RMA might be associated with stronger ran-
dom or biological correlation, which could potentially
affect the outcomes in the comparisons described above.
To investigate this possibility, we performed further anal-
ysis to estimate the correlation for lists of randomly paired
t-statistics. These t-statistics were randomly sampled with-
out replacement from t-statistics of all probe sets in the
corresponding expression summary datasets and then
used to form t-statistic pairs of the same size as those used
in the correlation analysis for RPSs. As an example, one of
the random correlation comparisons, dilution level 7.5, is
shown in Figure 2b. The distributions of the correlation
coefficients from 1,000 simulated lists of randomly paired
t-statistics are centered at zero for each probe set algo-
rithm, suggesting that no random or biological correla-
tion exists in any of the data used for RPS correlation

analysis. Similar results were also obtained from the other
5 dilution levels (data not shown).

Analysis of co-occurrence of replicate RPSs in lists of DEGs
We define "replicate RPSs" as those with two or more RPSs
for a given gene in the final list of DEGs, and those with
only one RPS as "single RPS". In the ideal scenario of no
RPS variance, we expect an "all-or-none" expression pat-
tern of RPSs for individual genes in the list of DEGs.
Therefore, the degree of deviation from this ideal scenario
provides a tool for researchers to estimate the result bias.
The approach we used was to calculate the proportion of
replicate RPSs out of both replicate and single RPSs in
DEGs.

To estimate the fraction of replicate RPS in the list of
DEGs, we first used the Benjamini-Hochberg [20]
approach to control experiment-wise false discovery rate
(FDR) to select significant genes. The adjustment for the
multiple testing allowed us to determine significant p-val-
ues and thus establish statistical cutoffs for significant
genes. The relative proportions of replicate RPSs out of all
RPSs in DEG list from different probe set algorithms were
consistent in all dilution levels (Figure 3a–3f), when using
the FDR cutoffs in a range similar to what would be uti-
lized in actual experimental situations (0.01 to 0.1).
Whereas results for RMA displayed the highest co-occur-
rence rate, results for MAS5.0 showed the lowest co-occur-
rence rates. Results for dChip-PM and dChip-PM/MM had
similar co-occurrence rates, which were between those
from RMA and MAS5.0. These results were highly repro-

N

2










RPS variance results for GeneLogic datasetFigure 1
RPS variance results for GeneLogic dataset. (a) The log average RPS variances for data from probe set algorithms RMA, 
MAS5.0, dChip-PM, and dChip-PM/PM at all 6 dilution levels (e.g. C10.0 stands for dilution level 10.0). (b) The relative RPS vari-
ances obtained by comparing RPS variance of individual genes in data from RMA, dChip-PM, or dChip-PM/PM to that of the cor-
responding genes in data from MAS5.0. An above 50% result indicates an overall smaller relative variance than MAS5.0.
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ducible at all dilution levels, except dilution level 20.0
from MAS5.0.

To investigate whether data filtering would affect the out-
comes of RPS variance and result bias analysis, we also uti-
lized the entire dataset, in which the RPSs constitute
34.9% of the total probe sets, to perform the analyses.
Results of RPS variance, correlation of t-statistics between
RPSs, and the co-occurrence of replicate RPSs in DEGs all
strongly agreed with results obtained from data filtered by
one "present call", but with relatively smaller differences
between data from RMA and data from other probe set
algorithms (data not shown). These results suggest that
data filtering may improve the performance of the three
proposed approaches, although data can be directly used
without filtering for RPS variance and result bias analysis.

Taken together, results from all three approaches indi-
cated that data generated by RMA were superior to those
generated by other probe set algorithms. This fact was
reflected by RPSs with lower variance, stronger correla-
tion, and higher co-occurrence rates in final DEG list.
These results were also in agreement with previous bench-
marking studies using the GeneLogic dilution dataset [11-
13], which indicated that RMA had a superior perform-
ance over other probe set algorithms, as demonstrated by
the lower expression variance and smaller result bias.
Although the performance of RMA is better than that of
other probe set algorithms we tested, it is worthy to note
that RMA is not necessarily the most robust probe set
algorithm in most cases, which was illustrated by the rel-

ative improvement of RPS variances and the findings from
the remainder of this study using the two other datasets.

Data variance and result bias analyses using the wholly 
defined control dataset
Summary of results from previous wholly control dataset study
This wholly defined control dataset was constructed and
has been used by Choe et al. [14] to evaluate the methods
and analysis options for Affymetrix GeneChips to identify
DEGs. These options, which were derived from several
probe set algorithms commonly used for GeneChip anal-
ysis, include background correction, PM correction, probe
level normalization, expression summary, and probe set
level normalization. These authors have applied all possi-
ble combinations of options to the data to assess whether
some steps are more critical than others in maximizing the
detection of DEGs. Using receiver operator characteristic
(ROC) curves of false discovery rate vs. true positives, they
have facilitated the assessment of the performance of var-
ious options and have reported the following findings:

1. A second loess normalization at the probe set level
yielded a superior result.

2. Among various robust estimators used for expression
summary, the median polish method performed the best.

3. Among different PM correction options, the method in
MAS5.0 had a superior performance over the others.

Correlation of RPSs for GeneLogic datasetFigure 2
Correlation of RPSs for GeneLogic dataset. (a) Correlation of t-test statistics between RPSs for data from probe set 
algorithm RMA, MAS5.0, dChip-PM, and dChip-PM/PM at all 6 dilution levels (e.g. C10.0 stands for dilution level 10.0). (b) The dis-
tributions of the correlation coefficients from 1,000 simulated datasets with random t-test statistic pairs for data from each 
probe set algorithm. The results from dilution level 7.5 are shown. Correlation coefficients for all data from RMA, MAS5.0, 
dChip-PM (dChip-a) and dChip-PM/PM (dChip-b) are centered at zero.

C1.25 C2.5 C5.0 C7.5 C10.0 C20.0

0.
40

0.
50

0.
60

0.
70

0.
80

C
or

re
la

tio
n

Dilution level

(a)

RMA
MAS5.0
dChip − PM MM
dChip − PM

−
0.

10
−

0.
05

0
0.

05

MAS5.0 dChip−a dChip−b RMA

(b)

C
or

re
la

tio
n

Probe set algorithms
Page 5 of 17
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:12 http://www.biomedcentral.com/1471-2105/7/12

Page 6 of 17
(page number not for citation purposes)

Co-occurrence rate of replicate RPSs in DEGs for GeneLogic datasetFigure 3
Co-occurrence rate of replicate RPSs in DEGs for GeneLogic dataset. The fraction of replicate RPSs out of all RPSs 
in DEG list for data from probe set algorithm RMA, MAS5.0, dChip-PM, and dChip-PM/PM is shown at individual FDR cutoffs. 
Comparison results for 6 dilution levels are shown separately: (a) for dilution level 1.25, (b) for dilution level 2.5, (c) for dilu-
tion level 5.0, (d) for dilution level 7.5, (e) for dilution level 10.0, and (f) for dilution level 20.0
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4. Among the background correction methods, the
MAS5.0 method generally performed better than the RMA
method.

5. No clearly superior normalization method was found
at the probe level.

6. Ten best expression summary datasets, which maxi-
mized the detection of DEGs and minimized false posi-
tives, were generated by a combination of optimal
options.

These findings, which resulted from the analyses of a large
number of expression summary datasets generated from
the wholly control dataset by different combinations of
options, provide standards to which our current assess-
ments can be compared.

Comparison of results from the three proposed approaches and 
previous studies
We made use of RPSs from the 3,860 individual cRNAs for
the study reported here, as they are known sequences, and
the complete annotations can be found in the Drosophila
Gene Collection release 1.0 [21]. Based on Drosophila
Gene Collection clone IDs, we were able to obtain 582
RPSs, which represented 268 unique genes, from the
3,860 cRNAs. We computed data variance at 8 levels with
fold change equal to or greater than 1.0, 1.2, 1.5, 1.7, 2.0,
2.5, 3.0, 3.5, or 4.0, although the majority of the RPSs
(69.2%) were spiked in at identical concentrations
between the two sample groups.

We employed the same analysis procedures as described
for the GeneLogic dilution dataset to compute variance,
correlation, and co-occurrence for RPSs. To make our
results comparable to those from Choe et al. [14], we used
110 expression summary datasets to perform the compar-
ison of options for probe set level normalization, and
used 55 of the expression summary datasets that were gen-
erated with the loess normalization option (orange lines
in Figure 4a, Figure 5a, and Figure 6a) for comparison of
the remaining options.

Among our three proposed analysis approaches, results of
RPS variances (Figure 4) were consistent with findings
from Choe et al. [14]. First, a second loess normalization
at the probe set level consistently decreased the RPS vari-
ance, as can be seen from the log average RPS variance
across all fold change cutoffs in Figure 4a. This is also true
for expression summary options, for which results from
the median polish method displayed relatively lower RPS
variance (Figure 4b). Second, Figure 4d clearly show that
expression summary datasets from MAS5.0 PM correction
have lower RPS variances when all RPSs are considered
(fold change >= 1.0), which is similar to previous study

[14]. Similar results were also obtained for the 10 best
expression summary datasets (Figure 4f), which displayed
relatively lower RPS variance compared to the remaining
expression summary datasets. It is noteworthy that in the
higher fold change ranges (fold change >= 1.2 – 4.0) the
difference in RPS variance is not apparent between differ-
ent PM correction options, which is also true for the 10
best expression summary datasets as compared to all
other expression summary datasets. This may be due to
the smaller number of RPSs used when computing RPS
variance. For the remaining two comparisons, with data
normalization at the probe level (Figure 4c) and back-
ground correction (Figure 4e), no significant differences
was observed between options.

In agreement with the findings reported by Choe et al.
[14], our additional analyses indicated that a second loess
normalization at the probe set level substantially
increased both correlation (Figure 5a) and co-occurrence
(Figure 6a) of RPSs. Additionally, the median polish
method for expression summary had a much better per-
formance than MAS5.0, as can be seen from the higher
correlations shown in Figure 5b as well as higher co-occur-
rence of RPSs shown in Figure 6b. For the remaining
options, no single one stood out as clearly superior, but
some options generally performed better than others. For
example, the co-occurrences of RPSs from the MAS5.0
option for PM correction scored higher (Figure 6d), dem-
onstrating its relatively better performance. This was also
true for the 10 best expression summary datasets (Figure
6f).

Data variance and result bias analyses using our 
experimental diabetes dataset
Dataset features and analysis results

The third dataset came from an experimental dataset
designed to study diabetes. To increase the sensitivity for
detecting DEGs, we developed a statistical approach to
eliminate expression outliers across biological replicates.
Briefly, for each individual probe set from 5 biological
replicates one of them, whose expression value had the

largest deviation from the sample mean ,

was first selected as the putative outlier Op. The sample

mean  and standard deviation s(i)(xi) from

the rest 4 replicates were subsequently recomputed, which

was used to build a 99% confidence interval 

using the t distribution, where  and t =
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RPS variance results for the wholly defined control datasetFigure 4
RPS variance results for the wholly defined control dataset. The log average RPS variances for expression summary 
datasets generated from combinations of options from different probe set algorithms. RPS variances were computed at 8 levels 
with fold change equal to or greater than 1.0, 1.2, 1.5, 1.7, 2.0, 2.5, 3.0, 3.5, or 4.0 between two test sample groups. (a) All 110 
expression summary datasets for the comparison of normalization options at the probe set level (b-f). To match the analysis 
from Choe et al. [14], only 55 expression summary datasets involving the second normalization step are shown. (b) Compari-
son of expression summary options. (c) Comparison of normalization options. (d) Comparison of PM correction options. (e) 
Comparison of background correction options. (f) Comparison of the selected 10 expression summary datasets to all others.
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Correlation of RPSs results for the wholly defined control datasetFigure 5
Correlation of RPSs results for the wholly defined control dataset. Correlation of t-test statistics between RPSs for 
expression summary datasets generated from combinations of options utilizing different probe set algorithms. The same analy-
sis procedures as in Figure 4 were applied. (a) Comparison of normalization options at the probe set level. (b) Comparison of 
expression summary options. (c) Comparison of normalization options. (d) Comparison of PM correction options. (e) Com-
parison of background correction options. (f) Comparison of the selected 10 expression summary datasets to all others.
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Co-occurrence rate of replicate RPSs in DEGs for the wholly defined control datasetFigure 6
Co-occurrence rate of replicate RPSs in DEGs for the wholly defined control dataset. The fraction of replicate 
RPSs out of all RPSs in DEGs for expression summary datasets generated utilizing combinations of options from different 
probe set algorithms. The same analysis procedures as in Figure 4 were applied. (a) Comparison of normalization options at 
the probe set level. (b) Comparison of expression summary options. (c) Comparison of normalization options. (d) Comparison 
of PM correction options. (e) Comparison of background correction options. (f) Comparison of the selected 10 expression 
summary datasets to all others.
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5.84. The sample mean  was then used to replace the

outlier as follow:

This approach improves the detection sensitivity only for
the probe sets that have high homogeneity in expression
intensity across at least four out of five biological repli-
cates, and therefore genes identified as significant have
high rate of accuracy. This dataset, in which the RPSs con-
stitute 34.6% of the total probe sets after performing data
filtering, provided an example of a typical "real" experi-
ment, from which biological and experimental validation
was readily available.

We followed the same analysis procedures as used for the
GeneLogic dilution and wholly defined control datasets,
and found that results from our 3 proposed approaches
were generally in agreement. Data generated by MAS5.0
and dChip-PM/MM were superior as compared to data
from RMA and dChip-PM. This was especially apparent
from the analysis of co-occurrence of replicate RPSs in list
of DEGs, in which co-occurrence rates for data from
MAS5.0 and dChip-PM/MM were higher than data from
RMA and dChip-PM (Figure 7), when controlling the FDR
in the range used in actual experimental situations (0.01
to 0.1). In support of this finding, RPS variance analysi-
salso indicated that data from MAS5.0 and dChip-PM/MM
had smaller variance than data from the other 2 probe set
algorithms. For example, for the relative RPS variance
analysis the percentage of genes whose RPS variance was
smaller than the corresponding genes from RMA was
52.5%, 52.4%, and 50.1% for MAS5.0, dChip-PM/MM,
and DChip-PM, respectively.

Quantitative RT-PCR validation
Quantitative RT-PCR (qRT-PCR) is a common and useful
method for confirming DEGs, and thus for validating
results from GeneChip experiments. Ten genes distributed
among different functional groups identified in a previous
study were selected for qRT-PCR studies [18]. In that study
data in diabetic rat group was compared to all those in the
normal rat group as suggested by Affymetrix [22], which
involved looking at a 5 × 5 matrix for the experiment. The
specific genes, primers used, and fold change values found
by PCR are shown in Table 3. For each of the 10 genes,
qRT-PCR average fold change from biological replicates
between diabetic and control animals were first computed
and then compared with the average fold change from
GeneChips. As shown in Figure 8, the fold changes from
MAS5.0 and dChip-PM/MM are highly correlated with
those from qRT-PCR, with correlation coefficients of 0.9
for both methods. Conversely, the fold changes from

RMA and dChip-PM showed relatively weak correlation
with those from qRT-PCR, with correlation coefficients of
0.8 for dChip-PM and 0.74 for RMA.

Biological validation
We also explored the level of concordance of the biologi-
cal themes for DEGs to the results of data variance and
result bias analyses. Taking advantage of known knowl-
edge from previous diabetes studies, we categorized the
statistically over-represented biological process categories
for DEGs by DAVID 2.0 [23]. Because diabetes is a multi-
factorial disease [24], which leads to substantial changes
in gene expression in a broad range of biological function
categories, the number of over-represented biological
processes is usually overwhelming, with many overlaps
found using different probe set algorithms. In this study,
the enriched functional categories included protein bio-
synthesis, macromolecule metabolism, physiological
process, ribosome biogenesis, and regulation of cell pro-
liferation. Nevertheless, we determined uniquely over-
represented biological process from DEG lists generated
by the chosen probe set algorithms to determine which
one was superior from a physiological perspective.

Previous studies using GenChips with samples obtained
from mice with streptozotocin-induced diabetes indicated
that major diabetes related changes in gene expression
included carbohydrate and lipid metabolism, energy
metabolism, cellular transport and vesicle trafficking,
intracellular signaling, and response to stress [25]. In our
GeneChip studies reported here RNA was obtained from
normal rats and rats with streptozotocin-induced diabe-
tes. As shown in Table 2, biological function categories
associated with diabetes [24,25] such as intracellular sign-
aling cascade, lipoprotein biosynthesis, steroid metabo-
lism, negative regulation of transcription, phosphagen
biosynthesis, and response to stress are enriched to a
larger extent in DEGs either from MAS5.0 or dChip-PM/
MM. On the other hand, DEGs from dChip-PM have only
one diabetes-related biological process, and all uniquely
enriched biological processes for DEGs from RMA do not
appear to be directly related to the diabetes phenotype.
Thus, DEG lists generated by MAS5.0 and dChip-PM/MM
were most relevant to the disease state being studied.

Discussion
The choice of probe set algorithms used for expression
summary in GeneChip studies has a major impact on dif-
ferential gene expression analysis, as important differ-
ences exist in the way the expression summary is
generated using the various algorithms. Spiked-in cRNAs
with known concentrations are often used to assess the
relative performance of different probe set algorithms.
However, this approach has apparent limitations because
spiked-in cRNAs are not endogenously expressed genes in
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experimental systems of biological interest. In addition, if
we assume that the performance of individual probe set
algorithms is experiment-specific [16], the lack of spiked-
in cRNA controls in most experiments prevents this
approach from applying to many datasets. In contrast, our
proposed new approach of using probe set redundancy
addresses this issue adequately, as GeneChips often con-
tain large numbers of RPSs, which represent experimental
genes under study.

For comparison purposes, we initially employed the
GeneLogic dilution dataset to directly estimate RPS vari-
ances using the expression values of RPSs by the method
of Barash et al [10]. Notably, although RPS variances
based on expression values differed significantly among
data from different probe set algorithms (data not
shown), the results did not agree with both ours and those
previously reported by others [11-13], indicating that the
estimation of RPS variance was less reliable using expres-
sion values than using t-statistic values.

For our study, rather than analyzing data variance and
result bias from the hybridization intensities of RPSs on
each individual GeneChip [10], we chose to use two sam-
ple t-test statistics to compare hybridization intensities of
individual RPSs across all GeneChips in an experiment.
This approach allowed us to obviate the variance intro-
duced by differing probe set design and location of the
probe within a primary or alternatively spliced transcript,
which introduces RPS variance on an individual Gene-
Chip. Other important issues are biological variability
between samples, technical issues related to RNA integrity
and sample preparation, and non-specific, cross-reactivity

of probes [26]. If we thus assume that these introduced
variances have the same impact on results obtained by dif-
ferent probe set algorithms (as they all use the same data-
set), then we can minimize RPS variance on an individual
GeneChip by comparing expression between different
GeneChips and can thus effectively evaluate the perform-
ance of different probe set algorithms. The resulting t-sta-
tistics used to analyze RPSs across GeneChips would
therefore reflect whether or not the hybridization inten-
sity differences of RPSs within each sample group were
consistent with the differences in other sample groups.

The validity of using RPS and two sample t-test statistics
for the evaluation of probe set algorithm performance was
clearly demonstrated by the correlation analysis. For
example, in the GeneLogic dilution dataset, strong corre-
lations (0.59 to 0.74) of t-statistics between RPSs were
obtained from data for all probe set algorithms (Figure
2a), while no correlation existed for randomly paired t-
statistics from corresponding expression summary data-
sets (Figure 2b). It is noteworthy that correlations of RPS
t-statistics were less than the ideal situation of 1 (Figure
2a), which might be due to the variances introduced from
such confounding factors as cross-hybridization and rec-
ognition of alternatively spliced transcripts as discussed
above and suggested by others [26]. Nevertheless, the use
of RPS and two sample t-test statistics for the evaluation of
different probe set algorithm performance is clearly
appropriate, as the RPSs usually constitute a large portion
of the probe sets on GeneChips and the introduced vari-
ances have the same impact on results obtained by differ-
ent probe set algorithms.

We utilized 3 approaches, RPS variance analysis, correla-
tion analysis of t-statistics between RPSs, and analysis of
the co-occurrence of replicate RPSs in DEGs, as tools to
judge data variances and result bias. We also assumed that
results from the three approaches would be consistent for
the same expression summary dataset. Out of the three
approaches, however, the correlation analysis proved to
be the least useful, as correlation measures the trend of t-
statistics instead of absolute variances. This was the case
from the results of the wholly defined control dataset, in
which the correlation analysis displayed the lowest level
of concordance to the results from Choe et al. [14]. While
both co-occurrence of replicate RPS analyses and RPS var-
iance are more robust than correlation analysis, the anal-
ysis of co-occurrence of replicate RPSs in DEGs provides
an approach for researchers to estimate result bias, and
RPS variance analysis provides a tool for data variance
analysis.

Three datasets used in this study come from different
sources and had differing data quality and features, they
therefore nicely represent most situations. Above all,

Co-occurrence rate of replicate RPSs in DEGs for the diabe-tes datasetFigure 7
Co-occurrence rate of replicate RPSs in DEGs for the 
diabetes dataset. The fraction of replicate RPSs out of all 
RPSs in DEGs for data from probe set algorithm RMA, 
MAS5.0, dChip-PM, and dChip-PM/PM is shown at individual 
FDR cutoffs.
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results of data variance and result bias for expression sum-
mary datasets, whether they were generated from individ-
ual probe set algorithms or combinations of options from
a few probe set algorithms, agreed well with each other in
each individual test dataset and were also in good agree-
ment with either previous findings by others or experi-
mental evaluation from this study. First, RPS variance
analyses using expression summary datasets generated
from the GeneLogic dilution dataset by individual probe
set algorithms indicated that data from RMA had an over-
all better quality, which was in good agreement with find-
ings by others [11-13]. Second, our results from the
wholly defined control dataset agreed with those conclu-
sions from Choe et al. [14]. However, unlike data gener-
ated from GeneLogic dilution dataset, the expression
summary datasets were generated by combinations of
options from a few probe set algorithms and were in large
numbers, thus allowing more sophisticated and compre-
hensive assessments. Finally, for our diabetes dataset,
results from both experimental validation by qRT-PCR
and biological validation by functional classification for
DEGs agreed well with results from data variance and bias
analyses, in which data from probe set algorithms using
both PM and MM probes for expression summary dis-
played lower variance and bias.

Although our proposed analysis approaches were to eval-
uate the relative probe set algorithm performance within
individual datasets, it was interesting to note that the frac-
tion of replicate RPS for DEGs in the diabetes dataset was
smaller than those in the other two datasets. This differ-
ence was also observed between unfiltered (data not
shown) and one "present call" filtered GeneLogic dilution

dataset, in which fractions of replicate RPSs for DEGs in
the one "present call" filtered data were 5–11% higher
than those obtained from data without filtering. These dif-
ferences could be due to the different nature of RPSs on
the different GeneChips or differing data quality.

It is noteworthy that varying conclusions for probe set
algorithm performance were drawn by using different
datasets. Irizarry et al. [12] found that RMA performed
best among a few probe set algorithms tested, when using
the GeneLogic dilution dataset. On the other hand, using
the wholly defined control datasets no best single method
was found by Choe et al. [14], who instead suggested a
best-route combinations of analysis options from
MAS5.0, RMA, dChip, and an additional loess normaliza-
tion at the probe set level. Results from the diabetes data-
set used in this study, when used for the evaluation of
probe set algorithm performance, indicated that probe set
algorithms using both PM and MM probe sets for expres-
sion summary gave better results than those methods
using only PM for expression summary, such as RMA.
Overall these results suggest that individual probe set
algorithms may have experiment-specific performance.
Moreover, the strong correlation between the results from
previous probe set algorithm assessments and those from
this study demonstrate that our proposed novel
approaches based on RPS analysis are not dependent
upon individual probe set algorithm performance, and
are thus very likely to be reliable and reproducible.

Conclusion
An important issue in the analysis of gene expression data
from Affymetrix GeneChips is to choose a probe set algo-

Table 2: Uniquely over-represented functional categories for DEGs obtained from each probe set algorithm from the experimental 
diabetes dataset.

Functional categories a p-value Functional categories p-value

MAS5.0: dChip-PM/MM:
Proteolysis and peptidolysis 0.008 Negative regulation of transcription* 0.024
Ubiquitin-dependent protein catabolism 0.013 Response to stress* 0.024
Modification-dependent protein catabolism 0.015 Phosphagen biosynthesis*b 0.043
Intracellular protein transport 0.018 Muscle development 0.033
Intracellular signaling cascade* 0.025 Striated muscle contraction 0.043
Lipoprotein biosynthesis* 0.038 dChip-PM:
Protein lipidation 0.039 Fatty acid metabolism* 0.001
Steroid metabolism* 0.047 Organic acid metabolism 0.001

Perception of smell 0.037
RMA: Sensory perception of chemical stimulus 0.049
Innate immune response 0.016
Acetyl-COA metabolism 0.018
Gutamate signaling pathway 0.034
Inflammatory response 0.040

* Categories known to be directly related to diabetes.
a. Biological process generated by DAVID 2.0 [21] as of Oct. 6, 2005.
b. Genes in the function category are involved in energy metabolism.
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Table 3: Genes and primer sequences for qRT-PCR.

Gene GenBank Primer sequences Fold change (diabetic vs. normal)

GSH-ST J03914 Forward: GATGTCCTTGATCAACACCG
Reverse: GGCCGCTCTTCATGTAGTCAG

5.47

MHC x04267 Forward: GTCAAGTCCTACAAGAGGCAGG
Reverse: GATTCTGCAATATCCGCACG

4.78

Metallothionein 1 and 2 M11794 Forward: CTGCGGCTGCAAGAACTG
Reverse: CTTGTCCGAGGCACCTTTG

7.21

HMGCoAS M33648 Forward: CTGCCCAAACGTCTAGACTCC
Reverse: GAAGAGGTTGCTTGTGTCACC

6.2

ALS 03190 Forward: GCTTATGAGGCAGATGCTAATGG
Reverse: ATGCCTGGTCATCAACTCATC

-2.96

PHAS-1 U05014 Forward: ACTAGCCCTACCAGCGATGAG
Reverse: TGTCCATCTCAAACTGTGACTC

2.64

DiEcoAR D00569 Forward: TGCAGTGATTATGCCTCTTGG
Reverse: CTTCGATTACATCCCACTCCTC

2.58

CPT-1 L07736 Forward: TTGTCTACGAGCCAGACTCCTC
Reverse: AGGAGACACCATAGCCGTCATC

2.42

RAD U12187 Forward: CATCCTAGTGGGCAACAAGAG
Reverse: AGGTCTCGATGAACTTGCAGTC

1.53

CK X59736 Forward: CTGGTCGCTACTACAAGCTGTC
Reverse: CCCAGCGCATGTTAGTAAAGG

-3.93

β-2-microglobulin Y00441 Forward: CCACCGAGACCGATGTATATG
Reverse: CGGATCTGGAGTTAAACTGGTC

In the order the genes are glutathione S-transferase, embryonic skeletal muscle myosin heavy chain, metallothionein-1 and 2, mitochondrial 3-
hydroxy-3methylglutaryl-CoA synthase, 5-aminolevulinate synthase, PHAS-I protein, 2,4-dienoyl-CoA reductase, carnitine palmitoyltransferase I, 
Ras-related protein, and sarcomeric mitochondrial creatine kinase.

rithm for expression summary. In this study, we have pro-
posed the use of probe set redundancy to evaluate the
performance of different probe set algorithms, and have
presented three approaches for assessing data variance
and result bias using two sample t-test statistics. These
methods include RPS variance analysis based on t-statistic
rank order, correlation analysis between t-statistics of
RPSs, and analysis of co-occurrence of replicate RPSs in
DEG list. The main advantage of our approaches lies in
the fact that we do not make use of external reference data,
but rather investigate data variance and result bias based
on RPSs, which often constitute a large portion of and
have direct relevance to the genes under study. Further-
more, the use of t-statistics allows us to reduce or avoid
RPS variances introduced from both biological variability
and differing probe design. To assess the usefulness of the
three proposed approaches, we have applied them to
three diverse datasets using a few widely used probe set
algorithms. Results from all three approaches not only
agreed well with each other in each individual test dataset
but they were in good agreement with either previous
findings by others or experimental validation from this
study. These approaches provide an alternative method to
determine data variance and result bias, without the use of
exogenous controls, and are thus useful for the assessment
of probe set algorithm performance. The results also sug-
gest that individual probe set algorithms have dataset-spe-
cific performance.

Methods
Datasets
GeneLogic dilution/mixture dataset
The GeneLogic dilution/mixture dataset [17] comprises
75 HG-U95A GeneChips to which two sources of RNA,
human liver tissue and a central nervous system cell line
(CNS), have been hybridized in various dilutions and
combinations. Of these 75 GeneChips, 60 of them were
hybridized with cRNA from either liver tissue or CNS at
the concentrations of 1.25, 2.5, 5.0, 7.5, 10.0 or 20.0 µg,
with 5 replicate GeneChips for each dilution level. Data
from these 60 GeneChips, called the GeneLogic dilution
dataset, have been used in this study.

A wholly defined control dataset
Choe et al. [14] recently performed a study to evaluate the
methods and analysis options for Affymetrix GeneChips
for identifying DEGs. They have constructed a wholly
defined control dataset to mimic the scenario of compar-
ing two samples in a microarray experiment. This dataset
comprises 3,860 individual Drosophila cRNAs of known
sequences. Out of the 3,860 cRNAs, 1309 have been
spiked in with different ratios of 1.2, 1.5, 1.7, 2.0, 2.5, 3.0,
3.5, or 4.0 between two test sample groups, and the
remaining 2,551 cRNAs have the same relative concentra-
tion in each test sample group. Each sample has hybrid-
ized in triplicate to Affymetrix Drosophila arrays
(DrosGenome1).
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Diabetes dataset
The third dataset consists of 10 Affymetrix GeneChips
from diabetes study [18]. Gene expression data was
obtained from 2 groups of rats: normal rats and rats with
streptozotocin-induced diabetes for four weeks. In each
group of 5 animals, labeled cRNA was prepared from 10.0
µg total RNA obtained from the leg muscle of one animal
and was separately hybridized to one Affymetrix U34A Rat
GeneChip. GeneChips were scanned at the Gene Expres-
sion Core Facility at Roswell Park Cancer Institute.

Generating expression summary values
Out of many probe set algorithms, the most widely used
are the MAS5.0 statistical algorithm from Affymetrix [6],
the Model Based Expression (dChip) Index of Li and Wong
[7,8], and the Robust Multi-Chip Analysis (RMA) of Iri-
zarry et al. [9]. All of them are based on the statistical
model of gene expression values as a function of the probe
level intensities. There are, however, important differ-
ences between these probe set algorithms.

MAS5.0 is based on the assumption of homogeneity of
probe affinity and weights each probe in a probe set
equally. MAS5.0 uses both PM and MM probes for expres-
sion summary from the average value of PM – MM in a
probe set and employs the Tukey's Biweight weighted
average of the probe level signals to avoid sensitivity to
outlier probe intensity. Unlike dChip and RMA, MAS5.0
summarizes expression individually for each GeneChip
and performs a scaling normalization at the level of
expression summary.

The dChip method assumes different probe affinity in a
probe set and considers a probe value as the product of
gene expression and probe-sensitivity index. The dChip
method uses a multiplicative model and employs probe
values of the same probe set from all GeneChips in an
experiment to iteratively estimate gene expression-specific
index as well as probe affinity-specific index for expres-
sion summary. Normalization in dChip is carried out at
the probe level, which makes use of an invariant subset of
probes that have small within-subset rank differences
between GeneChips. Additionally, the dChip performs the
expression measures using either only the PM probes
("dChip-PM") or both PM and MM probes ("dChip-PM/
MM").

Like dChip, RMA makes use of data from all GeneChips in
an experiment for normalization and considers the probe
affinity effect. RMA uses a linear additive model and com-
putes the expression summary values by the use of only
PM probes. Normalization in RMA is performed by quan-
tile normalization that transforms the PM distribution of
each GeneChip in a dataset to a common distribution.

We used the three probe set algorithms to generate expres-
sion summary values for the GeneLogic dilution and dia-
betes datasets. For MAS5.0, we used the Affymetrix
software suite MAS5.0 with its default settings and
adjusted the target intensity level to 2500 to bring the
total expression intensity of each GeneChip to a fixed
level. We also performed further global normalization to
bring the median expression values of all GeneChips to
the same scale. This was done by selecting a baseline
GeneChip from the dataset, followed by scaling each
GeneChip to the median of the baseline GeneChip

( ):

For dChip, we used the official dChip version 1.3 software
[27] to obtain expression summary values for both dChip-
PM and dChip-PM/MM. For RMA, we utilized the default
rma() function included in the "affy" package of Biocon-
ductor in the R statistical computing environment [28].
This default function employs median polish for expression
summary and quantile normalization for data normaliza-
tion.

The expression summary values of the wholly defined
control dataset were directly obtained from Choe et al.
[14], who created 150 multiple expression summary data-
sets using combinations of options from probe set algo-
rithms MAS (both version 4 and 5), dChip, and RMA.
These options included 3 for background correction, 4 for
normalization at the probe level, 3 for PM correction, 3
for expression summary, and 2 for normalization at the
probe set level. In the background correction options, the
use of "subtract MM for PM correction" (MAS version 4)
resulted in negative values when PM was less than MM,
and in this case about 85% of the probe sets on the Gene-
Chip were flagged as "not applicable" when expression
summaries from MAS and RMA were used. We therefore
excluded 40 expression summary datasets generated from
the use of this option, and employed the remaining 110
expression summary datasets in our study.

Welch t-test
Welch t-tests were performed on a probe set-by-probe set
basis between two sample groups; 6 × 4 for data generated
from the GeneLogic dilution dataset between liver and
CNS at the same dilution level, 1 × 4 for data generated
from the diabetes dataset, and 110 for expression sum-
mary datasets from the wholly defined control dataset
between two sample groups generated by the use of the
same combinations of options. The Welch t-test is specif-
ically designed to handle the possibility of having small
samples with unequal variances, and thus has been most
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widely used in RNA profiling data analysis. This t-test
relies on the assumption of data normality and homo-
scedansticity of expression values, which may not be valid
for all data. Nevertheless, the t-test is the best option for
our study, as it has more power than non-parametric tests
such as the Wilcoxon rank sum test, in addition to its pop-
ularity for gene expression data analysis.

Computing RPS variance based on t-statistic rank order
From each Welch t-test, let n denote the number of total
null hypotheses, and Tk the k-th largest t-statistic value,
probe sets are ranked in descending order based on t-sta-
tistic values.

T1,T2,T3,T4, ....., Tk, ...., Tn.

The corresponding rank order of probe sets is

R1,R2,R3,R4, ....., Rk, ...., Rn,

where R1 = 1, Rn = n, Rk the k-th rank order of a probe set.
We compute the data variance of a gene j with Nj RPSs:

As an alternative, the following can also be used to com-
pute RPS variance:

where k is the k-th rank order for a probe set of gene j, and
µ (Rj) the average distance of the Nj probe sets for gene j:

We employed t-statistic values to rank probe sets instead
of using the p-values. This is because t-statistic values
reflect the variances of RPSs in rank order more appropri-
ately than p-values do, as the t-statistic values distinguish
the up-regulation from down-regulation for RPSs, but the
p-values do not. Another alternative for computing the
variances of RPSs is to directly use the t-statistic values, but
this approach is less robust, as t-statistic values from dif-
ferent probe set algorithms may not be in the same scale.

Quantitative RT-PCR
Quantitative real time RT-PCR was performed for 10
genes from the diabetes dataset (Table 3). Total RNA from
either normal or diabetic animals was reverse transcribed
and used to generate cDNA with Invitrogen SuperScript
First-Strand Synthesis System Kit (Carlsbad, CA). Primers
for selected genes were designed using Primer3 developed
at Whitehead Institute and Howard Hughes Medical Insti-
tute (Cambridge, MA) and synthesized by Sigma-Genosys
(The Woodlands, TX). Primer sequences were designed to
flank an intron near the 3' end of the gene sequence, have
20 to 22 bp, and contain 50–60% GC sequences and a G
or C at the 3'end. Real time PCR was performed using
cDNA, gene specific primers, SYBR Green PCR Core Rea-
gent Kit obtained from Applied Biosystems (Foster City,
CA), and the iCycler IQ Real Time PCR detection system
from BioRad (Hercules, CA). As a constitutive control, the
β2 microglobuin gene was used. The PCR efficiency was
98–100% for all primer sets as determined using standard
curves to test linearity. The fold change of the comparison
of diabetic to normal rats was calculated as 2 (Ct target geneD

- Ct control gene)-(Ct target geneN - Ct control gene), where Ct is the
threshold cycle.
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Correlation of qRT-PCR fold changes with those from Gene-Chip studyFigure 8
Correlation of qRT-PCR fold changes with those 
from GeneChip study. For 10 genes, qRT-PCR average 
ratio from biological replicates between diabetic and normal 
animals vs. the average ratio in GeneChips from different 
probe set algorithms are depicted as color-coded symbols, 
and linear fittings for the data are depicted as color-coded 
lines. The correlation coefficients comparing data from each 
probe set algorithm to those from qRT-PCR are shown in 
the upper left corner.
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